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Textual Documents are Ubiquitous

• Ubiquity of unstructured textual documents
• Unstructured, noisy, dynamic, multi-lingual, …

2

News articles Academic papers Product descriptions
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Text-Attributed Graph

• Documents are also connected in a graph structure – Text-Attributed Graph
• Academic citation graph, news article hyperlink graph, product contextual graph…
• Consisting of a corpus of documents 𝒟, and graph structure ℰ.

3
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How to Process Text-Attributed Graph

• Graph Neural Networks (GNNs)
• Pros: Capture both node attribute and graph structure;
• Cons: Most models don’t specifically model textual attribute, thus document 

representations lack language representations or linguistic semantics.

• Pre-trained Language Models (PLMs)
• Pros: Learn contextualized document representations;
• Cons: Most models don’t capture graph structure across documents.

• Topic Models (TMs)
• Pros: Infer topic representation for textual documents;
• Cons: Most models don’t capture graph structure across documents.

4
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How to Process Text-Attributed Graph

• This tutorial – Text-Attributed Graph Representation Learning
• Infer document representations that preserve both i) contextualized semantics 

contained in rich text documents, and ii) graph connectivity across documents.
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GNN + LLM

GNN + Topic Model

Document
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Section 1: Introduction Section 4: Applications

Section 2: GNN + LLM

Section 3: GNN + Topic Model
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Tutorial Outline

• Section 1: Text-Attributed Graph and Preliminaries (30 min)

• Section 2: PLM-based Text-Attributed Graph Models (45 min)

• Section 3: TM-based Text-Attributed Graph Models (45 min)

• Section 4: Applications, Challenges, and Future Directions (45 min)

• Summary and Q&A
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• Section 1: Text-Attributed Graph and Preliminaries (30 min)
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Section 1: Text-Attributed Graph and Preliminaries

• Section 1.1: Formal Definition of Text-Attributed Graph (TAG)

• Section 1.2: Graph Neural Networks (GNNs)

• Section 1.3: Pre-trained Language Models (PLMs)

• Section 1.4: Topic Models (TMs)
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• Section 1.1: Formal Definition of Text-Attributed Graph (TAG)
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Formal Definition of Text-Attributed Graph (TAG)

• Text-Attributed Graph (TAG):
• We are given a Text-Attributed Graph (TAG) 𝒢 = {𝒟, ℰ}. 
• 𝒟 = 𝑑! !"#

$  is a set of 𝑁 documents. Each document 𝑑!  
contains a sequence of words 𝑑! = 𝑤!,& &"#

$!" . 

• ℰ = {𝑒!'} is a set of graph links where 𝑒!' ∈ ℰ is there is 
a link between documents 𝑑!  and 𝑑'. We model an 
undirected graph, 𝑒!' = 𝑒'!. Neighbor set 𝒩 𝑖  contains 
documents directly linked to document 𝑑!.

8

𝑒!" = 𝑒"! is a link;
𝑒!# = 𝑒#! is a link;
𝒩 𝐴 = {𝐵, 𝐷}.
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Formal Definition of Text-Attributed Graph (TAG)

• Text-Attributed Graph (TAG) Representation Learning:
• Given a Text-Attributed Graph (TAG) 𝒢 = {𝒟, ℰ} as input, we aim to design a 

model that outputs document representations 𝒁𝒟 = 𝒛1 1∈𝒟  that capture 
both textual semantics in 𝒟 and graph connectivity in ℰ.
• Note that we do not simply consider 𝒟 as general attribute, but instead, we 

specifically model language representations in text corpus 𝒟.

9
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Section 1: Text-Attributed Graph and Preliminaries

• Section 1.1: Formal Definition of Text-Attributed Graph (TAG)

• Section 1.2: Graph Neural Networks (GNNs)

• Section 1.3: Pre-trained Language Models (PLMs)

• Section 1.4: Topic Models (TMs)
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Graph Neural Networks (GNNs)

• Graph Neural Networks (GNNs) learn node representations that preserve 
both node attributed and graph structure. Below we illustrate GAT [1].

11[1] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2018). Graph attention networks. In International Conference on Learning Representations, 2018.
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Graph Neural Networks (GNNs)

• 1. Start with the original features, e.g., Bag-of-Words.
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Graph Neural Networks (GNNs)

• 1. Start with the original features, e.g., Bag-of-Words.

• 2. Linear transformation.
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Graph Neural Networks (GNNs)

• 1. Start with the original features, e.g., Bag-of-Words.

• 2. Linear transformation.

• 3. Neighbor attention.
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Graph Neural Networks (GNNs)

• 1. Start with the original features, e.g., Bag-of-Words.

• 2. Linear transformation.

• 3. Neighbor attention.
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Graph Neural Networks (GNNs)

• 1. Start with the original features, e.g., Bag-of-Words.

• 2. Linear transformation.

• 3. Neighbor attention.

• 4. Neighbor aggregation.
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Graph Neural Networks (GNNs)
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Graph Neural Networks (GNNs)
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Graph Neural Networks (GNNs)
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Graph Neural Networks (GNNs)

• 5. Cross-entropy loss for link prediction.
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Graph Neural Networks (GNNs)

• Graph Neural Networks (GNNs) consider text in documents as general 
attribute and do not specifically deal with text data. Consequently, they can 
not capture language representations or linguistic semantics in text corpora

21
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Section 1: Text-Attributed Graph and Preliminaries

• Section 1.1: Formal Definition of Text-Attributed Graph (TAG)

• Section 1.2: Graph Neural Networks (GNNs)

• Section 1.3: Pre-trained Language Models (PLMs)

• Section 1.4: Topic Models (TMs)

22
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Pre-trained Language Models (PLMs)

• Pre-trained Language Models (PLMs) learn contextualized document 
representations that preserve textual semantics. Below we illustrate 
Transformer [1].

23[1] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
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Pre-trained Language Models (PLMs)

• 1. Positional encoding.
• Suppose the input text is “the web conference”.

24

Word embedding Positional encoding:

𝑝("#$,&') = sin(𝑝𝑜𝑠/10000&'/*+,)

𝑝("#$,&'-.) = cos(𝑝𝑜𝑠/10000&'/*+,)

𝒑/01 = [𝑝 2,2 , 𝑝 2,. , … , 𝑝(2,*+,3.)]

𝒆' = 𝒘' + 𝒑',   where   𝑖 = 𝑡ℎ𝑒, 𝑤𝑒𝑏, 𝑐𝑜𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒Input embeddings:
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Pre-trained Language Models (PLMs)

• 1. Positional encoding.
• Suppose the input text is “the web conference”.

• 2. Multi-head attention.

25

𝒆' = 𝒘' + 𝒑',   where   𝑖 = 𝑡ℎ𝑒, 𝑤𝑒𝑏, 𝑐𝑜𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒Input embeddings:

𝑸 = 𝑬𝑾4 , 𝑲 = 𝑬𝑾5 , 𝑽 = 𝑬𝑾6,  where 𝑬 = 𝒆/01 , 𝒆718 , 𝒆9#:;1<1:91
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Pre-trained Language Models (PLMs)

• 1. Positional encoding.
• Suppose the input text is “the web conference”.

• 2. Multi-head attention.

26

𝒆' = 𝒘' + 𝒑',   where   𝑖 = 𝑡ℎ𝑒, 𝑤𝑒𝑏, 𝑐𝑜𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒Input embeddings:

𝑸 = 𝑬𝑾4 , 𝑲 = 𝑬𝑾5 , 𝑽 = 𝑬𝑾6,  where 𝑬 = 𝒆/01 , 𝒆718 , 𝒆9#:;1<1:91
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Pre-trained Language Models (PLMs)

• 1. Positional encoding.
• Suppose the input text is “the web conference”.

• 2. Multi-head attention.

27

𝒆' = 𝒘' + 𝒑',   where   𝑖 = 𝑡ℎ𝑒, 𝑤𝑒𝑏, 𝑐𝑜𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒Input embeddings:

𝑸 = 𝑬𝑾4 , 𝑲 = 𝑬𝑾5 , 𝑽 = 𝑬𝑾6,  where 𝑬 = 𝒆/01 , 𝒆718 , 𝒆9#:;1<1:91

Att 𝑸,𝑲, 𝑽 = softmax
𝑸𝑲=

dim
𝑽

MultiHeadAtt 𝑸,𝑲, 𝑽 = Att. 𝑸., 𝑲., 𝑽. || … ||Att 𝑸> , 𝑲> , 𝑽> 𝑾
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Pre-trained Language Models (PLMs)

• 1. Positional encoding.
• Suppose the input text is “the web conference”.

• 2. Multi-head attention.

• 3. Addition and normalization.

28

𝒆' = 𝒘' + 𝒑',   where   𝑖 = 𝑡ℎ𝑒, 𝑤𝑒𝑏, 𝑐𝑜𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒Input embeddings:

𝑸 = 𝑬𝑾4 , 𝑲 = 𝑬𝑾5 , 𝑽 = 𝑬𝑾6,  where 𝑬 = 𝒆/01 , 𝒆718 , 𝒆9#:;1<1:91

Att 𝑸,𝑲, 𝑽 = softmax
𝑸𝑲=

dim
𝑽

MultiHeadAtt 𝑸,𝑲, 𝑽 = Att. 𝑸., 𝑲., 𝑽. || … ||Att 𝑸> , 𝑲> , 𝑽> 𝑾

𝑬′ = LayerNorm(𝑬 + MultiHeadAtt 𝑸,𝑲, 𝑽 ) 
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Pre-trained Language Models (PLMs)

• 1. Positional encoding.
• Suppose the input text is “the web conference”.

• 2. Multi-head attention.

• 3. Addition and normalization.

29

𝒆' = 𝒘' + 𝒑',   where   𝑖 = 𝑡ℎ𝑒, 𝑤𝑒𝑏, 𝑐𝑜𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒Input embeddings:

𝑸 = 𝑬𝑾4 , 𝑲 = 𝑬𝑾5 , 𝑽 = 𝑬𝑾6,  where 𝑬 = 𝒆/01 , 𝒆718 , 𝒆9#:;1<1:91

Att 𝑸,𝑲, 𝑽 = softmax
𝑸𝑲=

dim
𝑽

MultiHeadAtt 𝑸,𝑲, 𝑽 = Att. 𝑸., 𝑲., 𝑽. || … ||Att 𝑸> , 𝑲> , 𝑽> 𝑾

𝑬′ = LayerNorm(𝑬 + MultiHeadAtt 𝑸,𝑲, 𝑽 ) 

• 4. Feed forward. 𝑬′′ = LayerNorm(𝑬′ + FFN 𝑬′ ) 
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Pre-trained Language Models (PLMs)

• Pre-trained Language Models (PLMs) mainly deal with text within each 
individual document only, and ignore the graph adjacency across 
documents, e.g., citations and hyperlinks.

30
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Section 1: Text-Attributed Graph and Preliminaries

• Section 1.1: Formal Definition of Text-Attributed Graph (TAG)

• Section 1.2: Graph Neural Networks (GNNs)

• Section 1.3: Pre-trained Language Models (PLMs)

• Section 1.4: Topic Models (TMs)

31
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Topic Models (TMs)

• Topic Models (TMs) learn topic distributions as document representations. 
Below we illustrate NVDM [1].

32[1] Miao, Y., Yu, L., & Blunsom, P. (2016, June). Neural variational inference for text processing. In International conference on machine learning (pp. 1727-1736). PMLR.

Documents Topic Model

A small number of interpretable topics

Topic distribution
(Document representation)
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Topic Models (TMs)

• 1. Variational encoding with 𝒉, i.e., Bag-of-Words.

33

𝝁 = 𝑓3(𝑓456 𝒉 ) 𝚺 = 𝑓7(𝑓456 𝒉 )

𝒉 𝝁
𝚺
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Topic Models (TMs)

• 1. Variational encoding with 𝒉, i.e., Bag-of-Words.

• 2. Reparameterization.

34

𝝁 = 𝑓3(𝑓456 𝒉 ) 𝚺 = 𝑓7(𝑓456 𝒉 )

𝒉

𝜽 = softmax 𝝁 + 𝚺
$
%𝝐 ∈ ℝ8,   where   𝝐~Gaussian(𝟎, 𝑰)

𝝁
𝚺

𝜽 ∈ ℝ8

Topic distribution 𝐾 is number of topics
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Topic Models (TMs)

• 1. Variational encoding with 𝒉, i.e., Bag-of-Words.

• 2. Reparameterization.

• 3. Topic modeling decoding.

35

𝝁 = 𝑓3(𝑓456 𝒉 ) 𝚺 = 𝑓7(𝑓456 𝒉 )

𝒉 𝝁
𝚺

𝜽 ∈ ℝ8

𝜽 = softmax 𝝁 + 𝚺
$
%𝝐 ∈ ℝ8,   where   𝝐~Gaussian(𝟎, 𝑰)

Topic-word distribution
of one topic 𝑘

𝒱 is vocabulary

𝜷9 ∈ ℝ|𝒱|

𝜷< = softmax 𝑾< ∈ ℝ|𝒱|,  where  𝑾< is randomly initialized
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Topic Models (TMs)

• 1. Variational encoding with 𝒉, i.e., Bag-of-Words.

• 2. Reparameterization.

• 3. Topic modeling decoding.

36

𝝁 = 𝑓3(𝑓456 𝒉 ) 𝚺 = 𝑓7(𝑓456 𝒉 )

𝒉 𝝁
𝚺

𝜽 ∈ ℝ8

𝜽 = softmax 𝝁 + 𝚺
$
%𝝐 ∈ ℝ8,   where   𝝐~Gaussian(𝟎, 𝑰) 𝜷9 ∈ ℝ|𝒱|

_𝒉

𝜷< = softmax 𝑾< ∈ ℝ|𝒱|,  where  𝑾< is randomly initialized

𝜷 = 𝜷9; 𝜷=; … , 𝜷8 ∈ ℝ8×|𝒱| is topic-word distribution

_𝒉 = 𝜽×𝜷
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Topic Models (TMs)

• 1. Variational encoding with 𝒉, i.e., Bag-of-Words.

• 2. Reparameterization.

• 3. Topic modeling decoding.

• 4. Cross-entropy loss between 𝒉 and 2𝒉.

37

𝝁 = 𝑓3(𝑓456 𝒉 ) 𝚺 = 𝑓7(𝑓456 𝒉 )

𝒉 𝝁
𝚺𝜷< = softmax 𝑾< ∈ ℝ|𝒱|,  where  𝑾< is randomly initialized

𝜽 ∈ ℝ8

𝜽 = softmax 𝝁 + 𝚺
$
%𝝐 ∈ ℝ8,   where   𝝐~Gaussian(𝟎, 𝑰) 𝜷9 ∈ ℝ|𝒱|

𝜷 = 𝜷9; 𝜷=; … , 𝜷8 ∈ ℝ8×|𝒱| is topic-word distribution

_𝒉 = 𝜽×𝜷
_𝒉
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Q & A
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Text-Attributed Graph Representation Learning: 
Methods, Applications, and Challenges

Section 2 (45 min)

Delvin Ce Zhang1, Menglin Yang1, Rex Ying1, and Hady W. Lauw2

1Yale University, 2Singapore Management University
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Tutorial Outline

• Section 1: Text-Attributed Graph and Preliminaries (30 min)

• Section 2: PLM-based Text-Attributed Graph Models (45 min)

• Section 3: TM-based Text-Attributed Graph Models (45 min)

• Section 4: Applications, Challenges, and Future Directions (45 min)

• Summary and Q&A

40
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Section 2: PLM-based Text-Attributed Graph 
Models
• Section 2.1: PLMs for Static Text-Attributed Graph

• Section 2.2: PLMs for Heterogeneous Text-Attributed Graph 

• Section 2.3: Textual-edge Text-Attributed Graph

• Section 2.4: Pre-training Strategy

41

• Section 2.1: PLMs for Static Text-Attributed Graph
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PLMs for Static Text-Attributed Graph

• Static Text-Attributed Graph (TAG) : We observe the whole TAG at once.
• Existing works are split into cascaded architecture and nested architecture.

42Focus of this section
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PLMs for Static Text-Attributed Graph

• We present GraphFormer [1] for the static scenario. Below figure is from [2].
• 1. Feature initialization.

43

[1] Yang, J., Liu, Z., Xiao, S., Li, C., Lian, D., Agrawal, S., ... & Xie, X. (2021). Graphformers: Gnn-nested transformers for representation learning on textual graph. Advances in Neural 
Information Processing Systems, 34, 28798-28810.
[2] Jin, B., Zhang, W., Zhang, Y., Meng, Y., Zhang, X., Zhu, Q., & Han, J. (2023). PATTON: Language Model Pretraining on Text-Rich Networks. In 61st Annual Meeting of the Association for 
Computational Linguistics, ACL 2023 (pp. 7005-7020). Association for Computational Linguistics (ACL).

𝑯%
9 = Transformer?@9(𝒅%),    where    𝑯%

9 = {𝒉%,$AB9 , 𝒉%,C$
9 , … , 𝒉%,C&

9 }
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PLMs for Static Text-Attributed Graph

• We present GraphFormer [1] for the static scenario. Below figure is from [2].
• 1. Feature initialization.

• 2. Graph aggregation.

44

[1] Yang, J., Liu, Z., Xiao, S., Li, C., Lian, D., Agrawal, S., ... & Xie, X. (2021). Graphformers: Gnn-nested transformers for representation learning on textual graph. Advances in Neural 
Information Processing Systems, 34, 28798-28810.
[2] Jin, B., Zhang, W., Zhang, Y., Meng, Y., Zhang, X., Zhu, Q., & Han, J. (2023). PATTON: Language Model Pretraining on Text-Rich Networks. In 61st Annual Meeting of the Association for 
Computational Linguistics, ACL 2023 (pp. 7005-7020). Association for Computational Linguistics (ACL).

𝑯%
9 = Transformer?@9(𝒅%),    where    𝑯%

9 = {𝒉%,$AB9 , 𝒉%,C$
9 , … , 𝒉%,C&

9 }

𝒛%9 = GNN 𝒉%,$AB9 , 𝒉(,$AB9
(∈𝒩 %
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PLMs for Static Text-Attributed Graph

• We present GraphFormer [1] for the static scenario. Below figure is from [2].
• 1. Feature initialization.

• 2. Graph aggregation.

• 3. Concatenate graph embedding with tokens.

• Due to contextualization, 𝑯!
i preserves graph.

45

[1] Yang, J., Liu, Z., Xiao, S., Li, C., Lian, D., Agrawal, S., ... & Xie, X. (2021). Graphformers: Gnn-nested transformers for representation learning on textual graph. Advances in Neural 
Information Processing Systems, 34, 28798-28810.
[2] Jin, B., Zhang, W., Zhang, Y., Meng, Y., Zhang, X., Zhu, Q., & Han, J. (2023). PATTON: Language Model Pretraining on Text-Rich Networks. In 61st Annual Meeting of the Association for 
Computational Linguistics, ACL 2023 (pp. 7005-7020). Association for Computational Linguistics (ACL).

𝑯%
9 = Transformer?@9(𝒅%),    where    𝑯%

9 = {𝒉%,$AB9 , 𝒉%,C$
9 , … , 𝒉%,C&

9 }

𝒛%9 = GNN 𝒉%,$AB9 , 𝒉(,$AB9
(∈𝒩 %

_𝑯%
9 = Concat(𝒛%9, 𝑯%

9) 𝑯%
= = Transformer?@=(_𝑯%

9)
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PLMs for Static Text-Attributed Graph

• 4. So far, we finish from layer 1 to 2. We repeat this process for 𝐿 layers.

46

𝑯%
A = {𝒉%,$ABA , 𝒉%,C$

A , … , 𝒉%,C&
A }
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PLMs for Static Text-Attributed Graph

• 4. So far, we finish from layer 1 to 2. We repeat this process for 𝐿 layers.

• 5. Contrastive loss.

47

𝑯%
A = {𝒉%,$ABA , 𝒉%,C$

A , … , 𝒉%,C&
A }

ℒ = − log
exp(< 𝒉%,$ABA , 𝒉(,$ABA >)

exp(< 𝒉%,$ABA , 𝒉(,$ABA >) + ∑F∈"\H exp(< 𝒉%,$ABA , 𝒉F,$ABA >)

Documents in a minibatch 𝐵
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PLMs for Static Text-Attributed Graph

• Experiments
• 1. Datasets

48
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PLMs for Static Text-Attributed Graph

• Experiments
• 2. Link prediction
• One query document is provided with 1 positive neighbor and 299 negative samples.

49

Models w/o graph

Models with cascaded
architecture
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Section 2: PLM-based Text-Attributed Graph 
Models
• Section 2.1: PLMs for Static Text-Attributed Graph

• Section 2.2: PLMs for Heterogeneous Text-Attributed Graph 

• Section 2.3: Textual-edge Text-Attributed Graph

• Section 2.4: Pre-training Strategy

50
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PLMs for Heterogeneous Text-Attributed Graph

• Documents are associated with meta-data, e.g., authors and venues.
• Papers written by the same authors discuss similar research topics;
• News articles edited by the same journalists report similar events.

• Documents + their meta-data à heterogeneous graph.
• Challenges:
• Previous works do not model meta-data;
• Some meta-data, such as authors, do not have texts.

• Here we specifically present Heterformer [1].

51[1] Jin, B., Zhang, Y., Zhu, Q., & Han, J. (2023, August). Heterformer: Transformer-based deep node representation learning on heterogeneous text-rich networks. In Proceedings of the 
29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 1020-1031).
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PLMs for Heterogeneous Text-Attributed Graph

• 1. Textless node initialization.

52

𝒉? = 𝑾@!𝒛?,    where 𝒛? is randomly initialized embedding

𝜙I is node type of 𝑣



SMU Classification: Restricted

PLMs for Heterogeneous Text-Attributed Graph

• 1. Textless node initialization.

• 2. Text-rich node initialization.

53

𝑯'
. = TransformerAB.(𝒅'),    

where 𝑯'
. = {𝒉',CDE. , 𝒉',7"

. , … , 𝒉',7#
. }

𝒉? = 𝑾@!𝒛?,    where 𝒛? is randomly initialized embedding
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PLMs for Heterogeneous Text-Attributed Graph

• 1. Textless node initialization.

• 2. Text-rich node initialization.

• 3. Textless neighbor aggregation.

54

𝑯'
. = TransformerAB.(𝒅'),    

where 𝑯'
. = {𝒉',CDE. , 𝒉',7"

. , … , 𝒉',7#
. }

𝒉? = 𝑾@!𝒛?,    where 𝒛? is randomly initialized embedding

𝒛',FD. = GNN 𝒉',CDE. , 𝒉?	. ?∈𝒩$% '

Textless neighbor set
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PLMs for Heterogeneous Text-Attributed Graph

• 1. Textless node initialization.

• 2. Text-rich node initialization.

• 3. Textless neighbor aggregation.

• 4. Text-rich neighbor aggregation.

55

𝑯'
. = TransformerAB.(𝒅'),    

where 𝑯'
. = {𝒉',CDE. , 𝒉',7"

. , … , 𝒉',7#
. }

𝒉? = 𝑾@!𝒛?,    where 𝒛? is randomly initialized embedding

𝒛',FD. = GNN 𝒉',CDE. , 𝒉?	. ?∈𝒩$% '

𝒛',FJ. = GNN 𝒉',CDE. , 𝒉?,CDE	.
?∈𝒩$& '

Text-rich neighbor set
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PLMs for Heterogeneous Text-Attributed Graph

• 1. Textless node initialization.

• 2. Text-rich node initialization.

• 3. Textless neighbor aggregation.

• 4. Text-rich neighbor aggregation.

56

𝑯'
. = TransformerAB.(𝒅'),    

where 𝑯'
. = {𝒉',CDE. , 𝒉',7"

. , … , 𝒉',7#
. }

𝒉? = 𝑾@!𝒛?,    where 𝒛? is randomly initialized embedding

𝒛',FD. = GNN 𝒉',CDE. , 𝒉?	. ?∈𝒩$% '

𝒛',FJ. = GNN 𝒉',CDE. , 𝒉?,CDE	.
?∈𝒩$& '

• 5. Concatenate graph with token embeddings.
_𝑯%
9 = Concat(𝒛%,)J9 , 𝑯%

9, 𝒛%,JA9 ) 𝑯%
= = Transformer?@=(_𝑯%

9)
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PLMs for Heterogeneous Text-Attributed Graph

• 6. So far, we finish from layer 1 to 2. We repeat this process for 𝐿 layers.

• 7. Contrastive link prediction loss.

57

𝑯%
A = {𝒉%,$ABA , 𝒉%,C$

A , … , 𝒉%,C&
A }
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PLMs for Heterogeneous Text-Attributed Graph

• Experiments
• 1. Datasets

58
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PLMs for Heterogeneous Text-Attributed Graph

• Experiments
• 2. Link prediction

59

Models w/o graph

Models w/o meta-data

Models with meta-data
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PLMs for Heterogeneous Text-Attributed Graph

• Experiments
• 3. Inductive text-rich node classification

60
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Section 2: PLM-based Text-Attributed Graph 
Models
• Section 2.1: PLMs for Static Text-Attributed Graph

• Section 2.2: PLMs for Heterogeneous Text-Attributed Graph 

• Section 2.3: Textual-edge Text-Attributed Graph

• Section 2.4: Pre-training Strategy

61
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Textual-edge Text-Attributed Graph

• Documents appear on edges, instead of nodes. We present Edgeformers [1].

62

(a) Online user-product review graph (b) Email communication graph

[1] Jin, B., Zhang, Y., Meng, Y., & Han, J. (2022, September). Edgeformers: Graph-Empowered Transformers for Representation Learning on Textual-Edge Networks. In The Eleventh 
International Conference on Learning Representations.
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Textual-edge Text-Attributed Graph

• 1. Feature initialization.

63

𝑯.
9 = Transformer?@9(𝒅.),    where    𝑯.

9 = {𝒉.,$AB9 , 𝒉.,C$
9 , … , 𝒉.,C'

9 }
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Textual-edge Text-Attributed Graph

• 1. Feature initialization.

• 2. Concatenate graph embeddings with tokens.

64

𝑯.
9 = Transformer?@9(𝒅.),    where    𝑯.

9 = {𝒉.,$AB9 , 𝒉.,C$
9 , … , 𝒉.,C'

9 }

_𝑯.
9 = Concat(𝒛%9, 𝒛(9, 𝑯.

9)
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Textual-edge Text-Attributed Graph

• 1. Feature initialization.

• 2. Concatenate graph embeddings with tokens.

• 3. Transformer layer.

65

𝑯.
9 = Transformer?@9(𝒅.),    where    𝑯.

9 = {𝒉.,$AB9 , 𝒉.,C$
9 , … , 𝒉.,C'

9 }

_𝑯.
9 = Concat(𝒛%9, 𝒛(9, 𝑯.

9)

𝑯.
= = Transformer?@=(_𝑯.

9)
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Textual-edge Text-Attributed Graph

• 1. Feature initialization.

• 2. Concatenate graph embeddings with tokens.

• 3. Transformer layer.

• 4. Repeat steps 2 and 3 for 𝐿 layers.

66

𝑯.
9 = Transformer?@9(𝒅.),    where    𝑯.

9 = {𝒉.,$AB9 , 𝒉.,C$
9 , … , 𝒉.,C'

9 }

_𝑯.
9 = Concat(𝒛%9, 𝒛(9, 𝑯.

9)

𝑯.
= = Transformer?@=(_𝑯.

9)

𝑯.
A = {𝒉.,$ABA , 𝒉.,C$

A , … , 𝒉.,C'
A }

• 5. Edge classification with cross-entropy loss.
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Textual-edge Text-Attributed Graph

• 1. Local edge aggregation.

67

u𝑯.
? = MultiHeadAtt(𝒉.$,$AB

? , 𝒉.%,$AB
? , 𝒉.(,$AB

? )

_𝑯.
? = Concat(𝒛%𝒍, 𝒛(?, u𝒉.? , 𝑯.

? )

𝑯.
?L9 = Transformer?L9(_𝑯.

? )
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Textual-edge Text-Attributed Graph

• 1. Local edge aggregation.

• 2. Global edge aggregation.

68

_𝑯.
? = Concat(𝒛%𝒍, 𝒛(?, u𝒉.? , 𝑯.

? )

𝑯.
?L9 = Transformer?L9(_𝑯.

? )

𝛼.,I = softmax(𝒉.,$ABA 𝑾𝒛I)

u𝑯.
? = MultiHeadAtt(𝒉.$,$AB

? , 𝒉.%,$AB
? , 𝒉.(,$AB

? )

𝒉I = z
.∈{.$,.%,.(}

𝛼.,I𝒉.,$ABA
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Textual-edge Text-Attributed Graph

• Experiments
• 1. Datasets

69
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Textual-edge Text-Attributed Graph

• Experiments
• 2. Edge classification with Edgeformer-E

70

Cascaded method
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Textual-edge Text-Attributed Graph

• Experiments
• 3. Link prediction with Edgeformer-N

71

Cascaded models
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Section 2: PLM-based Text-Attributed Graph 
Models
• Section 2.1: PLMs for Static Text-Attributed Graph

• Section 2.2: PLMs for Heterogeneous Text-Attributed Graph 

• Section 2.3: Textual-edge Text-Attributed Graph

• Section 2.4: Pre-training Strategy

72



SMU Classification: Restricted

Pre-training Strategy

• Pre-training:
• Given Text-Attributed Graph (TAG) 𝒢 = {𝒟, ℰ}, we train the model in a self-

supervised method only using textual content 𝒟 and graph structure ℰ.
• Fine-tuning:
• Given the pre-trained model, we further optimize its parameters with a 

specific downstream task, such as text classification.

• We present Patton [1] and Specter [2].

73

[1] Jin, B., Zhang, W., Zhang, Y., Meng, Y., Zhang, X., Zhu, Q., & Han, J. (2023). PATTON: Language Model Pretraining on Text-Rich Networks. In 61st Annual Meeting of the Association 
for Computational Linguistics, ACL 2023 (pp. 7005-7020). Association for Computational Linguistics (ACL).
[2] Cohan, A., Feldman, S., Beltagy, I., Downey, D., & Weld, D. S. (2020). SPECTER: Document-level representation learning using citation-informed transformers. In 58th Annual 
Meeting of the Association for Computational Linguistics, ACL 2020 (pp. 2270-2282). Association for Computational Linguistics (ACL).
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Pre-training Strategy: Patton

• Patton is a pre-training model for GraphFormer. Below is a quick review. 
• 1. Feature initialization.

• 2. Graph aggregation.

• 3. Concatenate graph embedding with tokens.

• Due to contextualization, 𝑯!
i preserves graph.

74

𝑯%
9 = Transformer?@9(𝒅%),    where    𝑯%

9 = {𝒉%,$AB9 , 𝒉%,C$
9 , … , 𝒉%,C&

9 }

𝒛%9 = GNN 𝒉%,$AB9 , 𝒉(,$AB9
(∈𝒩 %

_𝑯%
9 = Concat(𝒛%9, 𝑯%

9) 𝑯%
= = Transformer?@=(_𝑯%

9)
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Pre-training Strategy: Patton

• After we obtain document representations, pre-training loss has two parts.

• Part 1: Masked Language Modeling (MLM).

75

𝑯%
A = {𝒉%,$ABA , 𝒉%,C$

A , … , 𝒉%,C&
A }

𝑝C# = softmax(𝑾𝒉%,C#
A ) ℒ454 = − z

C#∈OPQ<.R

log 𝑝C#

Parameter for MLM
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Pre-training Strategy: Patton

• After we obtain document representations, pre-training loss has two parts.

• Part 1: Masked Language Modeling (MLM).

• Part 2: Masked Node Prediction (MNP).

76

𝑯%
A = {𝒉%,$ABA , 𝒉%,C$

A , … , 𝒉%,C&
A }

𝑝C# = softmax(𝑾𝒉%,C#
A ) ℒ454 = − z

C#∈OPQ<.R

log 𝑝C#

Documents in a minibatch 𝐵

ℒOST = − log
exp(< 𝒉%,$ABA , 𝒉(,$ABA >)

exp(< 𝒉%,$ABA , 𝒉(,$ABA >) + ∑F∈"\H exp(< 𝒉%,$ABA , 𝒉F,$ABA >)
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Pre-training Strategy: Patton

• After we obtain document representations, pre-training loss has two parts.

• Part 1: Masked Language Modeling (MLM).

• Part 2: Masked Node Prediction (MNP).

• Final pre-training loss.

77

𝑯%
A = {𝒉%,$ABA , 𝒉%,C$

A , … , 𝒉%,C&
A }

𝑝C# = softmax(𝑾𝒉%,C#
A ) ℒ454 = − z

C#∈OPQ<.R

log 𝑝C#

ℒ4U6 = − log
exp(< 𝒉%,$ABA , 𝒉(,$ABA >)

exp(< 𝒉%,$ABA , 𝒉(,$ABA >) + ∑F∈"\H exp(< 𝒉%,$ABA , 𝒉F,$ABA >)

ℒ = ℒ454 + ℒ4U6



SMU Classification: Restricted

Pre-training Strategy: Patton

• 1. Fine-tune with text classification.

78

|𝒑 = softmax 𝑓456 𝒉%,$ABA

ℒV*+WXYZ = CrossEntropy(|𝒑, 𝒑)
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Pre-training Strategy: Patton

• 1. Fine-tune with text classification.

• 2. Fine-tune with link prediction.

79

|𝒑 = softmax 𝑓456 𝒉%,$ABA

ℒV*+WXYZ = CrossEntropy(|𝒑, 𝒑)

ℒKLM = − log
exp(< 𝒉',CDED , 𝒉N,CDED >)

exp(< 𝒉',CDED , 𝒉N,CDED >) + ∑8∈O\Q exp(< 𝒉',CDED , 𝒉8,CDED >)
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Pre-training Strategy: Patton

• Experiments
• 1. Datasets

80
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Pre-training Strategy: Patton

• Experiments
• 2. Document classification

81

w/o pretrain
on TAG

pretrain only 
with MLM 

Ablation
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Pre-training Strategy: Specter

• 1. After obtaining document representations, we have pre-training loss.

82

ℒ = max{dist 𝒉[,$AB, 𝒉L,$AB − dist 𝒉[,$AB, 𝒉\,$AB +𝑚, 0}

dist 𝒉[,$AB, 𝒉L,$AB = 𝒉[,$AB − 𝒉L,$AB =
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Section 2: PLM-based Text-Attributed Graph 
Models
• Section 2.1: PLMs for Static Text-Attributed Graph

• Section 2.2: PLMs for Heterogeneous Text-Attributed Graph 

• Section 2.3: Textual-edge Text-Attributed Graph

• Section 2.4: Pre-training Strategy

83
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Q & A
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Text-Attributed Graph Representation Learning: 
Methods, Applications, and Challenges

Section 3 (45 min)

Delvin Ce Zhang1, Menglin Yang1, Rex Ying1, and Hady W. Lauw2

1Yale University, 2Singapore Management University
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Tutorial Outline

• Section 1: Text-Attributed Graph and Preliminaries (30 min)

• Section 2: PLM-based Text-Attributed Graph Models (45 min)

• Section 3: TM-based Text-Attributed Graph Models (45 min)

• Section 4: Applications, Challenges, and Future Directions (45 min)

• Summary and Q&A

86



SMU Classification: Restricted

Section 3: TM-based Text-Attributed Graph Models

• Section 3.1: TMs for Static Text-Attributed Graph

• Section 3.2: TMs for Heterogeneous Text-Attributed Graph

• Section 3.3: Hierarchical Text-Attributed Graph

87

• Section 3.1: TMs for Static Text-Attributed Graph
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TMs for Static Text-Attributed Graph

• Static Text-Attributed Graph (TAG) : We observe the whole TAG at once.
• We present Adjacent-Encoder [1] and DBN [2].

88

[1] Zhang, C., & Lauw, H. W. (2020, April). Topic modeling on document networks with adjacent-encoder. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 04, 
pp. 6737-6745).
[2] Zhang, D. C., & Lauw, H. W. (2023). Topic Modeling on Document Networks with Dirichlet Optimal Transport Barycenter. IEEE Transactions on Knowledge and Data Engineering.

(c) Simplified diagram

Encoding
𝐡* = 𝑓1:9(𝐖𝐝 + 𝐛)

Decoding
𝐝 = 𝑓R19(𝐖=𝐡* + 𝐜)

#Words |𝒱|

…	 𝑤& 	 …	 𝑤S 	…

graph neighbor

topic 3
#Topics 𝐾

(Dimensions)

graph neighbor

Topic-word matrix
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(c) Simplified diagram

TMs for Static Text-Attributed Graph

• Static Text-Attributed Graph (TAG) : We observe the whole TAG at once.
• We present Adjacent-Encoder [1] and DBN [2].

89

[1] Zhang, C., & Lauw, H. W. (2020, April). Topic modeling on document networks with adjacent-encoder. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 04, 
pp. 6737-6745).
[2] Zhang, D. C., & Lauw, H. W. (2023). Topic Modeling on Document Networks with Dirichlet Optimal Transport Barycenter. IEEE Transactions on Knowledge and Data Engineering.
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TMs for Static Text-Attributed Graph: Adjacent-
Encoder
• 1. Encoding. Can be a MLP, GNN, or PLM.

90

×

|𝒱|

K |𝒱| + K

𝒉% = tanh(𝑾𝒅% + 𝒃)
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TMs for Static Text-Attributed Graph: Adjacent-
Encoder
• 1. Encoding. Can be a MLP, GNN, or PLM.

• 2. Neighbor attention.

91

𝒉% = tanh(𝑾𝒅% + 𝒃)

𝛼%( =
exp( �𝛼%()

∑()∈𝒩(%) exp( �𝛼%())
�𝛼%( = 𝒉%]𝒉(

𝛼𝐝*,𝐝+ 𝛼𝐝*,𝐝,

𝛼𝐝*,𝐝*



SMU Classification: Restricted

TMs for Static Text-Attributed Graph: Adjacent-
Encoder
• 1. Encoding. Can be a MLP, GNN, or PLM.

• 2. Neighbor attention.

• 3. Neighbor aggregation.

92

𝒉% = tanh(𝑾𝒅% + 𝒃)

𝛼%( =
exp( �𝛼%()

∑()∈𝒩(%) exp( �𝛼%())
�𝛼%( = 𝒉%]𝒉(

topic 𝐳
" top

ic 
𝐳 #

topic 𝐳!

�𝒉% = z
(∈𝒩(%)

𝛼%(𝒉(
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TMs for Static Text-Attributed Graph: Adjacent-
Encoder
• 1. Encoding. Can be a MLP, GNN, or PLM.

• 2. Neighbor attention.

• 3. Neighbor aggregation.

• 4. Neighbor reconstruction.

93

𝒉% = tanh(𝑾𝒅% + 𝒃)

𝛼%( =
exp( �𝛼%()

∑()∈𝒩(%) exp( �𝛼%())
�𝛼%( = 𝒉%]𝒉(

�𝒉% = z
(∈𝒩(%)

𝛼%(𝒉(

reconstruct rec
on

str
uc

t

reconstruct
_𝒅% = sigmoid(𝑾]�𝒉% + 𝒄)

Neighbor document
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TMs for Static Text-Attributed Graph: Adjacent-
Encoder
• Experiments
• 1. Datasets

94
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TMs for Static Text-Attributed Graph: Adjacent-
Encoder
• Experiments
• 2. Document classification

95

Models w/o graph

Models with graph
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TMs for Static Text-Attributed Graph: Adjacent-
Encoder
• Experiments
• 3. Topic coherence

96

RL
KNN

Markov chain

MDP

Neural network
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TMs for Static Text-Attributed Graph: Adjacent-
Encoder
• Experiments
• 3. Topic coherence

97

PMI = log
𝑝(𝑤%, 𝑤()
𝑝 𝑤% 𝑝(𝑤()

Total number of 
co-occurrences

Number of occurrence of each word 𝑤'

If two words 𝑤% and 𝑤( discuss the same topic, 
they should have high co-occurrence 𝑝(𝑤%, 𝑤()
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(c) Simplified diagram

TMs for Static Text-Attributed Graph

• Static Text-Attributed Graph (TAG) : We observe the whole TAG at once.
• We present Adjacent-Encoder [1] and DBN [2].

98

[1] Zhang, C., & Lauw, H. W. (2020, April). Topic modeling on document networks with adjacent-encoder. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 04, 
pp. 6737-6745).
[2] Zhang, D. C., & Lauw, H. W. (2023). Topic Modeling on Document Networks with Dirichlet Optimal Transport Barycenter. IEEE Transactions on Knowledge and Data Engineering.
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TMs for Static Text-Attributed Graph: DBN

• The difference between Adjacent-Encoder and DBN is their decoders.
• Adjacent-Encoder uses MLP, while DBN uses Optimal Transport (OT).

99

min z
(∈𝒩(%)

𝛼%(𝑑_V(�𝒉%, 𝒅()

reconstruct rec
on

str
uc

t

reconstruct

Optimal Transport distance
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TMs for Static Text-Attributed Graph: DBN

• The difference between Adjacent-Encoder and DBN is their decoders.
• Adjacent-Encoder uses MLP, while DBN uses Optimal Transport (OT).
• OT measures the distance between two probability distributions.

100

𝑐#$ = 1 − cos(𝐠# , 𝐞$)

Trainable topic embedding

Optimal Transport distance

�𝒉%

𝒅(

Trainable matrix Defined by word and topic embeddings
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TMs for Static Text-Attributed Graph: DBN

• The difference between Adjacent-Encoder and DBN is their decoders.
• Adjacent-Encoder uses MLP, while DBN uses Optimal Transport (OT).
• OT measures the distance between two probability distributions.

101

𝑐#$ = 1 − cos(𝐠# , 𝐞$)

Trainable topic embedding

Optimal Transport distance

�𝒉%

𝒅(
Pre-trained word embedding
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TMs for Static Text-Attributed Graph: Adjacent-
Encoder
• Experiments
• 1. Datasets

102
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TMs for Static Text-Attributed Graph: Adjacent-
Encoder
• Experiments
• 2. Document classification

103

Models w/o graph

Models with graph

Optimal transport is better
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TMs for Static Text-Attributed Graph: Adjacent-
Encoder
• Experiments
• 2. Topic coherence

104
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Section 3: TM-based Text-Attributed Graph Models

• Section 3.1: TMs for Static Text-Attributed Graph

• Section 3.2: TMs for Heterogeneous Text-Attributed Graph

• Section 3.3: Hierarchical Text-Attributed Graph

105
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TMs for Heterogeneous Text-Attributed Graph

• Documents have authors and publication venues.
• Papers written by the same authors discuss similar research topics;
• News articles edited by the same journalists report similar events.

106



SMU Classification: Restricted

TMs for Heterogeneous Text-Attributed Graph

• Documents have authors and publication venues.
• Papers written by the same authors discuss similar research topics;
• News articles edited by the same journalists report similar events.

• Challenges
• Existing works for text-attributed graph ignore authorship and venues.

• We present VGATM [1] in this section.

107[1] Zhang, D. C., & Lauw, H. W. (2022, August). Variational graph author topic modeling. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 
2429-2438).
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TMs for Heterogeneous Text-Attributed Graph

• Given a corpus 𝒞 = {𝒟,𝒜, 𝒱}, we construct a graph.

108

Documents Authors Venues

Paper citations, 
Webpage hyperlinks, …

Co-authorship links

Self-loop links

How to construct
word-layer graph?
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TMs for Heterogeneous Text-Attributed Graph

• Given a corpus 𝒞 = {𝒟,𝒜, 𝒱}, we construct a graph.
• Semantic word layer

• For each 𝑤!, its top-5 scores with 𝑤'  are neighbors.

109

Pre-trained word embedding of word 𝑤%
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TMs for Heterogeneous Text-Attributed Graph

• Given a corpus 𝒞 = {𝒟,𝒜, 𝒱}, we construct a graph.
• Semantic word layer

• Syntactic word layer

110

Total number of co-occurrences

Number of times that 
𝑤'  and 𝑤N  have syntactic relation
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TMs for Heterogeneous Text-Attributed Graph

• Given a corpus 𝒞 = {𝒟,𝒜, 𝒱}, we construct a graph.
• Semantic word layer

• Syntactic word layer

• Contextual word layer

111

Total number of 
co-occurrences

Number of occurrence of each word 𝑤'

Text
graph
with

4 layers

3 word
sub-layers
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TMs for Heterogeneous Text-Attributed Graph

• 1. Graph Convolutional Encoder

• 2. Graph Decoder

112

• 1. Graph Convolutional Encoder
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TMs for Heterogeneous Text-Attributed Graph

• Intra-layer embedding propagation
• Linear transformation.
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TMs for Heterogeneous Text-Attributed Graph

• Intra-layer embedding propagation
• Linear transformation.

• Intra-layer neighbor attention.

114

×
2𝐾

2𝐾
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TMs for Heterogeneous Text-Attributed Graph

• Intra-layer embedding propagation
• Linear transformation.

• Intra-layer neighbor attention.

• Intra-layer embedding propagation.
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TMs for Heterogeneous Text-Attributed Graph

• Intra-layer embedding propagation
• Linear transformation.

• Intra-layer neighbor attention.

• Intra-layer embedding propagation.

• Repeat above process for (𝐿 − 1) times.

116
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TMs for Heterogeneous Text-Attributed Graph

• Cross-layer embedding propagation
• Cross-word-layer mean pooling.

117

mean pooling
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TMs for Heterogeneous Text-Attributed Graph

• Cross-layer embedding propagation
• Cross-word-layer mean pooling.

• Cross-layer embedding propagation.

118
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TMs for Heterogeneous Text-Attributed Graph

• 1. Graph Convolutional Encoder

• 2. Graph Decoder

119
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TMs for Heterogeneous Text-Attributed Graph

• Negative sampling decoder.

120

inner product
negative sampling
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TMs for Heterogeneous Text-Attributed Graph

• Experiments
• 1. Datasets
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TMs for Heterogeneous Text-Attributed Graph

• Experiments
• 2. Document classification

122

Models w/o authors or venues

Models with authors or venues
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TMs for Heterogeneous Text-Attributed Graph

• Experiments
• 3. Topic coherence

123
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Section 3: TM-based Text-Attributed Graph Models

• Section 3.1: TMs for Static Text-Attributed Graph

• Section 3.2: TMs for Heterogeneous Text-Attributed Graph

• Section 3.3: Hierarchical Text-Attributed Graph

124
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Hierarchical Text-Attributed Graph

• Hierarchical topics 𝓓
• Some articles report global COVID situation, while others focus on specific event.
• à Text hierarchy 𝒟

• Hierarchical graph 𝓔
• A breaking news article is traced by following articles reporting subsequent events.
• à Graph hierarchy ℰ

125
(a) Text hierarchy (b) Graph hierarchy
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Hierarchical Text-Attributed Graph

• We present HGTM [1] in this section, a hyperbolic GNN-based topic model.

126[1] Zhang, D. C., Ying, R., & Lauw, H. W. (2023, August). Hyperbolic graph topic modeling network with continuously updated topic tree. In Proceedings of the 29th ACM SIGKDD 
Conference on Knowledge Discovery and Data Mining (pp. 3206-3216).

Exponential map
𝑞 = expp(𝑣)
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Hierarchical Text-Attributed Graph

• We present HGTM [1] in this section, a hyperbolic GNN-based topic model.

127[1] Zhang, D. C., Ying, R., & Lauw, H. W. (2023, August). Hyperbolic graph topic modeling network with continuously updated topic tree. In Proceedings of the 29th ACM SIGKDD 
Conference on Knowledge Discovery and Data Mining (pp. 3206-3216).

Logrithmic map
𝑣 = logp(𝑞)

Hyperbolic space

Tangent space at 𝑥
(Euclidean space)
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Hierarchical Text-Attributed Graph

• Hyperbolic Graph Encoder (for graph hierarchy 𝓔)
• 1. Given a Text-Attributed Graph 𝒢 = {𝒟, ℰ}, we construct a two-layer graph 

for documents and words.
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Hierarchical Text-Attributed Graph

• Hyperbolic Graph Encoder (for graph hierarchy 𝓔)
• 2. Intra-layer encoding
• A. Hyperbolic linear transformation

• B. Hyperbolic neighbor attention

• C. Hyperbolic aggregation

• Summarizing above three steps, we have

129

𝒛𝒊𝒏𝒕𝒓𝒂 = 𝐻𝐺𝑁𝑁 𝑑,𝑁vwxyz 𝑑
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Hierarchical Text-Attributed Graph

• Hyperbolic Graph Encoder (for graph hierarchy 𝓔)
• 3. Cross-layer encoding

• 4. Hyperbolic mean pooling

130

𝒛𝒄𝒓𝒐𝒔𝒔 = 𝐻𝐺𝑁𝑁 𝑑,𝑁~y��� 𝑑

𝑧% = exp
1
2
× log 𝒛𝒊𝒏𝒕𝒓𝒂 + log 𝒛𝒄𝒓𝒐𝒔𝒔
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Hierarchical Text-Attributed Graph

• Tree-Structured Decoder (for text hierarchy 𝓓)
• 1. Initialize a latent topic tree

131
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Hierarchical Text-Attributed Graph

• Tree-Structured Decoder (for text hierarchy 𝓓)
• 1. Initialize a latent topic tree
• 2. For doc 𝑑, evaluate path distribution

• 3. Evaluate level distribution

132

𝑝 𝑘. → 𝑘/ → 𝑘0 = 𝑝(𝑘0|𝑘/)𝑝(𝑘/|𝑘.)𝑝(𝑘.)

𝑝 𝑘= 𝑘9 =
1 + dist 𝑧R , 𝑡<T

\9

∑<U@<T,<V,<W 1 + dist 𝑧R , 𝑡<U
\9

𝑝(level	𝑠) =
1 + ℎ 𝑠 = \9

∑QU@9,=,` 1 + ℎ 𝑠& = \9 where     ℎ 𝑠 / = min dist 𝑧% , 𝑡1X
/ 𝑘2 ∈ level	𝑠
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Hierarchical Text-Attributed Graph

• Tree-Structured Decoder (for text hierarchy 𝓓)
• 4. Topic distribution

• 5. Decoding with cross-entropy loss

133

𝑝 𝑘/ = 𝑝 𝑠 = 2 × 𝑝 path	1 + 𝑝 path	2 + 𝑝 path	3

𝜃% = [𝑝 𝑘. , 𝑝 𝑘/ , … , 𝑝(𝑘3)]

M𝑑 = softmax(𝛽𝜃%)
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Hierarchical Text-Attributed Graph

• Experiments
• 1. Datasets

134
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Hierarchical Text-Attributed Graph

• Experiments
• 2. Document classification

135

Models with graph hierarchy 
but without text hierarchy

Models with text hierarchy 
but without graph hierarchy
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Hierarchical Text-Attributed Graph

• Experiments
• 3. Topic coherence

136

Modeling hierarchy is useful
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Section 3: TM-based Text-Attributed Graph Models

• Section 3.1: TMs for Static Text-Attributed Graph

• Section 3.2: TMs for Heterogeneous Text-Attributed Graph

• Section 3.3: Hierarchical Text-Attributed Graph

137
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Q & A
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Text-Attributed Graph Representation Learning: 
Methods, Applications, and Challenges

Section 4 (45 min)

Delvin Ce Zhang1, Menglin Yang1, Rex Ying1, and Hady W. Lauw2

1Yale University, 2Singapore Management University
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Tutorial Outline

• Section 1: Text-Attributed Graph and Preliminaries (30 min)

• Section 2: PLM-based Text-Attributed Graph Models (45 min)

• Section 3: TM-based Text-Attributed Graph Models (45 min)

• Section 4: Applications, Challenges, and Future Directions (45 min)

• Summary and Q&A

140
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Section 4: Applications, Challenges, and Directions 

• Section 4.1: Text Classification

• Section 4.2: Question Answering

• Section 4.3: Citation Recommendation 

• Section 4.4: Challenges and Future Directions

141

• Section 4.1: Text Classification
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Text Classification

• Text-Attributed Graph can be used for text classification where graph 
structure is auxiliary data to complement textual content.
• We present G2P2 [1] in this section.

142[1] Wen, Z., & Fang, Y. (2023, July). Augmenting low-resource text classification with graph-grounded pre-training and prompting. In Proceedings of the 46th International ACM SIGIR 
Conference on Research and Development in Information Retrieval (pp. 506-516).
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Text Classification

• Pre-training
• 1. Text and graph encodings.

143

𝒕' = Transformer(𝑑')𝒛' = GNN(𝑑' ,𝒩(𝑖))
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Text Classification

• Pre-training
• 1. Text and graph encodings.

• 2. Loss 1: text-node interaction.

144

𝒕' = Transformer(𝑑')𝒛' = GNN(𝑑' ,𝒩(𝑖))

ℒ. = CrossEntropy exp 𝜏 × cos 𝒁, 𝑻 , Diag(𝑁)

Learnable scalar Diagonal matrix
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Text Classification

• Pre-training
• 1. Text and graph encodings.

• 2. Loss 1: text-node interaction.

145

𝒕' = Transformer(𝑑')𝒛' = GNN(𝑑' ,𝒩(𝑖))

ℒ. = CrossEntropy exp 𝜏 × cos 𝒁, 𝑻 , Diag(𝑁)
+CrossEntropy exp 𝜏 × cos 𝒁, 𝑻	 = , Diag(𝑁)
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Text Classification

• Pre-training
• 1. Text and graph encodings.

• 2. Loss 1: text-node interaction.

• 3. Loss 2: text-summary interaction.

146

𝒕' = Transformer(𝑑')𝒛' = GNN(𝑑' ,𝒩(𝑖))

ℒ. = CrossEntropy exp 𝜏 × cos 𝒁, 𝑻 , Diag(𝑁)
+CrossEntropy exp 𝜏 × cos 𝒁, 𝑻	 = , Diag(𝑁)

ℒ& = CrossEntropy exp 𝜏 × cos 𝑻, 𝑺 , Diag(𝑁)
+CrossEntropy exp 𝜏 × cos 𝑻, 𝑺	 = , Diag(𝑁)

𝒔' = mean(𝒕' , 𝒕N|𝑗 ∈ 𝒩(𝑖))
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Text Classification

• Pre-training
• 1. Text and graph encodings.

• 2. Loss 1: text-node interaction.

• 3. Loss 2: text-summary interaction.

147

𝒕' = Transformer(𝑑')𝒛' = GNN(𝑑' ,𝒩(𝑖))

ℒ. = CrossEntropy exp 𝜏 × cos 𝒁, 𝑻 , Diag(𝑁)
+CrossEntropy exp 𝜏 × cos 𝒁, 𝑻	 = , Diag(𝑁)

ℒ& = CrossEntropy exp 𝜏 × cos 𝑻, 𝑺 , Diag(𝑁)
+CrossEntropy exp 𝜏 × cos 𝑻, 𝑺	 = , Diag(𝑁)

𝒔' = mean(𝒕' , 𝒕N|𝑗 ∈ 𝒩(𝑖))

• 4. Loss 3: Node-summary interaction.
ℒY = CrossEntropy exp 𝜏 × cos 𝒁, 𝑺 , Diag(𝑁)

+CrossEntropy exp 𝜏 × cos 𝒁, 𝑺	 = , Diag(𝑁)
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Text Classification

• Zero-shot fine-tuning:
• 1. Prompt.

148

𝑝Z = "paper	of" + [CLASSZ]
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Text Classification

• Zero-shot fine-tuning:
• 1. Prompt.

• 2. Obtain class embeddings.

149

𝑝Z = "paper	of" + [CLASSZ]

𝒘Z = Transformer(𝑝9),   where   𝑦 = 1,2, … , 𝑁

Total number of classes
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Text Classification

• Zero-shot fine-tuning:
• 1. Prompt.

• 2. Obtain class embeddings.

• 3. Evaluate class similarity.

150

𝑝Z = "paper	of" + [CLASSZ]

𝒘Z = Transformer(𝑝9),   where   𝑦 = 1,2, … , 𝑁

𝑝 𝑦 𝒛' = softmax(cos(𝒛' , 𝒘Z)),   where   𝑦 = 1,2, … , 𝑁
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Text Classification

• Few-shot fine-tuning:
• 1. Prompt. 

• For a document 𝑑!, obtain its first 𝑀 words.

151

𝑑' = [𝒉',., 𝒉',&, … , 𝒉',[] 𝑑N = [𝒉N,., 𝒉N,&, … , 𝒉N,[],   where 𝑗 ∈ 𝒩(𝑖)
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Text Classification

• Few-shot fine-tuning:
• 1. Prompt. 

• For a document 𝑑!, obtain its first 𝑀 words.

152

𝑑' = [𝒉',., 𝒉',&, … , 𝒉',[] 𝑑N = [𝒉N,., 𝒉N,&, … , 𝒉N,[],   where 𝑗 ∈ 𝒩(𝑖)
𝒉\ = mean(𝒉',\, 𝒉N,\|𝑗 ∈ 𝒩(𝑖))
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Text Classification

• Few-shot fine-tuning:
• 1. Prompt. 

• For a document 𝑑!, obtain its first 𝑀 words.
• 2. Obtain class embeddings.

153

𝑑' = [𝒉',., 𝒉',&, … , 𝒉',[] 𝑑N = [𝒉N,., 𝒉N,&, … , 𝒉N,[],   where 𝑗 ∈ 𝒩(𝑖)
𝒉\ = mean(𝒉',\, 𝒉N,\|𝑗 ∈ 𝒩(𝑖))

𝒘Z = Transformer([𝒉., 𝒉&, … , 𝒉[ , 𝒉CD]EE']),   where   𝑦 = 1,2, … , 𝑌
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Text Classification

• Few-shot fine-tuning:
• 1. Prompt. 

• For a document 𝑑!, obtain its first 𝑀 words.
• 2. Obtain class embeddings.

• 3. Evaluate class similarity.

154

𝑑' = [𝒉',., 𝒉',&, … , 𝒉',[] 𝑑N = [𝒉N,., 𝒉N,&, … , 𝒉N,[],   where 𝑗 ∈ 𝒩(𝑖)
𝒉\ = mean(𝒉',\, 𝒉N,\|𝑗 ∈ 𝒩(𝑖))

𝒘Z = Transformer([𝒉., 𝒉&, … , 𝒉[ , 𝒉CD]EE']),   where   𝑦 = 1,2, … , 𝑌

𝑝 𝑦 𝒛' = softmax(cos(𝒛' , 𝒘Z)),   where   𝑦 = 1,2, … , 𝑌
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Text Classification

• Experiments
• 1. Datasets

155
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Text Classification

• Experiments
• 2. Zero-shot text classification

156

Models w/o graph structure
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Text Classification

• Experiments
• 3. Five-shot text classification

157
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Section 4: Applications, Challenges, and Directions 

• Section 4.1: Text Classification

• Section 4.2: Question Answering

• Section 4.3: Citation Recommendation 

• Section 4.4: Challenges and Future Directions

158
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Question Answering

• Text-Attributed Graph, such as hyperlinked Wikipedia page, provides high-
order knowledge to answer the question.
• We present LinkBERT [1] in this section.

159[1] Yasunaga, M., Leskovec, J., & Liang, P. (2022, May). LinkBERT: Pretraining Language Models with Document Links. In Proceedings of the 60th Annual Meeting of the Association for 
Computational Linguistics (Volume 1: Long Papers) (pp. 8003-8016).

The linked document reveals that the 
National Cherry Blossom Festival 
celebrates Japanese cherry trees.
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Question Answering

• 1. Linked documents.

160

𝑯 = BERT CLS 𝑑9 SEP 𝑑` SEP ,  where  𝑑` ∈ 𝒩(𝑑9)
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Question Answering

• 1. Linked documents.

• 2. Random documents.

161

𝑯 = BERT CLS 𝑑9 SEP 𝑑` SEP ,  where  𝑑` ∈ 𝒩(𝑑9)

𝑯 = BERT CLS 𝑑9 SEP 𝑑a SEP ,  where  𝑑a ∉ 𝒩(𝑑9)



SMU Classification: Restricted

Question Answering

• 1. Linked documents.

• 2. Random documents.

• 3. Contiguous documents.

162

𝑯 = BERT CLS 𝑑9 SEP 𝑑` SEP ,  where  𝑑` ∈ 𝒩(𝑑9)

𝑯 = BERT CLS 𝑑9 SEP 𝑑a SEP ,  where  𝑑a ∉ 𝒩(𝑑9)

𝑯 = BERT CLS 𝑑9 SEP 𝑑9& SEP ,  where  𝑑9& ⊂ 𝑑9



SMU Classification: Restricted

Question Answering

• 1. Linked documents.

• 2. Random documents.

• 3. Contiguous documents.

• 4. Pre-training MLM loss.

163

𝑯 = BERT CLS 𝑑9 SEP 𝑑` SEP ,  where  𝑑` ∈ 𝒩(𝑑9)

𝑯 = BERT CLS 𝑑9 SEP 𝑑a SEP ,  where  𝑑a ∉ 𝒩(𝑑9)

𝑯 = BERT CLS 𝑑9 SEP 𝑑9& SEP ,  where  𝑑9& ⊂ 𝑑9

Parameter for MLM

�𝒑[D[ = softmax(𝑾𝒉7(
	 ) ℒ[D[ = CrosEntropy(�𝒑[D[ , 𝒑[D[)



SMU Classification: Restricted

Question Answering

• 1. Linked documents.

• 2. Random documents.

• 3. Contiguous documents.

• 4. Pre-training MLM loss.

164

𝑯 = BERT CLS 𝑑9 SEP 𝑑` SEP ,  where  𝑑` ∈ 𝒩(𝑑9)

𝑯 = BERT CLS 𝑑9 SEP 𝑑a SEP ,  where  𝑑a ∉ 𝒩(𝑑9)

𝑯 = BERT CLS 𝑑9 SEP 𝑑9& SEP ,  where  𝑑9& ⊂ 𝑑9

�𝒑[D[ = softmax(𝑾𝒉7(
	 ) ℒ[D[ = CrosEntropy(�𝒑[D[ , 𝒑[D[)

• 5. Pre-training relation prediction loss.
�𝒑< = softmax(𝑾^𝒉CDE	 ) ℒ_J` = CrossEntropy(�𝒑< , 𝒑<)
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Question Answering

• Experiments
• 1. Datasets

• LinkBERT, pre-trained on Wikipedia hyperlink graph.
• BioLinkBERT, pre-trained on PubMed citation graph.

165
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Question Answering

• Experiments
• 2. Extractive question answering
• Given a document (or set of documents) and a question as input, the task is 

to identify an answer span from the document.

166
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Question Answering

• Experiments
• 2. Extractive question answering
• Given a document (or set of documents) and a question as input, the task is 

to identify an answer span from the document.

167
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Question Answering

• Experiments
• 2. Biomedical domain

168
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Section 4: Applications, Challenges, and Directions 

• Section 4.1: Text Classification

• Section 4.2: Question Answering

• Section 4.3: Citation Recommendation 

• Section 4.4: Challenges and Future Directions

169
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Citation Recommendation

• Academic papers with citations constitute a Text-Attributed Graph.
• We can model both modalities for citation recommendation.
• We present GNCTM [1] in this section.

170[1] Xie, Q., Zhu, Y., Huang, J., Du, P., & Nie, J. Y. (2021). Graph neural collaborative topic model for citation recommendation. ACM Transactions on Information Systems (TOIS), 40(3), 1-30.



SMU Classification: Restricted

Citation Recommendation

• 1. GNN encoding.

171

𝝁' = GNNa(𝑑' , 𝑑N|𝑗 ∈ 𝒩(𝑖)) 𝜮' = GNNb(𝑑' , 𝑑N|𝑗 ∈ 𝒩(𝑖))
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Citation Recommendation

• 1. GNN encoding.

• 2. Reparameterization.

172

𝝁' = GNNa(𝑑' , 𝑑N|𝑗 ∈ 𝒩(𝑖)) 𝜮' = GNNb(𝑑' , 𝑑N|𝑗 ∈ 𝒩(𝑖))

𝜽' = 𝝁' + 𝜮'
./&𝝐,   where   𝝐~Gaussian(𝟎, 𝑰)

𝝑' = 𝜽' + 𝝃	,   where    𝝃~Gaussian(𝟎, 𝜆𝑰) The purpose is to further distinguish similar documents
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Citation Recommendation

• 1. GNN encoding.

• 2. Reparameterization.

• 3. Text decoder.

173

𝝁' = GNNa(𝑑' , 𝑑N|𝑗 ∈ 𝒩(𝑖)) 𝜮' = GNNb(𝑑' , 𝑑N|𝑗 ∈ 𝒩(𝑖))

�𝒅' = 𝑓[D`(𝝑') ℒ/1c/ = CrossEntropy(�𝒅' , 𝒅')

𝜽' = 𝝁' + 𝜮'
./&𝝐,   where   𝝐~Gaussian(𝟎, 𝑰)

𝝑' = 𝜽' + 𝝃	,   where    𝝃~Gaussian(𝟎, 𝜆𝑰)
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Citation Recommendation

• 1. GNN encoding.

• 2. Reparameterization.

• 3. Text decoder.

• 4. Citation decoder.

174

𝝁' = GNNa(𝑑' , 𝑑N|𝑗 ∈ 𝒩(𝑖)) 𝜮' = GNNb(𝑑' , 𝑑N|𝑗 ∈ 𝒩(𝑖))

�𝑦',') = 𝑓[D`^ (𝝑'||𝝑')) ℒd<e"0 = CrossEntropy( �𝑦',') , 𝑦','))

𝜽' = 𝝁' + 𝜮'
./&𝝐,   where   𝝐~Gaussian(𝟎, 𝑰)

𝝑' = 𝜽' + 𝝃	,   where    𝝃~Gaussian(𝟎, 𝜆𝑰)

�𝒅' = 𝑓[D`(𝝑') ℒ/1c/ = CrossEntropy(�𝒅' , 𝒅')
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Citation Recommendation

• Experiments
• 1. Datasets

175
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Citation Recommendation

• Experiments
• 2. Citation recommendation

176

Models w/o high-order graph

Models w/o text decoding

Models w/o
high-order encoding
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Section 4: Applications, Challenges, and Directions 

• Section 4.1: Text Classification

• Section 4.2: Question Answering

• Section 4.3: Citation Recommendation 

• Section 4.4: Challenges and Future Directions

177
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Challenges and Future Directions

• Explainability
• We are curious about why a model makes certain predictions and how to 

explain its behaviors.
• GNNExplainer [1] pioneers this research by explaining which graph 

substructures are informative for predictions, but lacks textual semantics.
• A future research is to design a model that jointly incorporates both GNNs 

and PLMs/TMs, and provides explanations on text-attributed graph, e.g., 
which text spans are important for predictions.

178[1] Ying, Z., Bourgeois, D., You, J., Zitnik, M., & Leskovec, J. (2019). Gnnexplainer: Generating explanations for graph neural networks. Advances in neural information processing 
systems, 32.
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Challenges and Future Directions

• Hierarchical Pre-training
• Existing text-attributed graph pretraining treats all the documents equally. 

However, in many cases documents present a hierarchical instead of a flat 
structure.
• For example, survey papers summarize a broad area and regular papers deal 

with specific problems. 
• Modeling such document hierarchy can better preserve textual semantics.
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Q & A


