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Welcome to Big Al era!

» Driving Forces:
« Technology advances
« Availability of big data for training
« Availability of powerful GPU

» Performance improves with size.
* “The race to scale” begins...

» The new thing (2021--)
« HUGE neural networks
« VAST amounts of training data
« MASSIVE compute power for training
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Al'is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) trained on broad
data (generally using self-supervision at scale) that can be adapted to a wide range of downstream tasks.
We call these models foundation models to underscore their critically central yet incomplete character.
This report provides a thorough account of the opportunities and risks of foundation models, ranging

fram their ranahilitiee (e 0 lanocuace wvician vahatic maninulation reacanine human interaction ) and



Foundation Models

A foundation model is a model that is trained on broad data and can be adapted to
a wide range of downstream tasks.
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» Representative Examples =k o ® i@ o oy
« Large Language Models (LLMS)

* E.g., ELMo with millions of parameters to GPT-4 with trillions of parameters.
* Vedio Models: SORA




Graph Foundation Models

A graph foundation model (GFM) is a model pre-trained on extensive graph data,
adapted for diverse downstream graph tasks.

» Motivation
« Existing LLMSs struggle to model graph data
. ) JIAWEI LIU, CHENG YANG", Beijing University of Posts and Telecommunications, China
o EUCI Idean data V.S. NON- EUCI Idean data ZHIYUAN LU, JUNZE CHEN, YIBO LI, Beijing University of Posts and Telecommunications, China

MENGMEI ZHANG, TING BAI, Beijing University of Posts and Telecommunications, China

® I I YUAN FANG, Singapore Management University, Singapore
Existing LLMs struggle to handle graph tasks YU F o g Mt Uiy, S

° node/edge/graph_|eve| tasks PHILIP S. YU, University of llinois Chicago, USA

CHUAN SH|T, Beijing University of Posts and Telecommunications, China

> S CO p e Of th i S tu to r i a I Foundation models have emerged as critical components in a variety of artificial intelligence applications, and

showcase significant success in natural language processing and several other domains. Meanwhile, the field of

Towards Graph Foundation Models: A Survey and Beyond

- graph machine learning is witnessing a paradigm transition from shallow methods to more sophisticated deep
[ J . .
CO n Ce pt Of g rap h fo u n d atl O n m O d e I learning approaches. The capabilities of foundation models to generalize and adapt motivate graph machine
learning researchers to discuss the potential of developing a new graph learning paradigm. This paradigm
o R ece nt p o g Fess enlvisions mo.dels.that are pre-@ned on.extensive graph data and can be adapted for vat-ious graph tasks‘.D.espite
this burgeoning interest, there is a noticeable lack of clear definitions and systematic analyses pertaining to
this new domain. To this end, this article introduces the concept of Graph Foundation Models (GFMs), and
° -
G N N based m eth Od S offers an exhaustive explanation of their key characteristics and underlying technologies. We proceed to classify
the existing work related to GFMs into three distinct categories, based on their dependence on graph neural
° -
L L M based methOdS networks and large language models. In addition to providing a thorough review of the current state of GFMs,
this article also outlooks potential avenues for future research in this rapidly evolving domain.
GNN+LLM-based methods P Py ToTe

e Future directions
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v Graph Foundation Models

* Progress in Related Work

» Challenges and Future Direction




Foundation Models

A foundation model is any model that is trained on broad data and can be adapted
to a wide range of downstream tasks.!]

Language Vision Speech
@) OpenAl x GPT4 0O Meta x DINOv2 Google x uswm
Language foundation models Vision foundation models Speech foundation models show
show initial signs of universal exhibit strong image the capability to recognize
Al capabilities. understanding capabilities. hundreds of languages.

Foundation models have become a reality in domains like language, vision, and speech.

[1] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein, J. Bohg, A. Bosselut, E. Brun-skill, et al., “On the opportunities and risks
of foundation models,” arXiv preprint arXiv:2108.07258, 2021.




Characteristics of Foundation Mode

Two Characteristics of Foundation Models:
« Emergence: As a foundation model scales up, it spontaneously manifests novel capabilities.

« Homogenization: The model’s versatility enables its deployment across diverse applications.
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Wei J, Tay Y, Bommasani R, et al. Emergent abilities of large language models[J]. arXiv preprint arXiv:2206.07682, 2022.




Factors Driving Foundation Model Succ
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Figure 1: The Transformer - model architecture.
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anguage Foundation Models

Large Language Models (LLMSs) refer to pre-trained language models with massive
parameters and are typical representatives of foundation models.
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Large Language Models

Data

it not cool that ping pong is not included in rio 2016

» Language data: text or spoken content in a human language

e sequential data
 Euclidean data
Backbone Architectures

» Mostly based on Transformer

« e.0., BERTHI GPT-30
» Pre-trained with pretext tasks:

« next word prediction (NWP)

« masked language modeling (MLM)...
Downstream Tasks

» Hundreds of downstream tasks

* e.g., machine translation, sentiment analysis...

l Tokenization

it H not | cool

that ‘ ‘ ping pong is

not included ‘ in ‘ rio || 2016

Language Data

If we were predicting words, .
we would need to predict 7

hard

~1 million classes

__v| shabby

1

Attention > is > not > too K__

# preds shape (B, T, # classes) \\\ T
# would be (B, T, 1le7) g

road

loss = cross_entropy(preds, targets)
4

likely next
word

1 million other
possible words

unlikely
next word

Next Word Prediction (NWP)

[1] Devlin J, Chang M W, Lee K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint arXiv:1810.04805, 2018.
[2] Brown T, Mann B, Ryder N, et al. Language models are few-shot learners[C]. NeurlPS 2020, 33: 1877-1901.




Graphs

Graphs are a general language for describing and modeling complex systems.
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Graph Machine Learning

« Graph G is an ordered pair (V, E), where V' is the node set and E is the edge set.

« Graph machine learning refers to the application of machine learning to graph data,
commonly known as graph learning or graph models.

Shortest Path Problem Long Tail Distribution

o st )
Graph algorithms Network Science
* Dijkstra » Barabasi

Graph neural networks Graph embedding Graph signal processing
* GCN » DeepWalk » Shuman
@ e .".-{ ignal 1/ont e Graj
I . : .:;.';.:.ﬁ 3o ":.:‘: : ' r i ‘ < y X 205




Graph Representation Learning

Graph Representation Learning (GRL): embed each node of a graph into a low-
dimensional vector space

B . . oz g
- * o Reconstruct e e, e
Embed .
Shallow model Deep model
» Random walk based » GNN based
* e.g, DeepWaIk node2vec e e.g., GCN, GraphSage, GAT

' —>BFS
&
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Data in GNN

Data

» Graph data
* non-Euclidean data ot | s

> Various domains Graph Image (Grid)  Language (Seq.)
» social networks

* molecules
e E-commerce...

» Various types

[ not | included | in | rio | 2016 |

* homogenous graph Social Networks  Molecules E-commerce

« heterogenous graph - v v

* hypergraph... AT/T\\ o mz
A A g4 v, GRS |,

Hbmogenéous Heterogeneous Hypergraph




Tasks in GNN

Downstream Tasks

» Node-level tasks
* node classification
* node regression
* node clustering...

» Edge-level tasks
* link prediction
 shortest path prediction
* maximum flow prediction...

» Graph-level tasks
« graph classification — Category A?
Graph

. grapﬂ genzratioq Category?  Classification
* grapnh condensation...

Node
Classification>

Link
Prediction

Category Al

 Category C?




Graph Models Meet Large Language

LLMSs cannot solve graph-related problems.

« LLMs struggle to model graph structure semantics.
« LLMs struggle to handle diverse graph tasks.

it not cool that ping pong is not included in rio 2016
t l Tokenization
it || not | cool | that H ping pong | is
not | included in rio || 2016
Graph Classification Node Classification  Link Prediction
T 2 = tikely next
- (4 1 - class = word
»F 2 B2 e
=Y .
o >7>T »‘L 2 : lmiltllonothev
I aS kS Communy Detection _ Graph Embedding  Graph Genera! on | Atentlon [ s [t [ [ 1 possiblewords
ZacN? preds shape (B, T, # classes)
&y e e -

Graph models do not possess the capabilities of LLMSs.

« Limited expressive power

« Deep GNNSs: over-smoothing/over-squassion ISsues
« Lack emergence capability

e Cannot support multiple tasks

2 4 B 8 10
MNumber of Transformation Depth I,

Performance Decline Information Bottleneck
of Deep GNNs in GNNs




Graph Foundation Models

A graph foundation model (GFM) is a model pre-trained on extensive graph
data, adapted for diverse downstream graph tasks.

—————————————————
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(b) Graph Foundation Models.

Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang, Ting Bai, Yuan Fang, Lichao Sun, Philip S. Yu, Chuan Shi. Towards Graph Foundation
Models: A Survey and Beyond. arXiv 2023.




Characteristics of Graph Foundation

Two Characteristics

Emergence oy
(00 /e’] Node
» Novel capbility when larger model or more ;cr _____ é:) [ P ]
graph data ¢ \
» graph reasonin R r A
g ph y g el Graph P—r
grap generation.. . y Foundation [ elaccieation J
kModel (GFM))

Homogenization

» Apply to different formats of tasks
* node/edge/graph tasks

Link
Prediction




Key Techniques of Graph Found
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Pre- tralnlng

Key Technigues of GFMs §; :
> Pre-training: neural networks are trained on a v cf? &O
large graph dataset in a self-supervised manner e B
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GFMs v.s. LLMS

Similarities: common goal and similar learning paradigm
Differences: (1) different data and tasks; (2) technological differences

Language Foundation Model Graph Foundation Model
C e Goal Enhancing the model’s expressive power and its generalization across various tasks
Similarities
Paradigm Pre-training and Adaptation
Non-Euclidean dat h ixture of Euclid
Intrinsic ~ Data Euclidean data (text) on-Euet ean. a (graphs) or a ml.x re OF Buehdedn
, (e.g., graph attributes) and non-Euclidean data
differences
Task Many tasks, similar formats Limited number of tasks, diverse formats
Backbone Architectures Mostly based on Transformer No unified architecture
Extrinsic Homogenization Easy to homogenize Difficult to homogenize
differences
Domain Generalization  Strong generalization capability Weak generalization across datasets

Emergence Has demonstrated emergent abilities No/unclear emergent abilities as of the time of writing




v Progress in Related Work

» Challenges and Future Direction




Taxonomy of Related Work

No GFMs until now, but a lot of explorations is on the way.
Categorize existing explorations into three distinct groups according to the

dependence on GNNs and L

| Ms

Towards Graph Foundation Models

|

|
GNN-based Models

— Backbone Architectures

\: Message Passing-based 4.1.1
Graph Transformer-based 4.1.2

— Pre-training

\: Contrastive Methods 4.2.1
Generative Methods 4.2.2

L Adaptation

\: Fine-Tuning 4.3.1
Prompt-Tuning 4.3.2

[
LLM-based Models

— Backbone Architectures
\: Graph-to-Token 5.1.1
Graph-to-Text 5.1.2

—| Pre-training

\: Language Modelling 5.2.1
Masked Language Modelling 5.2.2

— Adaptation

\: Manual Prompting 5.3.1
Automatic Prompting 5.3.2

GNN+LLM-based Models

— Backbone Architectures

GNN-centric 6.1.1
Symmetric 6.1.2
LLM-centric 6.1.3

— Pre-training

E GNN or LLM-based 6.2.1
Alignment-based 6.2.2

] Adaptation

i: Fine-Tuning 6.3.1
Prompt-Tuning 6.3.2




GNN-based Models

Seeking to enhance current graph learning through innovative approaches in GNN
model architectures, pre-training, and adaptation.

» Architectures: Graph Transformer, e.g., Specformer (ICLR23), CoBFormer (ICML24)
» Pre-training: Graph Pretraining, e.g., PT-HGNN (KDD21), GraphPAR (WWW?24)
» Adaptation: Graph Prompt, e.g., All In One (KDD23), MultiGPrompt (WWW24)

mie- Predictions

|
|
|
|
== Predictions m—
|
|
|

1-hop aggregation

2-hop ageregation |

— o o o o e — e e

(a) Message Passing. (b) Graph Transformer.




LLM-based Models

Exploring the feasibility of transforming graphs into text or tokens to leverage
LLMs as foundation models.

» Graph-to-Token: transform graphs into tokens and then input them into LLMs
* e.g., InstructGLM

» Graph-to-Text: transform graphs into texts and then input them into LLMs
* e.g.,, NLGraph (NIPS24), LLM4Mol

§
] |
I —Pg -Lb Predictions I LLM —}g -|-> Predictions
| I
Graoh to token [Categer entral node: (<node 43, Title 4> ) is ()
0 _p_—)- tdt (<n d 1> Ttl 1), (< ode_2>, Title 2), Tnstruction .‘. O Graph fo fext Th tﬂ fpp rf is: Can language . Th tﬂ Instruction

of Paper_1 is: Explor g...Pp_l cites Paper_4 ..

(¢n d 9, Title e hop. lihi h ategory should |E Question: The category of Paper_4 is .

(<node_4>, Title 4Abt 't4)b categorized? ERe

(2) Graph-to-token. (b) Graph-to-text.




GNN+LLM-based Models

Exploring synergies between GNNs and LLMs to enhance graph learning.

» GNN-centric Models: utilize LLM to extract node feature and make predictions using GNN
* e.g., SimTeG, TAPE

» Symmetric Models: align the embeddings of GNN and LLM
* e.g., GraphTranslator (WWW?24), G2P2 (SIGIR23), ConGrat

» LLM-centric Models: utilize GNNSs to enhance the performance of LLM
e e.g., Graph-Toolformer

S —

|
|

N ! - : on
O .‘E : A]lgﬂmﬂﬂtl — Adaptati :
|
|

E O . ' (£ .Q
_l"' —3"" == | Predictions .‘. .E GNN
ll\, /’ |§ .l \ —
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v Challenges and Future Direction




Challenges in Model

Model Architectures
> It remains unknown whether current architectures
are optimal choices.
» Multimodal foundation models Pretraining
. . _ Data Masked Video Encoder
« Using graph to extend the multiple modalities... %

Masked Video
Reconstruction

@ age 9 Cross Model Attention
M Od EI Tral n I n g m Video @ Multimodal Video Encoder ) ?u“tir?ot('ial
» Is there uniform pretext tasks for graph 1] ren Video Text Encoder Learning
» Some ideas from other directions
« knowledge distillation A
. . Kinetics, ActivityNet, MSR-VTT, DiDeMo, UFC101-HMDBS1,
« reinforcement learning from human feedback D GRS TR
Action Understanding Video-Language Alignment  Video Open Understanding

* model editing...

Multimodal Foundation Models




Challenges in Data and Evluation

Data Quantity and Quality
» Limited amount of open-source large-scale graph data

e concentrated in a single domain ) )
» Using augmentation strategies IO -

e graph structure learning R

 feature completion 3 Comtsubcrmt |

* |abel mixing... ( T ‘
Evaluation v W grverrong R g M\ s s
» Lacking labels in open-ended tasks | S/ A </ o

« human evaluation a\\/ A _\\/ £

*  meta-evaluation o o
» Evaluating robustness, trustworthiness, holistic perform%{la eh.Augmentatlon




Challenges in Applications

Killer Applications

» It is not yet clear that graph foundation models can similarly catalyze groundbreaking
applications in graph tasks.

» Promising fields
e Uurban computing
* drug development...

Safety

» Black-box nature introduces safety concerns.
« hallucination
« privacy leaks

» Promising technologies
« counterfactual reasoning...
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GNN-based Methods

Backbone: No unified architecture . . ,
Paradigm: Pre-training + Adaptation

(Message Passing/Graph Transformer)
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Downstream Tasks
(Node-, Edge-, Graph-level Tasks)

Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang, Ting Bai, Yuan Fang, Lichao Sun, Philip S. Yu, Chuan
Shi. Towards Graph Foundation Models: A Survey and Beyond. arXiv 2023




GNN-based Methods

Backbone: No unified architecture . . ,
Paradigm: Pre-training + Adaptation

(Message Passing/Graph Transformer)
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.’ — ? :
1 L E 1
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i Sre 2 i
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Downstream Tasks
(Node-, Edge-, Graph-level Tasks)

Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang, Ting Bai, Yuan Fang, Lichao Sun, Philip S. Yu, Chuan
Shi. Towards Graph Foundation Models: A Survey and Beyond. arXiv 2023




Backbone Architecture

Backbone Architecture

Message Passing: propagates information between nodes that are explicitly connected
in the graph structure

Graph Transformer: considers and measures the similarity between every pair of nodes

in the graph

S ~ 1 P, I

| [ Message Passing ] : I[ Graph Transformer ] :

l |

| : ! :

| == Predictions #: 1 =2 Predictions

I N gi= | N

I | - I
! I

| 1] 1-hop ageregation | : 7 1 —

| . attention

I 2-hop aggregation | | |

(a) Message Passing. (b) Graph Transformer.




Backbone Architecture

Backbone Architecture
 Message Passing: propagates information between nodes that are explicitly connected
in the graph structure

* Graph Transformer: considers and measures the similarity between every pair of nodes

in the graph

S ~ 1 P, I
| [ Message Passing ] : I[ Graph Transformer ] I
| |
| ' ! !

| I -

| === Predictions — 1 =2 Predictions
I I | - I
! I
: 1] 1-hop ageregation | : 7 1 —
2-hop aggregation | | attention I
i I PO
(a) Message Passing. (b) Graph Transformer.




Graphormer

Motivation:

 The Transformer is well acknowledged as the most powerful neural network in modelling
sequential data, such as natural language and speech.

 Model variants built upon Transformer have also been shown great performance in
computer vision and programming Language.

 However, Transformer has still not been the de-facto standard on public graph

representation leaderboards.

Whether Transformer architecture is suitable to model graphs and how to make
it work in graph representation learning?

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-Yan Liu. 2021.
Do transformers really perform badly for graph representation? NeurlPS 2021.




Graphormer

Core idea:

 properly incorporate structural information of

graphs into the model.
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Structural Encodings in Graphormer
* Centrality Encoding:

 develop a Centrality Encoding which assigns each node two real-valued embedding

vectors according to its indegree and outdegree.
B = 3+ 2 0y + Zag (w0
 Spatial Encoding:
* choose ¢(vi, vj) to be the distance of the shortest path (SPD) between vi and vij.
* Edge Encoding:
* find the shortest path SP j;= = (el, e2, ..., eN) from vi to vj, and compute an average
of the dot-products of the edge feature and a learnable embedding along the path.
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GRAPH-BERT

Motivation:

* Traditional message passing-based models have limited representation capabilities.

 Theinherently interconnected nature precludes large-sized graph parallelization, as

memory constraints limit batching across the nodes.

* Existing GNN models have several serious learning performance problem, e.g.,

suspended animation problem and over-smoothing problem.

Zhang J, Zhang H, Xia C, et al. Graph-bert: Only attention is needed for learning graph representations. arXiv
2020[J]. arXiv preprint arXiv:2001.05140, 2001.




GRAPH-BERT

Part 1: linkless subgraph batching instead of the complete graph

Part 2: Node Input Vector Embeddings
1. raw feature vector embedding
Weisfeiler-Lehman absolute role embedding

2
3. intimacy-based relative positional embedding
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GRAPH-BERT

How to handle large-scale graph input?
* Linkless Subgraph Sampling and Batching
* Introduce the top-k intimacy sampling approach and trained with linkless subgraph batches sampled

from the input graph instead of complete graph

How to deal with insufficient model representation?

* More node-related information as node initial features
. (z) _ _ dp, x1
1. raw feature vector embedding ej = Embed(x;) ¢ R

eg‘"] = Position-Embed (WL(v;))

E
10000 x 10000 4 / Jj=g

3. intimacy-based relative positional embedding el”) = Position-Embed (P(v;)) ¢ R*"*’

2. Weisfeiler-Lehman absolute role embedding

4. hop-based relative distance embedding ej") = Position-Embed (H(v;:v;)) e R"*!
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GNN-based Methods

Backbone: No unified architecture . . ,
Paradigm: Pre-training + Adaptation

(Message Passing/Graph Transformer)
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Downstream Tasks
(Node-, Edge-, Graph-level Tasks)

Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang, Ting Bai, Yuan Fang, Lichao Sun, Philip S. Yu, Chuan
Shi. Towards Graph Foundation Models: A Survey and Beyond. arXiv 2023




Pre-training

Pre-training
* Generative methods:
* graph reconstruction

e property prediction

* Contrastive methods:
* same-scale contrastive learning

* cross-scale contrastive learning

Liu Y, Jin M, Pan S, et al. Graph self-supervised learning: A survey[J]. IEEE Transactions on Knowledge and Data Engineering,
2022, 35(6): 5879-5900.




Pre-training

Pre-training

* Generative methods: graph reconstruction, property prediction
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Liu Y, Jin M, Pan S, et al. Graph self-supervised learning: A survey[J]. IEEE Transactions on Knowledge and Data Engineering,
2022, 35(6): 5879-5900.




Pre-training

Pre-training

* Generative methods: graph reconstruction, property prediction
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GPT-GNN

Motivations:
e Scarcity of Labeled Data: Adequate labeled data is often unavailable for training GNNs
on specific tasks.

* Proven Success of Pre-training: Pre-training has significantly enhanced performance in
domains like NLP and computer vision.

* Need for Generalization: Pre-training GNNs can help them generalize across various
tasks with minimal customization.

Hu Z, Dong Y, Wang K, et al. GPT-GNN: Generative pre-training of graph neural networks. KDD2020.




GPT-GNN

Pre-train large-scale graph with reconstructing the input graph. Decompose the

reconstruction process into two coupled steps:
e Attribute generation: given observed edges, generate node attributes
* Edge generation: given observed edges and generated attributes, generate masked

edges

. : Attribute generation node

' : Edge generation node

(d) Generate attribute and (e) Generate attribute and
masked edges for node 3. masked edges for node 4.

Hu Z, Dong Y, Wang K, et al. GPT-GNN: Generative pre-training of graph neural networks. KDD2020.




Adaptive Graph Encoder

Motivations:

Reconstructing the adjacency matrix = contrasting adjacent nodes
Assumption: A node is similar to its neighbors.

‘ Reasonable?

The three main drawbacks of GAE:

Entangled Architecture: Combines multiple layers in a way that complicates training
without improving performance.

Ineffective Filters: The graph convolutional filters used are not optimal for filtering out
high-frequency noise.

Unsuitable Objectives: The training goals of reconstructing adjacency and feature
matrices are not practical, as they can either overlook key data or retain unwanted noise.

Cui G, Zhou J, Yang C, et al. Adaptive graph encoder for attributed graph embedding. KDD 2020




Adaptive Graph Encoder

* Laplacian Smoothing: Design appropriate Laplacian smoothing filters to

filter out high-frequency noise.
* Adaptive Encoder: Adaptively select training node pairs from the node

similarity and adjust graph representations accordingly.

Adaptive Encoder
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Adaptive Graph Encoder

* How to set training objectives to learn graph representations?
* The adjacency matrix records only one-hop structural information.

* Smoothed features or trained representations integrate both structural
and feature information. -

* Adaptively select training node pairs: .@@'.

e High similarity pairs as positive examples. aoﬂ«*““\* %ew

* Low similarity pairs as negative examples. S Adaptive Encoder S
* Select Strategy

* Calculate the cosine similarity matrix S.

* Sort all node pairs and select those whose similarity is above/below a
certain threshold.

* Dynamically update the threshold.

Select tralnlng pairs

S|m|Iar|ty

Cui G, Zhou J, Yang C, et al. Adaptive graph encoder for attributed graph embedding. KDD 2020




Pre-training

Pre-training

* Generative methods: graph reconstruction, property prediction
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Liu Y, Jin M, Pan S, et al. Graph self-supervised learning: A survey[J]. IEEE Transactions on Knowledge and Data Engineering,
2022, 35(6): 5879-5900.
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Motivations:

Lagging Development of GAEs: GAEs lag behind contrastive methods in critical tasks like
node and graph classifications, highlighting a need for enhanced models.

Challenges in Current GAE Approaches: Existing GAEs struggle with issues like non-
robust feature reconstruction and sensitivity to MSE, prompting the need for

methodological improvements.
Decoder Limitations: The simple MLP decoders commonly used in GAEs are inadequate

for complex graph data, suggesting a need for more expressive architectures.

Hou Z, Liu X, Cen, et al. Graphmae: Self-supervised masked graph autoencoders[C]//Proceedings of the
28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.




Masked Feature Reconstruction: Focuses on node feature reconstruction with masking, proven
effective in enhancing performance.

Scaled Cosine Error: Uses a scaled cosine error for better handling of feature magnitude variations and
sample difficulty imbalances.

Re-mask Decoding: Employs re-masking of encoded node embeddings to improve decoding accuracy.
Advanced Decoder Architecture: Incorporates complex GNNs in the decoder for improved
expressiveness.
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GROVER

Motivations:

* Scarcity of Labeled Data: There is a significant lack of labeled molecular data, making it
challenging to apply traditional supervised learning effectively in drug discovery.

* Limitations of Current Methods: Existing molecular representation methods, like SMILES,
fail to adequately capture the complex topological information of molecules.

* Need for Novel Strategies: There is a pressing need for novel computational strategies
that can efficiently exploit vast amounts of unlabeled molecular data to improve
prediction accuracy and model generalization.

Yu Rong, Yatao Bian, et al. Self-Supervised Graph Transformer on Large-Scale Molecular Data. NIPS2020.




GROVER

Designed self-supervised tasks in node-, edge- and graph-level, learn rich structural and
semantic information of molecules
» Contextual property prediction: predict masked node/edge attributes set

* Motif prediction : predict the classes of the motif that occur in a given molecule

Contextual property prediction (node/edge level task) Graph-level motif prediction

N Contextual property extraction Subgraph masking Prediction Semantic motifs from Graph-level Prediction
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GNN-based Models

Pre-training

 Contrastive methods: same-scale contrastive learning, cross-scale contrastive learning
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Liu Y, Jin M, Pan S, et al. Graph self-supervised learning: A survey[J]. IEEE Transactions on Knowledge and Data Engineering,
2022, 35(6): 5879-5900.




GNN-based Models

Pre-training

 Contrastive methods: same-scale contrastive learning, cross-scale contrastive learning

Augmented Graph Node Representations
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Motivations

Label Scarcity: In fields like biology and chemistry, acquiring labels is costly and slow,
making pre-training a valuable strategy to enhance GNNs, akin to its use in CNNs.
Complex Graph Data: The diverse and complex nature of graph data makes designing
effective pre-training schemes challenging, as simple methods like adjacency

reconstruction may fall short.
Contrastive Learning Potential: Contrastive learning could potentially overcome the

limitations of proximity-focused pre-training by promoting feature consistency across
different views.

Yuning You, Tianlong Chen, Yongduo Sui, et al. Graph Contrastive Learning with Augmentations. NeurlPS2020




Design four types of graph augmentations to incorporate various impacts in four different

settings: semi-supervised, unsupervised, transfer learning and adversarial attacks.
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...... q;(

Input Graph e G \iIo—> |-

Node Dropping

IG) ~T

K ......

‘ : \
. __. }i, l;r:&idec;i(qsl —)% ,En _ —]ﬂg exp(siln{zn,i,zn,j)ﬁ')

i Augmentations ¢

-|G) ~ T| @dge Perturbation — =

: : N .
J E E Maximize w E'ﬂ,*:l -n,'iéﬂ Exp(sm(zﬂﬁ? zﬂ-",j)-fq-)
f() Agreement ’

—»//J/L"’—’» —— _}% Contrast augmentation of same&diffferent graphs
J

Shared GNN-based Encoder Head g(°)
\C] Embeddings O o ) T
Data augmentation Type Underlying Prior
Node dropping Nodes, edges Vertex missing does not alter semantics.
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Attribute masking Nodes Semantic robustness against losing partial attributes.
Subgraph Nodes, edges Local structure can hint the full semantics.




HeCo

Core idea:

Two views of a HIN (network schema and meta-path views) are proposed to capture both of local
and high-order structures simultaneously.

The cross-view contrastive learning is proposed to extract the positive and negative embeddings
from two views.

The two views to collaboratively supervise each other and finally learn high-level node embeddings.
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Wang X, Liu N, Han H, et al. Self-supervised heterogeneous graph neural network with co-contrastive learning. KDD 2021




HeCo

Network Schema View Guided Encoder

Node-level attention

For target paper

1. randomly sample &,,-type neighbors with threshold Ty

2. aggregate them with attention to get embedding of type &,

Type-level aggregation

Aggregate different type of nodes with attention mechanism
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MA-GCL

Motivation

* Contrastive learning captures invariant information among different augmentation views.
* Good augmentations should introduce as much perturbation as possible without changing

the core semantics.

Predict Relative Position Rotation

 However, in graph contrastive learning (GCL), we have few prior knowledge on how to

generate such good augmentations.

Can we generate better augmentations than typical random dropping-based methods?




MA-GCL

Core idea

 We interpret a GNN as a sequence of propagation operator g and transformation operator h:
* propagation operator g is typically the non-parametric graph filter.

* transformation operator h is typically a weight matrix with a non-linear function.

§(Z;F) = FZ, h(Z;W) = o(ZW), F =D 3AD*
GCN(X)=hrogohr_10go---0ohyog(X),
SGC(X) = ho gH(X),

* |ntuition: different architectures (i.e., operator sequences) won’t affect the core semantics.

* Thus we perturb the neural architecture of graph encoder as model augmentations.




MA-GCL

We propose three strategies to introduce perturbations:
* Asymmetric strategy

* Use the same number of operator h with shared parameters for different views
* Use different numbers of operator g for different views

 Random strategy

* Randomly vary the number of propagation operator g in every training epoch

* Shuffling strategy

* Randomly shuffle the permutation of propagation and transformation operators




MA-GCL

We conducted extensive experiments on node/graph classification/clustering.

Datasets | Cora CiteSeer PubMed  Coauthor-CS  Amazon-C =~ Amazon-P | Avg. Acc. Avg. Rank

GCN 825404 712+03 792+£03 93.03+03 8651+£05 9242+02

GAT 83.0+0.7 725+07 79.0+£03 9231+02 8693+03 9256+04 - -
InfoGCL 835+03 73504 79102 - - -

DGI 823+06 718+07 768+03 9215+06 8395+05 91.61+02 83.10 8.5
GRACE 81704 715+05 80.7+04 929300 8746+x02 92.15+0.2 84.44 6.5
MVGRL 834+03 73.0+03 801+£06 9211+0.1 8752+0.1 91.74+0.0 84.63 6.5

BGRL 81.7+£05 721+£05 802+£04 930102 8823x03 92.57+£03 84.63 6.5
GCA 834+03 723+£01 802+04 93.10x0.0 878503 925302 84.89 4.0
SimGRACE | 77.3+0.1 714401 783+03 9345+04 86.04+0.2 09139+04 82.98 8.5
COLES 812404 715+02 804+£0.7 9265+0.1 79.64+0.0 89.00+0.5 82.40 8.8
ARIEL 825+£01 722+£02 805+£03 933500 83827x02 914302 84.71 4.8
CCA-SSG | 83904 73.1+03 813+04 9337+0.2 8842+03 9244+0.1 85.42 23
Base Model | 811.£04__714:£01__791£04__9286+03 __ 870302 92119403 |_ 83838 ____90_
|r MA-GCL 833+04 73.6+x0.1 835+04 9419%+0.1 8883+0.3 93.80+0.1 86.20 12 |

i Jepeg g p—




GNN-based Models

Pre-training

 Contrastive methods: same-scale contrastive learning, cross-scale contrastive learning

Augmented Graph Node Representations
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Liu Y, Jin M, Pan S, et al. Graph self-supervised learning: A survey[J]. IEEE Transactions on Knowledge and Data Engineering,
2022, 35(6): 5879-5900.




Deep Graph Infomax

Motivations:
* Label Scarcity: Most real-world graph data lacks labels, restricting the use of supervised

methods.
e Structure Discovery: Unsupervised learning is vital for uncovering new structures in

large-scale graphs.
* Current Method Limitations: Existing methods like random walks over-emphasize

proximity and may neglect broader structural details.

VeliCkovic¢ P, Fedus W, Hamilton W L, et al. Deep Graph Infomax[C]//ICLR. 2018.




Deep Graph Infomax

* Node Representation: GCN generates a representation for each node in the graph.

* Graph Representation: The global representation of the graph is produced by
aggregating all node representations, typically through summation or averaging.

* Negative Sampling: Perturbed versions of the graph are generated, for example, by
shuffling node features or edges to create negative samples.

 Maximization of Mutual Information: The network is trained by maximizing the mutual
information between node representations and the global representation in the positive
samples (original graph) and minimizing it in the negative samples (perturbed graph).
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GNN-based Methods

Backbone: No unified architecture . . ,
Paradigm: Pre-training + Adaptation

(Message Passing/Graph Transformer)

4T TTTTTTT TS TT STl TS oSS T STt TTTTTTTTTTTooTooooooooooos N
.’ — ? :
1 L E 1
! g Neural Backbone ? :
M) 2 i
' p - c{v) /8-‘0 M‘) Pretext Task :
i Al ’ *4_ " 2O (e.g., link prediction)
LR @ LI )
i | 2 ? :
I | ~ I
| | ‘\‘ ‘\ :
: &O | \‘ 2 1
N e T L. ,
|
: Homogenization
+ -------
= (O > go) { .
A J)® = ey : P ?
Adaptation I O{)”o ? ;
O Q.

[

Downstream Tasks
(Node-, Edge-, Graph-level Tasks)

Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang, Ting Bai, Yuan Fang, Lichao Sun, Philip S. Yu, Chuan
Shi. Towards Graph Foundation Models: A Survey and Beyond. arXiv 2023




Downstream Adaptation
* Fine-tuning: keep input graph intact, modify model parameters accordingly

* Prompt-tuning: keep pre-trained model intact, modify input graph or output embedding

Model Tuning Prompt Tuning
(a.k.a. “Fine-Tuning”)

Pre-trained Model Pre-trained Model
¢ Tunable ¥ % Frozen =
LI AR
\ ~ J N J S v /

Input Tunable Soft  Input

Prompt




Downstream Adaptation
* Fine-tuning: keep input graph intact, modify model parameters accordingly

 Parameter-efficient Fine-tuning (PEFT): only tune a small portion of parameters

Model Tuning Prompt Tuning
(a.k.a. “Fine-Tuning”)

Pre-trained Model Pre-trained Model
¢ Tunable ¥ % Frozen =
LI AL
\ ~ J N J S v /

Input Tunable Soft  Input
Prompt




G-Adapter

Can PEFTs from the language domain be transferred directly to graph-based tasks?

* There is a significant gap between traditional PEFTs and full fine-tuning, especially

on large-scale datasets.

How to design a graph-specific PEFT method?

2 1
o Full Fine-tuning o *,r*~ T S — Full Fine-tuning
_,‘*“"**—-—"*
g * £
o g IEEERE JOnt
[ . | """ 7 | TTTTEmmemmme———
§ - PUBEENENSS S o & s
8 et %] . S e ——————
5 """" 5 .r ,.-—-
-6 -1 £ —-3-
g . --. --------- "._ lé ;’l,
< | -7 t .
[ ,.' [ Vi
o -8 4" a -4 ,4
ol @ ~dapter ’, @ Adapter
10l @ 7 ® Lora s ® LorA
- o @ BitFit / & BitFit
% G-Adapter .’ % G-Adapter
-12 T T -6 T T
0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.5 1.0 1.5 2.0 2.5
The Ratio of Trainable Parameters (%) The Ratio of Trainable Parameters (%)
(a) On large-scale datasets. (b) On small-scale datasets.

Gui, A., Ye, J., & Xiao, H. G-adapter: Towards structure-aware parameter-efficient transfer learning for graph transformer networks. AAAI2024




G-Adapter

Method

* Exploration in this paper reveals the feature distribution shift issue due to the absence

of graph structure in the fine-tuning process.

 To alleviate these concerns, a novel structure-aware PEFT method, G-Adapter, is
proposed, which leverages graph convolution operation to introduce graph structure as
the inductive bias to guide the updating process.

 They apply the low-rank decomposition to the learnable weights, which makes G-

Adapter highly lightweight.

Full-FT Full-FT Full-FT

]

b

\ \\ \\lz‘
I

I
|‘

AT

Adapter: 11.12% LoRA: 10.01% BitFit: 8.22% G-Adapter: 1.98%




AdapterGNN

Fixed Parameter Size
|
Flexible Parameter Size |

Motivation
 Delta tuning improves the traditional fine-tuning in

I 7’

Test Error

-7 Classical Modern

-

~

the catastrophic forgetting of pre-trained knowledge zge-vainfng oA | e R
Ine-tunin; 1 — — - Pre-training Tas
i% Deltatuningg : — Eo“:nstreargnTTa:k

problem and overfitting problem. —

Figure 1: A large model is often employed for
pre-training A when sufficient data is available.

HOW tO EffECtIVEIy UtI/IZE the advantages Of dEIta tunlng However, for downstream tasks with limited data,

. . o ) a smaller model is optimal in the classical regime.
while preserving the expressivity of GNNSs: Compared with fine-tuning A, delta tuning - pre-

serves expressivity while reducing the size of pa-
rameter space, leading to lower test error.

Li, S., Han, X., & Bai, J. AdapterGNN: Parameter-Efficient Fine-Tuning Improves Generalization in GNNs. AAAI2024




AdapterGNN

X
S _’l+1

v
a ) _ _ )
These adapters utilize bottleneck AdapterGNN introduces trainable

architecture to significantly reduce the BN layers in each adapter to
number of tunable parameters by maintain consistency with the

Kreducing intermediate dimensions. ) koutput of the backbone network./




GraphPAR

Background
« Recent works have demonstrated that pre-trained language models tend to inherit bias from

pre-training corpora.
 Pre-trained Graph Models(PGMs) can well capture semantic information on graphs during
the pre-training phase, which inevitably contains sensitive attribute semantics.

How to improve the fairness of PGMs?

10.00 ] 3 Gewn
S 1 DGI
9 8.00 7l [T EdgePred
e 6.00 S > GCA
= 4.00 i Al B
i i il
200 | | (] ] B
0.00 ks =

Pokec n

Pokec_z Pokec_n
(a) Demographic Parity (DP).  (b) Equality Opportunity (EO).
Zhang, Z., Zhang, M., Yu, Y., Yang, C., Liu, J., & Shi, C. Endowing Pre-trained Graph Models with Provable Fairness. WWW2024




GraphPAR

Existing fair methods is inflexible and inefficient.
 Existing works generally train a fair GNN for a specific task.

 Debiasing for a specific task in the pre-training phase is inflexible, and maintaining a

specific PGM for each task is inefficient.

Existing fair methods lack theoretical guarantees.
 Provable lower bounds on the fairness of model prediction.

How to efficiently and flexibly endow PGMs fairness with practical guarantee?




GraphPAR
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Downstream Adaptation

* Prompt-tuning: keep pre-trained model intact
 pre-prompt: modify input graph
 post-prompt: modify output embedding

Model Tuning Prompt Tuning
(a.k.a. “Fine-Tuning”)

Pre-trained Model Pre-trained Model
¢4 Tunable ¥ % Frozen =
LI AL
\ ~ J N J S v /

Input Tunable Soft  Input
Prompt




GraphPrompt

Problem: L
subgfaiﬁti’érﬁiie; . (a) Pre-training with -7, ol
« How to unify various pre-training and EI (O, finkprediction 7
downstream tasks on graph? 2l B it b ,‘
« How to design prompts on graph? 21N : '
= Learnable node --I,;arnqbie eraph
Insights : clals;g';;ttlon ;"DO - h cla;ig';i:‘;mn
« Aunified task template based on subgraph %: | ,E%%?
similarity computation =) P
* Use a learnable prompt to guide graph = | “ o2/ sm¥(S7) (700 "\, RS
readout for different tasks Node cass prototspes G0 Graph clas protoryps
L (b) Node classification (c) Graph classification

Liu, Z., Yu, X., Fang, Y., & Zhang, X. (2023, April). Graphprompt: Unifying pre-training and downstream tasks for graph neural networks. WWW2023




GraphPrompt

Prompt design:

Different downstream tasks require
different subgraph readout
- Use task-specific learnable prompts

Prompt vector added to the readout
layer of the pre-trained GNN

st.x = READOUT({pr © hy : v € V(Sx)})

St x. (sub)graph embedding of x for a task ¢
h,: node v's embedding vector
p; or P;: learnable prompt vector or matrix for task ¢t

Pre-trilining

Pron}pting

N~
—

—

.-~ Contextual ~~ .
subgraph of node vy *.

(a) Pre-training with

- ““Contextual ~
& subgTaph of node 1?1 ™

7 link prediction
! I L}
l' : ‘l
T NVAy = o S S S - - - - - | - —— :
Sim? ;
\‘ \\ 'J'

\\\ \\\

Learnable node Learnable graph
classification —\I l'i classification
prompt prompt
READOUT READOUT

________________

Node class prototypes

(b) Node classification

Graph class prototypcs

(c) Graph classification




Generalized Graph Prompt

Support more pre-training tasks beyond link prediction:

* DGI, InfoGraph, GraphCL, GCC, ...

Layer-wise prompts

[TTT]
J’ p )
: O Graph- | | Graph- P Graph- [ p
_____ Encoder![ “|Encoder "~ |Encoder” l'Ipo
- Graph- o é " Graph—z_)_“_) Graph- H >—> > ReapOut—>1 [ [ [ ]
Encoder! Encoder Encoder T pt ™ o7
S : HEEE pL _1:)_
X Graph- R Graph— e Graph_ \E\ .
“|Encoder!| ~ |Encoder? Encoder/ : HpL J

Yu, X., Liu, Z., Fang, Y., Liu, Z., Chen, S., & Zhang, X. Generalized graph prompt: Toward a unification of pre-training and downstream tasks on
graphs. arXiv preprint arXiv:2311.15317.




MultiGPrompt

Problem:
 To cater to diverse downstream tasks, pre- N
training should broadly extract knowledge £ — toss;
from various aspects. £< raph [ 052 %+ loss
£
Cha | |engeS . = g Treem“}‘; L ) lossy

. . g o f;i:i;.":'ze Initialize [.r"', Tuned szm]
 Different pretext tasks often have different l Composed fg .

objegtives, directly combining them lead to E9l %ﬁ | T —
task interference. £l 7 raph \ — Loss
« Multiple pretext tasks further complicates the ~ ‘ e J
e >

alignment of downstream objectives with the
pre-trained model.

C1: How can we leverage diverse pre-text tasks for graph models in a synergistic manner?
C2: How can we transfer both task-specific and global pre-trained knowledge

Yu, X., Zhou, C,, Fang, Y., & Zhang, X. MultiGPrompt for Multi-Task Pre-Training and Prompting on Graphs. WWW2024




MultiGPrompt

Multi-task pre-training

..................

ey .. D e
Pretext tokens ! _t‘? E_"_’i__;;_ O e S S )
elext tokens Pre-trained pretext tokens
ﬁk) = {t<k),0’ t(k)sl’ T t<k),L} [ Graph encoder ] oss.
T H;1y fask, +
Add token to each layer of graph encoder Pretext
_ ; task, + Pre-train
H{z: >_- ass
H*' = MP(t 4y, 0 H, A; 0) i
Lot !a:x
. Hig) tasky i
Graph encoder output embedding (a) Multi-task pre-training
= GRAPHENCODER (X, A; ©)
Overall embedding Pre-Training Objective
L K
H(k) = Z alHt(k),g Lpre(H; T.0) = Z,ﬂk-ﬁpmﬁ (Hikys Tiky. ©),
[=0 k=1
S Encoder] | Encoder| . _ | Encoder |, 4 J
g0 [ laver, layer, layer, IHtml
' Encoder Encoder| Encoder|
j(; = laver, _-tiTll.l. layer, layer; Hy,,
: : Hij
Encoder| | Encoder| Eﬂfmlff_ —
layer, layer. 7 laver; tl:k:-f Htm;‘

___________________

Ifh Tuned Fruzen]

Cﬂmpamrfbl‘l-ﬁ Open
prompts :P{f:lm}- ?(lnm prompts

Composed *ﬁ -l'l Open

prompts T(f.,m} Fop) prompts

Pre-trained graph encoder

Node classification i l
1 : downstream loss
. Hicom) Hiop) I '

Graph classification
downstream loss

H{mm} "{opn

(b) Downstream node classification (¢) Downstream graph classification

Prompt tuning

Composed prompt

P(com) = {p(com),0= P{(com),15- - -> p(com),L}
P(com),] = COMPOSE(t(1) 1, t(2) 1, -, t(x)15T)
Open prompt

P(op) = {P(op),O: P(op),1>-- > P(op),L}

Add prompt to each layer of graph encoder
Hp = GRAPHENCODERp (X, A; Opye)

Aggregate dual prompt
H = AGGR(H(Com), H(op); A)




Challenges:

* Graph prompt not only requires the prompt “content” but also needs to know how to
organize these tokens and how to insert the prompt into the original graph.

« There is a huge difficulty in reconciling downstream problems to the pre-training task.

« Learning a reliable prompt needs huge manpower and is more sensitive in multi-task
setting.

input prompt answer

-----------------------------------------------------------------------------------------------------------------------

'{'7

input prompt 5 i tasker
& ? @_5__-@} @ (answer)

insert the prompt to the input graph

Sun, X., Cheng, H., Li, J., Liu, B., & Guan, J. All in one: Multi-task prompting for graph neural networks. KDD2023




Reformulate Downstream Tasks :

« This work reformulates node-level and edge-level tasks to graph-level tasks by building
Induced graphs for nodes and edges, respectively.

Prompt Graph Design:

« This work introduces some prompt nodes with unigue
connection relationships between them and adaptively
Insert them into the original input graph, in order to
obtain a prompt graph.

(b) Induced graphs for edges




HGPrompt: Extending to heterogeneous g

Problem:

« Gap between homogeneous and heterogeneous

graph. |

« Different downstream tasks focus on L L Povngiream | \
_______ F eature prompt Heterogeneity prompt
heterogeneous aspect. T
‘ . 00 r

. . Task Template :j::=:::: i

Insights: —— g0 -
‘1—>‘: cr"/:::(‘s‘-’l i READOUT Reae A . Loss

* Dual-template: Q7 " Funciior

Pre-trained | / !
Model
“aeeL A NS L
;

Task + Graph template

Y
Graph Template
* D Ua I- p rom pt . (a) Target scenarios (b) Dual-template (¢) Dual-prompt

Feature + Heterogeneity prompt

Yu, X., Fang, Y., Liu, Z., & Zhang, X. Hgprompt: Bridging homogeneous and heterogeneous graphs for few-shot prompt learning. AAAI2024




Challenges:

 Diverse pre-training strategies employed on graphs make it difficult to design
suitable prompting functions.
 Existing prompt-based tuning methods for GNN models are predominantly designed

based on intuition, lacking theoretical guarantees for their effectiveness.

Fang, T., Zhang, Y., Yang, Y., Wang, C., & Chen, L. Universal prompt tuning for graph neural networks. Neurips2023




Method:

« This work proposes a universal prompt-based tuning method that can be applied to the
pre-trained GNN models that employ any pre-training strategy.

* GPF operates on the input graph’s feature space and involves adding a shared learnable
vector to all node features in the graph.

« GPF-plus is a theoretically stronger variant of GPF, for practical application, which
Incorporates different prompted features for different nodes in the graph.

® Tuneda Downstream Tasks Downstream Tasks Downstream Tasks

Frozen
Pretrained & Pretrained Pretrained
GNN GNN GNN
(I g 1
Input E E H H Graph Prompt
Graph.. E &—@ _ H Feature
LY o o. = + &
@ T Hog BEO7H 0
H H
(a) Fine-tuning (b) Specialized Graph (c) Universal Graph

Prompt Tuning Prompt Tuning




AAGOD

Motivation
« Areliable GNN should not only perform well on know samples (ID) but also identify

graphs it has not been exposed to before (OOD) .

* EXisting works proposes to train a neural network specialized for the OOD detection task.

Can we build a graph prompt that can solve OOD detection given a well-trained GNN?

Downstream M —’ —’ I-_ Downstream I-
Tasks Tasks / -

Original Graph Downstream Downstream

Task Prediction Original Gmph Task Prediction
_______________________________________________________________________________ Data- centric
—
M Dansity T ooD Manipulation — :I:I:ou
00D Detection —) / \
00D Detection
Task for OOD 20oma Task %"l %

Original Graph 00D Detection
Prediction Amplified Graph Omnetectmn
Prediction

(1) Traditional works (2) Our proposed framework

Guo, Y., Yang, C., Chen, Y., Liu, J., Shi, C., & Du, J. A Data-centric Framework to Endow Graph Neural Networks with Out-Of-Distribution Detection Ability. KDD2023




AAGOD

) T ¢
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the latent pattern of ID ! i T o R g T ) l
graphs, and thus enlarge i - ¥ ! [ e 5 Well- ; |
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AAGOD

We conducted experiments on five dataset pairs over four GNNs to verify performance.

On iy, om oy, om oy, om oy,

ID 00D Metric | GCLs GCLg+ E'Improv. EGCLL GCLL+E' Improv. ‘leAOs JOAOg+ E'Improv. iIOAOL JOAOL + E'Improv. \=
AUCT | 6297 73.767 +17.14% |162.56 67.15Ji +734% | 6120  74.19 E+21.23% 1 59.68 65.1145 +9.10% |

ENZYMES | PROTEIN | AUPRT | 6247  75.27 1+2049% i65.45 6518 | -041% [ 6130 7710 1+2577% i64.16 6449 1 +0.51% i
FPROS| | 9333 8833 | -536% |19330 8500 | -890% || 90.00 8167 1 -926% |19667 8500 1 -1207% I

AUCT | 8052 83.84 | +4.12% (16108 68.64 | +1238% || 8040  82.80 | +299% |14825  64.32 | +3331% |

IMDBM | IMDBB | AUPRT | 7443 80.16 ; +7.70% (15952 68.03 | +14.30% | 74.70  77.77 | +4.11% |147.88  61.62 | +28.70% !
FPR95 | | 38.67 38.33 | -0.88% (19667 9133 | -552% | 4470  42.00 | -6.04% |198.00  94.00 ; -4.08% !

AUCT | 7500 97.31 | +29.75% |134.69 65.00 | +87.37% | 80.00  95.25 +19.06% | 14180  65.62 | +56.99% !

BZR COX2 | AUPRT | 6241 97.17 | +55.70% (139.07 62.89 | +60.97% | 67.10 9434 |+40.60% |}56.70  67.22 | +18.55% |
FPR95 | | 47.50  15.00 !-68.42% 192.50 80.00! -1351% || 37.50  12.50 !-66.67% 197.50  97.50 : 0.00% i

AUCT | 6804 7127 | +475% |'53.44 58251 +9.00% |' 5346  69.39 1+20.80% | 15364 5567 | +3.78% |

TOX21 SIDER | AUPRT | 69.28 73.52 | +6.12% |156.81 59.58 | +4.88% || 5602 7101 1+26.76% |'56.02  56.02 1 0.00% |
FPR95 | | 9042  89.53 : 0.98% |194.25 92.72! 1.62% || 9566  90.55 i-5.34% 195.66  89.66 : 627% |

AUCT | 7707 80.64 | +463% i46.74 50.53 | +8.11% | 7548  78.54 | +405% i43.96 51.28 | +16.65% i

BBBP BACE | AUPRT | 6841 72.60 | +612% 14535 4649 | +251% [ 6932  74.06 | +6847 |14477 4832 | +7.98% 1
FPR95 | | 7192  60.59 | -15.75% 192.12 86.70 | -588% [ 7685  69.46 | -9.62% 19409 92.61 P -1.57% :

N ey N\ TLP I L; ) VIR JELANE~S NN 2.




AAGOD

Case study: We visualize the learned graph prompts (i.e., amplifiers) for interpretability analysis.
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DCGC

« EXxisting calibration methods focus on improving GNN models. Recent work has
shown that the post-hoc methods, such as temperature scalling-based calibration, can
achieve a better trade-off between accuracy and calibration.

O: Unlabeled Nodes EB : Aggregation . . . : Labeled Nodes ‘: Predicted Label Distribution

N O SRR NN l
A b
— >
GNN (frozen) Temperature Scaling

(a) Temperature scaling-based calibration

« Through evaluating the expected calibration error (ECE) on Cora and Photo datasets
with five different GNNs, we find that the ECEs on Cora (10.25%-18.02%) are
always larger than those on Photo (4.38%-8.27%), indicating that the calibration
performance depends more on the datasets instead of GNN model.

Yang, C., Yang, C., Shi, C,, Li, Y., Zhang, Z., & Zhou, J. Calibrating Graph Neural Networks from a Data-centric Perspective. WWW2024




DCGC

* Inspired by this phenomenon, we innovatively propose to calibrate GNNs from a

data-centric perspective:

Can we modify the graph data instead for better calibration performance without

losing accuracy?

Weight Modification GNN (froz en)

(b) Data-centric calibration




DCGC

* We propose Data-centric Graph Calibration (DCGC) with two edge weighting

modules to adjust the input graph.

€ : Aggregation
QO : Unlabeled Nodes

! :
--->- 1 g—{Aow1 X} ! :
I )
1 1
. gll; : Predicted Label Distribution
! :

> |:|:|:| :
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(d). Temperature Scaling
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!
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: S o > ' ST '
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Summary

GNN-based models compares to foundation models with LLMs
 Advantage:

 small parameter size, resulting in low-cost training

* possess essential properties like permutation invariance

* exhibit strong performance in scenarios without textual attributes
* Disadvantage:

* limited capacity to harness extensive knowledge and can struggle to

manifest emergent abilities

e underutilize the information stored in textual data
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d LLM based Models
» Backbone Architecutures
» Pre-training
» Adaptation

d GNN+LLM based Models
» Backbone Architecutures
» Pre-training
» Adaptation

d Summary and outlook




d Backbone Architecutures
1 Pre-training
1 Adaptation

Model Backbone Architecture Pre-training Adaptation

InstructGLM[157] Graph-to-token + Flan-T5/LLaMA MLM,LM  Manual Prompt Tuning

LLMtoGraph[71]  Graph-to-text + GPTs, Vicuna LM Manual Prompt Tuning

NLGraph[126] Graph-to-text + GPTs LM Manual Prompt Tuning

GraphText[175] Graph-to-text + GPTs LM Manual Prompt Tuning

LLM4Mol[91] Graph-to-text  + GPTs LM Manual Prompt Tuning

GPT4Graph([29] Graph-to-text  + GPT-3 LM Manual Prompt Tuning + Automatic Prompt Tuning

BERT, DeBERTa, Sentence-BERT, : . :

Graph-LLM[9] Graph-to-text ~ + © 4 Sefience MLM,LM  Manual Prompt Tuning + Automatic Prompt Tuning

GPTs, LLaMA

Table 3. Details of approaches involved as LLM based models




 Graph-to-Token
» Tokenize graph information to align it with LLM
 Graph-to-text

» Describe graph information using natural language

( I f [ \I
Predictions (—g{ LLM ]| Predictions (-@4- LLM ]
I

L Sa—— w—— R Y —— ————, ~ — p—— p— N S W S—
we 0 OO0 O e OO0 00
Categorize the central node: (<node 4>,

Title 4> ) is connected to (<node_1>, Title_ 1), The title of Paper_4 is: Can .. The title of
@ © (<node_3>, Title_3) within one hop. Which Paper_1 is: Exploring .. Paper_1 cites Paper_4 ..
. @|§ category should (<node_4>, Title _4) belong to? @lé Question: The category of Paper_4 is ..

(a) Graph-to-token.

(b) Graph-to-text.




U Integrating graph data with textual data
[ Encoding the graph’s structural information

GIMLET ¥

vi

vn
01
02
03

vivav3

Vn 01020304

~

. Graph-Text Unified Graph “Text Transformer Encoder
Position 111
Encoding )
=> Transformer
> Decoder
{ Vi v2 v3 Vn o1 02 03 )
Distance aware ﬁ &
Task: Agonists of ARE —,] PR
OH The antioxidant response element (ARE) signaling pathway plays :
an important role in the amelioration of oxidative stress. Is this | YES
E molecule agonists of ARE signaling pathway? | Instruction
s Based
r Task: Solubility : — Zero-shot
O Solubility (logS) can be approximated by negative 1 Prediction
LogP -0.01 * (MP-25) + 0.5 . Can you approximate the logS of |) 3n
this molecule by its negative logP and MP? |
|

Zhao, et al. "GIMLET: A unified graph-text model for instruction-based molecule zero-shot learning." NeurlPS’23.
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 Expand the vocabulary of the LLM by graph node features

1-hop prompt with meta node feature

a Categorize the central node: (<node_4>, ‘toward cloud computing evolution’)
is connected with (<node_76>, [title_76]), (<node_21>, [title_21]), ... within
one hop. \n

\_ Which category should <node_4> be classified as?

distributed computing

3-hop prompt with intermediate paths

Categorize the central node: <node_17> is connected with <node_909>,
<node_1682>, ... within three hops through (<node_32>, and <node_561>),
(<node_16980> and <node_98>), ..., respectively. \n

\Which category should <node_17> be classified as?

software engineering ]

structure-free prompt
Categorize the central node: <node_169341> is featured with its W

title: ‘unsupervised attention guided image to image translation’
and abstract: ‘Current unsupervised image-to-image translation
techniques struggle to focus their attention on individual objects J

InstructGLM computer vision

without altering the background. ...". \n
Which category should <node_169341> be classified as?

Node Classification

Link Prediction

<node_1006>

2-hop prompt with meta node feature & intermediate nodes
Perform link prediction for the central node: (<node_0>, ‘difference
target propogation’) is connected with (<node_511>, [title_511]),
(<node_6>, [title_6]), ... within two hops through (<node_49>,[title_49]),
(<node_12>, [title_12]), ..., respectively. \n
Which other node will be linked to <node_0> within two hops through
<node_2001>?

1-hop prompt without meta node feature

Perform link prediction for the central node: <node_2867> is connected
with <node_48605>, <node_609>, <node_656>, <node_1998>, ... within
one hop. \n

Will <node_174> be connected with <node_2867> within one hop?

Ye, et al. "Language is all a graph needs." EACL 2024.
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 Transformer-based approach for dynamic graphs
d Map a dynamic graph into a set of sequences

(a) Toy dynamic graph (b) Temporal ego-graph (c) Temporal alignment (d) Transformer architecture

Wou, et al. "On the Feasibility of Simple Transformer for Dynamic Graph Modeling." WWW’24.
8




4 Temporal alignment: | | 3 _
> Segment the time domain: 56 toroie {878} muoratrots i 8 etk
S; = (b) Si ={c.d) S; = (e)
» Sequence for Transformer:
r; = (|hist|), a, {[timel|), b, {|time2]), ¢, d, {|time3]), e, {|endo f hist|)
= (|pred|)(|timed])S; (|endo fpred))

D T I h (b) Temporal ego-graph (¢) Temporal alignment (d) Transformer architecture

emboral eqo-ara T T R
p g g p i ~ : v I : 4 N i
L 1@ | . I
_____ ! 0.22 [ i©.[----_----...---’.. Pl / \\ |
b 01550 i j 101 022 027 035 o Add & Norm i

P N | . L il .
J 022 N | 0.27 : !:©:. ® P _— i
, b c.d R N i |
\ " \. w’l, p— < ’C’ 76 _: o | 012 015 i)z 035 037 | i —f !
T I P LIS S ! T l
e | [ | N
N ! K 0.37 I | :@:L------_: ______ _. _____ ! S : | [ Multi-head attent ] // :
: I" 02 Or0.12 i E©I.----0-1---:1--9.2%_0.2.7.__955___1| | \41 |
IV 035 03 Lo i:l_______'_ ________ "______._.! ! .'@ ‘ |
P ' L7 Toazoas! 02 035037 | 1 |

|

| . bl LW o T meTenw |
T S e e R O [

Wou, et al. "On the Feasibility of Simple Transformer for Dynamic Graph Modeling." WWW’24.
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1 Describe graph information for variours graphs and tasks

» Nod

©
® @—

Determine if there is a path between
two nodes in the graph. Note that (i j)
means that node i and node j are
connected with an undirected edge.
Graph: (0,1) (1.2) (3.4) (4,5)

Q: Is there a path between node 1 and
node 4?7

e/edge list,

graph

.’—4 2. Cycle
O—0 &

23
In an undirected graph, (i) means that
node i and node | are connected with an
undirected edge.
The nodes are numbered from 0 to 5,
and the edges are: (34) (3,5) (1,0) (2,5)
2.0)
Q: Is there a cycle in this graph?

,—| 3. Topol Sort
(00—
—0—C
In a directed graph with 5 nodes
numbered from 0 to 4:

node 0 should be visited before node

4, .
Q: Can all the nodes be visited? Give the
solution.

properties

o O~
02

In an undirected graph, the nodes are

numbered from 0 to 4, and the edges are:

an edge between node 0 and node 1 with

weight 2, ...

Q: Give the shortest path from node 0 to

node 4.

In a directed graph, the nodes are
numbered from 0 to 3, and the edges
are:

an edge from node 1 to node 0 with
capacity 10,

an edge from node 0 to node 2 with
capacity 6,

an edge from node 2 to node 3 with
capacity 4.

Q: What is the maximum flow from node

,l 6. Bipartite Graph i

job applicants (D) @
Jjobs @ o

There are 4 job applicants numbered
from 0'to 3, and 5 jobs numbered from
0 to 4. Each applicant is interested in
some of the jobs. Each job can only
accept one applicant and a job
applicant can be appointed for only one
job.

Applicant 0 is interested in job 4, ...

Q: Find an assignment of jobs to
applicants in such that the maximum

1 to node 37

number of applicants find the job they
are interested in.

In an undirected graph, (ij) means that
node i and node j are connected with
an undirected edge.

The nodes are numbered from 0 to 4,
and the edges are: (4,2) (04) (4,3) (0,1)
(0,2) (4,1) (2.3)

Q:Is there a path in this graph that
visits every node exactly once? If yes,
give the path. Note that in a path,
adjacent nodes must be connected
with edges.

O~ ~

—

In an undirected graph, the nodes are
numbered from 0 to 4, and every node has an
embedding. (ij) means that node i and node j
are connected with an undirected edge.
Embeddings: node 0: [1,1], -+~

The edges are: (0,1) ...

In a simple graph convolution layer, each
node's embedding is updated by the sum of
its neighbors' embeddings.

Q: What's the embedding of each node after

one layer of simple graph convolution layer?

» Graph description language

Graph Structured Data

composite hypothesi models</

,, \\)/ <?xml version='1.0"' encoding=‘utf-8'7>
i \ <graphml xmlns="http://graphml.graphdrawing.org/xmlns">
i H <key id="relation" for="edge" attr.name="relation" attr.type="string" />
<key id="title" for="node" attr.name="title" attr.type="string" />
® e e <graph edgedefault="undirected">
o bt L ) <node id="P357">
. ——ee —title™ jsti i
| S v ¥ Collaboration Network [::> datas <data key="title">statistical anomaly detection via
. .- </node>
< g ® <node id="P79639">
“ . <data key="title">universal and composite hypothesis testing</data>
o '@ -Q </node>
Knowledge Graph & & . vororomord

<edge source="P357" target="P79639">

o 20

<data key="relation">reference</data>

______ b </edge>
Moleculer Graph <:rg;-a£|h; o
</graphml>

» Graph-Syntax Tree

G-Syntax Tree
olu 2
= Text Attributes

A -label -feature
[ feature x

o 35 TTTAR

Bul©

label:
Ist-hop: [A]
2nd-hop: [B]
feature:
center-node: [0]
Ist-hop: [1, 2]
2nd-hop: [3, 2]

Wang, et al. "Can language models solve graph problems in natural language?." NeurlPS’23.
Guo, et al. "GPT4Graph: Can large language models understand graph structured data? an empirical evaluation and benchmarking.” CoRR’23.

Zhao, et al. "GraphText: Graph reasoning in text space." CoRR’23.
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1 Backbone Architecutures
 Pre-training
1 Adaptation

Model Backbone Architecture Pre-training Adaptation

InstructGLM[157] Graph-to-token + Flan-T5/LLaMA MLM,LM  Manual Prompt Tuning

LLMtoGraph[71]  Graph-to-text + GPTs, Vicuna LM Manual Prompt Tuning

NLGraph[126] Graph-to-text + GPTs LM Manual Prompt Tuning

GraphText[175] Graph-to-text + GPTs LM Manual Prompt Tuning

LLM4Mol[91] Graph-to-text  + GPTs LM Manual Prompt Tuning

GPT4Graph([29] Graph-to-text  + GPT-3 LM Manual Prompt Tuning + Automatic Prompt Tuning

BERT, DeBERTa, Sent -BERT, : . :
Graph-LLM[9] Graph-to-text  + GPT LL6aMA 4 Sefence MLM,LM  Manual Prompt Tuning + Automatic Prompt Tuning
S,

Table 3. Detalls of approaches involved as LLM based models
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A Language Modeling (LM) T ——

» LLaMA, GPT-3... %%

. /4G; o oL \\\
1 Masked Language Modeling (MLM)

BERT
> BERT, T5... Edel. EllellE]- &)

» Replace the word with the [MASK] token = GIEE- 6

Masked Sentence A Masked Sentence B

e.g.,my dog is hairy — my dog is [MASK] \  ceweitoume /

Touvron, et al. "Llama: Open and efficient foundation language models." CoRR’23.

Ouyang, et al. "Training language models to follow instructions with human feedback." NeurlPS’22.
Devlin, et al. "BERT: Pre-training of deep bidirectional transformers for language understanding." CoRR’18.
Raffel, et al. "Exploring the limits of transfer learning with a unified text-to-text transformer." JMLR’20.
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1 Backbone Architecutures
1 Pre-training
 Adaptation

Model Backbone Architecture Pre-training Adaptation

InstructGLM[157] Graph-to-token + Flan-T5/LLaMA MLM,LM  Manual Prompt Tuning

LLMtoGraph[71]  Graph-to-text + GPTs, Vicuna LM Manual Prompt Tuning

NLGraph[126] Graph-to-text + GPTs LM Manual Prompt Tuning

GraphText[175] Graph-to-text + GPTs LM Manual Prompt Tuning

LLM4Mol[91] Graph-to-text  + GPTs LM Manual Prompt Tuning

GPT4Graph([29] Graph-to-text  + GPT-3 LM Manual Prompt Tuning + Automatic Prompt Tuning

BERT, DeBERTa, Sent -BERT, : . :
Graph-LLM[9] Graph-to-text  + GPT LL6aMA 4 Sefence MLM,LM  Manual Prompt Tuning + Automatic Prompt Tuning
S,

Table 3. Detalls of approaches involved as LLM based models
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1 Manual Prompting: Graph information, task descriptions

)

"3’@\
==
@\/@é@ -

<in-context exemplar>

In an undirected graph, the nodes are
numbered from 0 to 4, and the edges are:
an edge between node 0 and node 4 with
weight 4,

an edge between node 0 and node 3 with
weight 3,

an edge between node 0 and node 1 with
weight 3,

Q: Give the shortest path from node 0 to
node 2.

gl

<in-context exemplar>

In an undirected graph, the nodes are
numbered from 0 to 4, and the edges are:
an edge between node 0 and node 4 with
weight 4, -+

's constri raph with the n
edges first.
Q: Give the shortest path from node 0 to
node 2.
A: All the paths from node 0 to node 2 are:
0,3,2 with a total weightof3 + 1 =4,
0,14,2 with a total weight of 3 + 4 + 2 =9,
0,4,3,2 with a total weight of 4 + 1 + 1 = 6.
The weight of path 0,3,2 is the smallest, so
the shortest path from node 0 to node 2 is
0,3,2 with a total weight of 4.

We can use a Depth-First Search (DFS) algorithm to

find the shortest path between two given nodes in an

undirected graph.

Th iC idea | ne of the

DFS to explore all of its adjacent nodes. At each node
2 . .

that node from the starting node

Once you have explored all the adjacent nodes, you
can backtrack and pick the node which has the
<in-context exemplar>

In an undirected graph, the nodes are numbered from
0 to 4, and the edges are:

an edge between node 0 and node 4 with weight 4, ...
Q: Give the shortest path from node 0 to node 2.

A: All the paths from node 0 to node 2 are:

0,3,2 with a total weightof 3 + 1 =4,

0,14,2 with a total weight of 3 + 4+ 2 = 9,

0,4,3,2 with a total weight of 4 + 1 + 1 = 6.

The weight of path 0,3,2 is the smallest, so the
shortest path from node 0 to node 2 is 0,3,2 with a

|_total weight of 4.

(¢) GraphText

G-Syntax Tree

Traverse

e.g # Task prompt and demos

Graph information:

label:
Ist-hop: [A]
2nd-hop: [B]

feature:
center-node: [0]
Ist-hop: [1, 2]

G-Prompt

2nd-hop: [3, 2]

—_——
(1 hop) (2 hop) (center) ; 1 hop ’ : 2 hop:
‘ ‘ J Question: What’s the

Tree |Construct

m feature x

category of the node
(choose from [A, B])?

Text Attributes = AAccording to the demos,b =

1st-hop labels are robust -I
predictions. Therefore,

. the answer is A.

Wang, et al. "Can language models solve graph problems in natural language?." NeurlPS’23
Zhao, et al. "GraphText: Graph reasoning in text space." CoRR’23
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1 Automatic Prompting: LLMs => generate the context
» Ask LLM generate graph/neighbor summarization

Instructor: New Contexts: )
You are a brilliant graph master that can handle anything Final Output:
related to graphs like retrieval, detection and classification. Node P357 has 4 neighbors, where each of which
are about anomaly detection with statsitical The clustering coefficient of a node is the ratio of the
<?xml version='1.8' encoding='utf-8'7> mﬂdels. The Whole grcph Contains 5 nodes Qnd 10 . .
=graphml xmlns="http://graphml.graphdrawing.org/xmlns"> . . . . number of Closed nelghbors dnd C|" pOSSIb|e C|Osed
<key id="relation” for="edge" attr.nane="relation” attr.type="string" /> edges and describes the citation relations. ....... . . .
<key id="title" forsnode” atir nane="title” attr.type="string” /> neighbors. To compute the clustering coefficient of node
<g£zpdeeggzﬁggg;}§- undirected"> .
“data keyrtitle'sstatistical anomaly detection via composite hypothesi models</ P357, we fisrt know that node P357 has 4 "elghb°f5
data>
<fnode= e ey e
<node id="P79639">
4:::: key="title">universal and composite hypothesis testing</datas that is there are |-0|-a||y 4 possible triungles between
cédge source="p3ST" target="pTo3e"> Generate Generate them. Among these neighbors, there are only 2 of them
<data key="relation">ref </data> t : H .
jutges T Tl Telerentesdate New Contexts Final Output | connected with each other, which forms one triangle.
</graph> Thus the clustering coefficient of node P357 is 1 / 6 =
</graphml>
Context: XXXXXX LLMs 0.167.
What is the clustering coefficient of node P357 ?

Guo, et al. "Gpt4graph: Can large language models understand graph structured data? an empirical evaluation and benchmarking.” CoRR’23
Chen, et al. "Exploring the potential of large language models (lIIms) in learning on graphs.” ACM SIGKDD Explorations Newsletter 2024
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J LLM based Models

» Backbone Architecutures
» Pre-training
» Adaptation

] GNN+LLM based Models

» Backbone Architecutures
» Pre-training
» Adaptation

1 Summary and outlook

16




1 Backbone Architecutures

1 Pre-training
1 Adaptation

Model Backbone Architecture Pre-training Adaptation

SimTeG [16] GNN-centric MLM, TTCL Parameter-Efficient FT

TAPE [35] GNN-centric LM Tuning-free Prompting + Parameter-Efficient FT
GIANT [11] GNN-centric MLM Vanilla FT

GraD [79] GNN-centric MLM Parameter-Efficient FT

GALM [147] GNN-centric Graph Reconstruction Vanilla FT

GraphFormer [153] Symmetric MLM Vanilla FT

GLEM [174] Symmetric MLM Vanilla FT

ConGrat [4] Symmetric MLM + GTCL Parameter-Efficient FT

G2P2 [136] Symmetric GTCL Prompt Tuning

SAFER [6] Symmetric MLM Parameter-Efficient FT

Text2Mol [ 18] Symmetric MLM + GTCL Parameter-Efficient FT

MoMu [109] Symmetric MLM + GTCL Parameter-Efficient FT
MoleculeSTM [73] Symmetric MLM + GTCL Parameter-Efficient FT

CLAMP [103] Symmetric MLM + GTCL Parameter-Efficient FT
Graph-Toolformer [165] LLM-centric LM Tuning-free Prompting + Vanilla FT

Table 4. Details of approaches involved as GNN+LLM based models

17




d GNN-centric Methods
» LLMs extract node features from raw data; GNNs make predictions

d Symmetric Methods
> Align the embeddings of GNN and LLM

d LLM-centric Methods
» Utilize GNNs to enhance the performance of LLM

! \

—————

f |
| . [ |
g 1 Predictions Instruction ===l [ M | == Predictions
. ' @e | b |
IO =\ ! | |
® | A | |
N v | XS Q| GNN |
~

—————

(a) GNN-centric methods. (b) Symmetric methods. (c) LLM-centric methods.

18




1 The backbone model:
Raw text = LMs = GNN aggregator = decoder

input graph raw text embeddings

L=

E—
LM
[N —
E T — ra
5 o2 - g—@:

GNN
L V= decoder | “— | aggregator ]

Xie, et al. "Graph-aware language model pre-training on a large graph corpus can help multiple graph applications." KDD’23.
19




] The backbone model:

Text-attributed graph
Task description

T
Literature
Category Node
Description ) ‘T Classification
A
Molecule 5
Description GNN Classification
~ Relation 1 \ ) -
Knowledge , Type N\ Did Jobs N Link
Graph Description ._:' ‘\‘ found Apple? I ‘1| Prediction
7 \ I \
II’ ‘\\ ”' |‘\
’ 7
More data and tasks - T Rl ‘\_’
| | | | | | |
Cross-domain Graph Data  Task Description ~ LLM-based Feature/Task Feature Graph Task-dependent GNN-based Graph
Embedding Prompt Graph

Downstream Task
Prediction

I
Embedding
Liu, et al. "One for all: Towards training one graph model for all classification tasks." ICLR’24

20




] The backbone model:

Textual attributes 2> LLM - Predlctlo_n & - Fine-tune LM - Node features 2> GNN
Explanation

Step 1. Node Feature Extraction Step 2: Downstream Tasks
on TAGs

Prediction: ¢s.CV, ¢s.IR, ¢s.CL, ¢s.LG, cs. Al

Explanation: The paper is about a new dataset for scene text
detection and recognition, which is a topic related to computer vision
(cs.CV). The paper also mentions the use of deep learning techniques
such as DeconvNet, which falls under the sub-category of artificial
intelligence (cs.Al). The dataset is annotated and involves text
recognition, which could also fall under the sub-categories of

1

1
Abstract: Text in curve orientation, despite being one of :
1
1
1
1
1
1
:
information retrieval (cs.IR) and natural language processing (cs.CL). :
1
1
1
1
1
1
1
1
1
1
1
1

the common text orientations in real world environment...

Title: Total Text A Comprehensive Dataset For Scene Text
Detection And Recognition.

Question: Which arXiv CS sub-category does this paper
belong to? Give 5 likely arXiv CS sub-categories as a
comma-separated list ordered from most to least likely, in
the form "cs. XX", and provide your reasoning,

Answer:

Finally, the paper discusses the effectiveness of different solutions,
which could be evaluated using machine learning techniques, falling
/ under the sub-category of machine learning (cs.LG).

h

: hpren! ‘\
S [ \ 1
--' 1
o ! 1
Response Prediction: _____ Fine-tune LM h,ezp, . 1
T — 1

. ]
G GPT3.5 (1758B) Explanation: Deberta v | ReGar y !

—_— Rorig 1
1
Frozen . (1280 — 1
Fine-tune ' i
> Trainable ' Trainable y ’

...................................................... e mm————-
1
without fine-tuning [ Shallow Embedding Techniques ] hog /

L e.g., skip-gram / bags of words J i

1

|

Shallow Embedding Pipeline (e.g., OGB) LM-Based Pipeline (e.g., GIANT) : : LLM-Based Pipeline (Ours)

He, et al. "Harnessing explanations: LLM-to-LM interpreter for enhanced text-attributed graph representation learning." ICLR’24
21




 The backbone model:
» Dual encoders: Graph & Text encoder
» Contrastive Learning

Papers grounded on a citation network
Language /®\ Visual QA ...
models are ...

0 target node

The BERT model ...

0
 —
o} The translation ... \©
g?;;id JEEHERE  Contrastive Fets of th
- bridee . exts of the papers
text data g learning
N, Text encoder

N7O%, The BERT model ... | *|®; (Transformer)

—_

Graph encoder

Text encoder

Graph encoder
®; (GNN)

Text-node interaction £

Z z1t1 thz zlté

z, ZZtl Z2t2 z2t6

Zg Z6t1 16t2 ZGtﬁ
t, |t | |t

I

neighboring
text emb.

—» t;

Text-summary interaction £,

b W tos, | t t
S S S
target 221 Pa7e 296
text emb.
teS1 | teSa| . | t6Se
51 |2 R .
Node-summary interaction
summary
text emb.
Z1S Z.S Z1S
for target 1°1] *192 126
Z581 | Z3S2| .. | Z3Sg
target »
node emb.
21 - ZGS]_ ZGSZ e 2656

Su, et al. "A molecular multimodal foundation model associating molecule graphs with natural language." CoRR’22.

Wen, et al. "Augmenting low-resource text classification with graph-grounded pre-training and prompting." SIGIR’23.
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] The backbone model:
Graph - GNN - Projection > LLM

Graph Tokens Language Tokens

BT D cortivose MR (<]
ATuned - -hop Neighbor ﬁ [Instruct]
[ | [ % ~2-hop Neighbor .

, AAIlgnment
Lo U Y Projector

[Graph]
M S i
- Text-Grounded

. f. Structural Encoder ﬁ
. iy
J Input Graphs from
4 Multiple Domains - [eos]
;o Text
1 Attributes
- Y PublfQed J L
Cardiovascular /
complications are .
SEEl T arXiv amazon Large Language ! Vicuna

3 Models (LLMs)

. . ‘e Llama
Structural Information Encoding

hTranslator

Language Response ' Q _ﬁ
e 1
Frozen LLM

The user...

(7 0 i Neighbor I...
1 Q,QQ,Q‘ :.Q,!,Q,,:::,,,Q,J The commonalities...
Summary the interests of user

and user's neighbors ... Instruction i
& Translator Stage 1 Loss { Stage 2 Loss

] { 5
i i ]
| H e 1
,,,,,,,,,,,,,,,,,,, i | '

Descriptionff okens
ts: The user...
') Neighbor I...
ts: The commo*aliﬁes

ty

Frozen Graph Model Producer LLM
B Q: Summary node information

i \A The user's interests ...
Summary neighbor information v
@ = 1y neg W = A: Neighbor 1's interests ...

"y their ¢ liti v (o9)
T~ A: The commonalities ... @

. Frozen A Trainable QToken

Tang, et al. "GraphGPT: Graph instruction tuning for large language models.” SIGIR’24

Zhang, et al. "GraphTranslator: Aligning Graph Model to Large Language Model for Open-ended Tasks." WIWW’24
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] Backbone Architecutures

d Pre-training
1 Adaptation

Model Backbone Architecture Pre-training Adaptation

SimTeG [16] GNN-centric MLM, TTCL Parameter-Efficient FT

TAPE [35] GNN-centric LM Tuning-free Prompting + Parameter-Efficient FT
GIANT [11] GNN-centric MLM Vanilla FT

GraD [79] GNN-centric MLM Parameter-Efficient FT

GALM [147] GNN-centric Graph Reconstruction Vanilla FT

GraphFormer [153] Symmetric MLM Vanilla FT

GLEM [174] Symmetric MLM Vanilla FT

ConGrat [4] Symmetric MLM + GTCL Parameter-Efficient FT

G2P2 [136] Symmetric GTCL Prompt Tuning

SAFER [6] Symmetric MLM Parameter-Efficient FT

Text2Mol [ 18] Symmetric MLM + GTCL Parameter-Efficient FT

MoMu [109] Symmetric MLM + GTCL Parameter-Efficient FT
MoleculeSTM [73] Symmetric MLM + GTCL Parameter-Efficient FT

CLAMP [103] Symmetric MLM + GTCL Parameter-Efficient FT
Graph-Toolformer [165] LLM-centric LM Tuning-free Prompting + Vanilla FT

Table 4. Details of approaches involved as GNN+LLM based models
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J GNN or LLM-based

» Masked Language Modeling
» Language Modeling
» Text-Text Contrastive Learning

» Graph reconstruction

 Alignment-based

» Graph-Text Contrastive Learning

25




1 GaLLM (Graph-aware Language Model pre-training):
» Fine-tuning existing general LMs by graph-aware supervision

» Warming up the GNN aggregator by fixing the pre-trained LMs
» Co-training GNN-+LMs

encode text information graph-aware supervision
(2) warming-up GNN

@ ) backpropagate gradients to f(Ogyy)

LMs of GNN
GALM aggregator

JACHYY r

(3) co-training LMs with GNN aggregator

<

backpropagate gradients to f(0,,, Ogxy)

Xie, et al. "Graph-aware language model pre-training on a large graph corpus can help multiple graph applications." KDD’23.
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dGraph-Text Contrastive Learning (GTCL)

» Map the graph and text representations extracted to a joint space
using two projectors (p. and p,) via contrastive learning

(a) Contrastive Pretraining

o]
Py encode f project p project p encode f
) g s

N Ve
N 7
5) NI 1—> .
<5 < , 7N \ = s
irin i 4 N Penicillin G

Aspirin is a Contrast icillin
commonly used encode f; project p, q V project p; encode f; Sodium is the

—_— — 4——————— | sodium salt form
dugforthe 1171 [T (113 [T1] sodium sat for
and fever. lin.

Latent Representation of Latent Representation of Latent Representation of
Chemical Structure Textual Description

Joint Latent Representation
Generative Model

Liu, et al. "Multi-modal molecule structure—text model for text-based retrieval and editing." Nature Machine Intelligence 2023
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] Dual encoders

[ Three kinds of alignments

» Text-Node: L1

» Text summary-Text: L2

» Text summary-Node: L3

= Text-summary: text of neighbors

=1 3 :
5% = TN 2jeN; b

Papers grounded on a citation network

Language
models are ...

3~

Visual QA ...

0 target node

The BERT model ...

o

The translation ...

Texts of the papers

—®

u-l“ The BERT model ...

Ly Text encoder
@ (Transformer)

—_

Graph encoder
@, (GNN)

Text-node interaction £

Z, Zty | 21t; Z,tg

Z; Zyty | 25t Zyte

Zg Zﬁtl 26t2 z6t6
t t; s

ft

f

?

neighboring
text emb.

-

>

Text-summary interaction £,
tis; | t1s2 tiSg
L I [ P t
target 281 | 1283 286
text emb.
teSy | 652 tsSe
51 |2 . .
Node-summary interaction L5
summary
text emb.
Z1S1 | Z1S Z.S
for target it 172 176
7,81 | Z,S; Z,Sg
target »
node emb.
Zl - 2681 2652 2635

Wen, et al. "Augmenting low-resource text classification with graph-grounded pre-training and prompting." SIGIR’23.
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] Backbone Architecutures

1 Pre-training
 Adaptation

Model Backbone Architecture Pre-training Adaptation

SimTeG [16] GNN-centric MLM, TTCL Parameter-Efficient FT

TAPE [35] GNN-centric LM Tuning-free Prompting + Parameter-Efficient FT
GIANT [11] GNN-centric MLM Vanilla FT

GraD [79] GNN-centric MLM Parameter-Efficient FT

GALM [147] GNN-centric Graph Reconstruction Vanilla FT

GraphFormer [153] Symmetric MLM Vanilla FT

GLEM [174] Symmetric MLM Vanilla FT

ConGrat [4] Symmetric MLM + GTCL Parameter-Efficient FT

G2P2 [136] Symmetric GTCL Prompt Tuning

SAFER [6] Symmetric MLM Parameter-Efficient FT

Text2Mol [ 18] Symmetric MLM + GTCL Parameter-Efficient FT

MoMu [109] Symmetric MLM + GTCL Parameter-Efficient FT
MoleculeSTM [73] Symmetric MLM + GTCL Parameter-Efficient FT

CLAMP [103] Symmetric MLM + GTCL Parameter-Efficient FT
Graph-Toolformer [165] LLM-centric LM Tuning-free Prompting + Vanilla FT

Table 4. Details of approaches involved as GNN+LLM based models
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U Fine-tuning
» Vanilla tuning: tune all the parameters

= computationally intensive, resource-demanding

» Parameter-efficient fine-tuning (PEFT): tune a subset of parameters

* more efficient, resource-friendly

1 Prompt-Tuning: design and tune external prompts
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J Frozen:
» Graph Model

» Large Language Model
 Tunable:

» Producer Module

= Construct alignment data
» Translator Module

= Convert node representations into
tokens for LLM prediction

Zhang, et al. "

frozen LLM

___________________

The user...
Neighbor 1...
The commonalities...

i“ Stage 2 Loss

Summary rhe interests of user

and user s neighbors... Instruction

Descripti onfT okens
ts: The user..

ty tm) Neighbor 1...
ts: The commo?ahues

& Frozen Graph Model Producer LLM
i] 0 Summary node ifermatien T A: The user's interests
@ Q: Summary neighbor fmwm"“""ANghb t interests

Frozen A Trainable Q Token

S

GraphTranslator: Aligning Graph Model to Large Language Model for Open-ended Tasks." WWW’24
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] Producer:

»“Chain of Thought” (CoT) ->LLM->high-quality description
= node information " Producer v
= neighbor information N

i] A: The user's interests ...
= common al Ities Q: Summary neighbor information v

A: Neighbor 1’s interests ...
@ Q: Summary their commonalities ~ v

D Prompt template: A: The commonalities ... .

Dataset | Step | Prompt

User Behavior Description: <User Behavior Description>. Please summarize the characteristics of this user
according to the product behavior information. The answer format is: What kind of characteristics does the
user have in terms of interests, hobbies, personality traits, and life needs

Taobao | User behavior summary

Neighbor Behavior Description: <Neighbor Behavior Description>. Please summarize most of the similarities
that this user’s friends have based on the product behavior information. The answer format is: What do several
friends of this user have in common in interests, hobbies, personality traits, and life needs?

Neighbor behavior summary

Zhang, et al. "GraphTranslator: Aligning Graph Model to Large Language Model for Open-ended Tasks." WWW’24
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1 Training: Only fine-tune Translator and Projection

Language Response |

.i’;-liozen LLM ,.ga

The user...

o0ea.0 aen .. O L

_____________________________________________ The commonalities...

Summary the interests of user X
and user’s neighbors... Instruction i
1 Stage 2 Loss

n Query Tokens DescriptiongTokens

¢ t3: The user..
Zy v N Neighbor I...
ts: The commo:"aﬁties

- Frozen Graph Model [ Producer LLM
Q: Si 'y node informati
\*Az The user's interests ...
!I . : . ¥
: Si hbol ti 2
@ :@ Q: Summary neighbor information. —y, A: Neighbor 1's interests ...
A Qs ry their fiti v :
q = A: The commonalities ...

.+ Frozen ﬁ Trainable Q Token

Stage 1 Training Phase

?Stage 1 Loss

& Translator +{(z,,t,)}

» Stagel: Align graph-text

S » Stage2: Align graph-LLM

t

@ Translator +~{(z,,t,)}

Inference Phase
Responses

T

~ LLM <= Instructions

& Translator <« z,

Zhang, et al. "GraphTranslator: Aligning Graph Model to Large Language Model for Open-ended Tasks." WWW’24
33




H Tl‘alnlng Stage 1 » Contrastive Objective

N I = Node < Text
Translator . .
E— sl Lo = High-level alignment

_________________ » Matching Objective

Ay
0"@&%&'?&&&&'0 “““ DescriptongTokens = Node < Text
z, £y ﬁf&g’}‘;ﬁg’,@gor N _ = Fine-grained alignment
ts: The commozalities
H, = {hy} -1y Generatet,, ~ » (Generation Objective
[CIN..[] Node T I * Node — Text
. Representation f = Replace the [CLS] token with a
I I_ I{ Tl}l{l |1}| ] new [DEC] token as the first text
[ ] Text DEC : :

_ Represz)r(,tation [P token to signal the decoding task

Zhang, et al. "GraphTranslator: Aligning Graph Model to Large Language Model for Open-ended Tasks." WWW’24
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 Training: Stage 2

» Projection:

Langusge Response | 0 (@) = Alinear layer: project H, to token
LA & | representation space of LLM
000.0 080 .. O

ﬁ Translator

ndiser s neighbors. < Instruction ‘ » Concatenate:
’ P tage 2 Los = Connect the projected

representation with the human
777777777777777777777777777777777 ‘; Instruction and feed into LLM

20200 000N .. O :
etk @ Decipiongskns » Fine-tune Translator
zv tv t'j;r(”)' ei mor e 1
g tg,T;,;"wﬁ,’iiOz;,,.,,.es,_, = Alignn the response text of LLM

with the actual descriptive text

Zhang, et al. "GraphTranslator: Aligning Graph Model to Large Language Model for Open-ended Tasks." WWW’24
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Language Tokens

Graph Tokens
ﬁ Central Node - [cls]
hTUHEd ﬁ [Instruct]
D h n ﬁ 1-hop Neighbor
Graph: Text-Grounded Structural Encoder - +... o
|}~ 2-hop Neighbor .
, AAllgl?ment
:,::-L:-;: . . Lo Projector [Graph]
"~ _“. . Text-Grounded
H S | Encod
Text Attribute S T ansformer .\ . fructural Encoder
T \
| ’ Input Graphs from
/ Multiple Domains

' Text

 Projector: Map graph representation to LLM ~ /weiee (7 i JL

Cardiovascular

complications are .
the primary... arXiv amazon Large Language ! Vicuna

d Instruction Tuning: Only fine-tune projector N T Models L

Structural Information Encoding

‘e’ Llama

Graph Information: <graph>: Central Node: 68442, Edge index: [|[..src node..], [.dst node..]], Node list: [..] Graph Matching
Human Question: Given a sequence of graph tokens <graph> that constitute a subgraph of a citation graph, Here is a list of paper titles: 1.
2. ., please reorder the list of papers according to the order of graph tokens.

GraphGPT Response: Based on the given graph tokens and the list of paper titles, we obtain the matching of graph tckens and papers: Graph token 1
corresponds to smt based induction methods for timed systems. Graph token 2 corresponds to ..

Node Classification

Graph Information: <graph>: Central Node: 2, Edge index: [[..src node..], [..dst node..]], Node list: [..]

Human Question: Given a citation graph: <graph> where the 0th node is the target paper, with the follcwing information: Abstract: .. Title:

Question: Which arXiv CS sub-category does this paper belong to? ..

GraphGPT Response: cs.IT, cs.LG, c¢s.5P, cs.CV, cs.NA. The paper discusses the Restricted Isometry ... So, it is likely to belong to cs.IT..

Graph Information: <graph>: Central Node 1: 8471, Edge index 1: [[..src node..], [..dst node..]], Node list 1: [..] Link Prediction
<graph>: Central Node 2: 19368, Edge index 2: [[..src node..], [..dst ncde..]], Node list 2: [..]

Human Question: Given a sequence of graph tokens: <graph> that constitute a subgraph of a citation graph, ... Abstract: .. Titile: .. and the other

sequence of graph tokens: <graph>, .. Abstract: .. Title: .., are these two central nodes connected? Give me an answer of "yes" or "no".

GraphGPT Response: Yes, they are connected. Based on the first paper, ... And the second paper proposes ...

Tang, et al. "GraphGPT: Graph instruction tuning for large language models.” SIGIR’24
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1 Learnable prompts: [hq, - by, hepass]
 Tuning prompts with limited labeled data for efficient adaptation

Papers grounded on a citation network Text-node interaction £, Label texts of N classes Trainable prompt emb.
Language Visual QA ... n Z b | zitz| -~ | Zits ¥1 =NLP [hl, by ’hyl] -
models are ... 2 Zoty | Zota| . | Zotg - Pre-trained
Gragh Fan‘;S)der ¥, = Recommendation [hy, - hy ,hyz] transformer 63
; - - . .
: : in(a)
Z Zety | Zgty| .. | Zgt = Computer vision hy,---,hy h
(1)target node i kel B b 626 YN P | [h, m by, ]

(ool ]

The BERT model ...

I Lwi [wo | o [
e‘k Text int tion £ Graph contexts of target Classification weights
The translation ... ext-summary interaction ~ T h, (117
- neighboring ; GiS1| tiSz| - | iSe 2 m initialize E :
4 h
fth text emb. 1 €5, | tas2| -~ | tz5e The BERT v 1]
Texts of the papers target | 4 - model .. o L
u ;'
text emb. o e g | B backpropagation zlwllziw2 |zle|
Text encoder s | tos s moadels are y
The BERT model ... @, (Transformer) B 691 "692] - 676 target .
7] Node-summary interaction L5 node emb. i
summary
text emb. 7,81 | 2182 | .. | 7184 (5)[The -
for target translation Pre-trained
L, Z,S1| ZpS2| ... Z5S¢ GNN Bg in (a)
target
node emb. | -
| z, |— ZsS1 | ZgS2| .- | ZeSe

(a) Graph-grounded contrastive pre-training (b) Graph-grounded prompt tuning (few-shot classification)

Wen, et al. "Augmenting low-resource text classification with graph-grounded pre-training and prompting." SIGIR’23.
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Few-shot Scenario

EI N O I (N Od e Of I nte r e St) KNMG Oflz:::ervised & Zero-shot Scenarios

(NOI)

> Node-level: node %3:

Query NOI
Graph

» Link-level: node pair

> Graph-level: subgraph _— & /l\ &
N

(a) Node-level task (b) Link-level task (c) Graph-level task

Support

D N O I P ro m pt N Od e —— Feature Edge  »+:- PZt;:ig;eth _QZCEaélgeczq s2c¢ Edge

Text feature of the NOI prompt node: Prompt node. <task description>.
Example: Prompt node. Graph classification on molecule properties.
Example: Prompt node. Node classification on the literature category of the paper.

] Class Node

Text feature of class node: Prompt node. <class description>.

Example: Prompt node. Molecule property. The molecule is effective in: ...

Example: Prompt node. Literature Category. cs.Al (Artificial Intelligence). Covers all areas of
Al except Vision ...

Liu, et al. "One for all: Towards training one graph model for all classification tasks." ICLR’24.
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d LLM based Models
» Backbone Architecutures
» Pre-training
» Adaptation

(J GNIN+LLM based Models

» Backbone Architecutures
» Pre-training
» Adaptation

d Summary and outlook
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d Summary

» Leveraging LLMs facilitates a unified approach to various graph

tasks by describing them in natural language.

» Merging graph data, text, and other modalities into LLMs creates a

promising path for graph foundation models.

» Combining GNNs and LLMs leads to improved performance In

graph-related tasks.
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1 Outlook

» Focus on resolving LLMSs' limitations: multi-hop reasoning, graph

topology, and diverse graph data.

» Explore efficient training methods to manage the high computational

costs and data requirements.

» Explore applications of GNN+LLM models in multimodal and

cross-modal tasks.
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