Yale University

School of Computing and Information Systems

Text-Attributed Graph Representation Learning: Methods, Applications, and Challenges Section 1 (30 min)

Delvin Ce Zhang¹, Menglin Yang¹, Rex Ying¹, and Hady W. Lauw² ¹Yale University, ²Singapore Management University

Textual Documents are Ubiquitous

• Ubiquity of unstructured textual documents

• Unstructured, noisy, dynamic, multi-lingual, ...

Today was a great day for your restaurant. There was a huge buffet with important guests. It seems that your team coped perfectly, after all, the customers left satisfied. Now it only remains to wash the dishes and prepare for the next day. Previously, the sheer amount of dirty dishes would have caused problems.

But not now, now you have Sun Eco extra power dishwasher tablets. They save time and money, because you only need one tablet (one pack contains 175 pieces). Moreover, do not worry about having to clean the machine after - as the tablet and it's plastic wrap dissolve completely during the washing process.

After use, all that remains is to admire the result: all the dirt on the dishes, including soot on the pans, oil, grease and food residues will simply disappear. You will be left with just sparklingly clean dishes without marks and stains. Even pre-rinsing is not required, which saves water and reduces company expenses. In addition, the composition does not include phosphates, so there are no harmful substances or tastes left on the dishes

Use a secret weapon against massive loads of dirty dishes!

Product descriptions

News articles

Academic papers

Text-Attributed Graph

- Documents are also connected in a graph structure Text-Attributed Graph
 - Academic citation graph, news article hyperlink graph, product contextual graph...
 - Consisting of a corpus of documents \mathcal{D} , and graph structure \mathcal{E} .

How to Process Text-Attributed Graph

- Pros: Capture both node attribute and graph structure;
- Cons: Most models don't specifically model textual attribute, thus document representations lack language representations or linguistic semantics.
- Pre-trained Language Models (PLMs)
 - Pros: Learn contextualized document representations;
 - Cons: Most models don't capture graph structure across documents.
- Topic Models (TMs)
 - Pros: Infer topic representation for textual documents;
 - Cons: Most models don't capture graph structure across documents.

How to Process Text-Attributed Graph

• This tutorial – Text-Attributed Graph Representation Learning

• Infer document representations that preserve **both i)** contextualized semantics contained in rich text documents, **and ii)** graph connectivity across documents.

Tutorial Outline

- Section 1: Text-Attributed Graph and Preliminaries (30 min)
- Section 2: PLM-based Text-Attributed Graph Models (45 min)
- Section 3: TM-based Text-Attributed Graph Models (45 min)
- Section 4: Applications, Challenges, and Future Directions (45 min)
- Summary and Q&A

Section 1: Text-Attributed Graph and Preliminaries

- Section 1.1: Formal Definition of Text-Attributed Graph (TAG)
- Section 1.2: Graph Neural Networks (GNNs)
- Section 1.3: Pre-trained Language Models (PLMs)
- Section 1.4: Topic Models (TMs)

Formal Definition of Text-Attributed Graph (TAG)

• Text-Attributed Graph (TAG):

- We are given a Text-Attributed Graph (TAG) $\mathcal{G} = \{\mathcal{D}, \mathcal{E}\}$.
- $\mathcal{D} = \{d_i\}_{i=1}^N$ is a set of N documents. Each document d_i contains a sequence of words $d_i = \{w_{i,n}\}_{n=1}^{N_d_i}$.
- $\mathcal{E} = \{e_{ij}\}$ is a set of graph links where $e_{ij} \in \mathcal{E}$ is there is a link between documents d_i and d_j . We model an undirected graph, $e_{ij} = e_{ji}$. Neighbor set $\mathcal{N}(i)$ contains documents directly linked to document d_i .

 $\mathcal{N}(A) = \{B, D\}.$

Formal Definition of Text-Attributed Graph (TAG)

- Text-Attributed Graph (TAG) Representation Learning:
- Given a Text-Attributed Graph (TAG) $\mathcal{G} = \{\mathcal{D}, \mathcal{E}\}$ as **input**, we aim to design a model that **outputs** document representations $\mathbf{Z}_{\mathcal{D}} = \{\mathbf{z}_d\}_{d \in \mathcal{D}}$ that capture both textual semantics in \mathcal{D} and graph connectivity in \mathcal{E} .
- Note that we do not simply consider \mathcal{D} as general attribute, but instead, we specifically model language representations in text corpus \mathcal{D} .

Section 1: Text-Attributed Graph and Preliminaries

- Section 1.1: Formal Definition of Text-Attributed Graph (TAG)
- Section 1.2: Graph Neural Networks (GNNs)
- Section 1.3: Pre-trained Language Models (PLMs)
- Section 1.4: Topic Models (TMs)

• Graph Neural Networks (GNNs) learn node representations that preserve both node attributed and graph structure. Below we illustrate GAT [1].

- 1. Start with the original features, e.g., Bag-of-Words.
 - $\mathbf{h} = \{\vec{h}_1, \vec{h}_2, \dots, \vec{h}_N\}, \vec{h}_i \in \mathbb{R}^F$

- 1. Start with the original features, e.g., Bag-of-Words.
 - $\mathbf{h} = \{\vec{h}_1, \vec{h}_2, \dots, \vec{h}_N\}, \vec{h}_i \in \mathbb{R}^F$
- 2. Linear transformation. $\vec{h}'_i = \mathbf{W}\vec{h}_i$ $\mathbf{h}' = \{\vec{h}'_1, \vec{h}'_2, \dots, \vec{h}'_N\}, \vec{h}'_i \in \mathbb{R}^{F'}$ F F' F FF

- 1. Start with the original features, e.g., Bag-of-Words.
 - $\mathbf{h} = \{ \vec{h}_1, \vec{h}_2, \dots, \vec{h}_N \}, \vec{h}_i \in \mathbb{R}^F$
- 2. Linear transformation. $\vec{h}'_i = \mathbf{W}\vec{h}_i$ $\mathbf{h}' = \{\vec{h}'_1, \vec{h}'_2, \dots, \vec{h}'_N\}, \vec{h}'_i \in \mathbb{R}^{F'}$
- 3. Neighbor attention.

- 1. Start with the original features, e.g., Bag-of-Words.
 - $\mathbf{h} = \{ \vec{h}_1, \vec{h}_2, \dots, \vec{h}_N \}, \vec{h}_i \in \mathbb{R}^F$
- 2. Linear transformation. $\vec{h}'_i = \mathbf{W}\vec{h}_i$ $\mathbf{h}' = \{\vec{h}'_1, \vec{h}'_2, \dots, \vec{h}'_N\}, \vec{h}'_i \in \mathbb{R}^{F'}$
- 3. Neighbor attention.

$$e_{B,j} = \text{LeakyReLU}(\vec{a}^T[\vec{h}'_B||\vec{h}'_j]), \text{ where } j = A, B, C, D$$

 $\alpha_{B,j} = \text{softmax}(e_{B,j}) = \frac{\exp(e_{B,j})}{\sum_j \exp(e_{B,j})}, \text{ where } j = A, B, C, D$

- 1. Start with the original features, e.g., Bag-of-Words.
 - $\mathbf{h} = \{ \vec{h}_1, \vec{h}_2, \dots, \vec{h}_N \}, \vec{h}_i \in \mathbb{R}^F$
- 2. Linear transformation. $\vec{h}'_i = \mathbf{W}\vec{h}_i$ $\mathbf{h}' = \{\vec{h}'_1, \vec{h}'_2, \dots, \vec{h}'_N\}, \vec{h}'_i \in \mathbb{R}^{F'}$
- 3. Neighbor attention.

$$e_{B,j} = \text{LeakyReLU}(\vec{a}^T[\vec{h}'_B||\vec{h}'_j]), \text{ where } j = A, B, C, D$$

 $\alpha_{B,j} = \text{softmax}(e_{B,j}) = \frac{\exp(e_{B,j})}{\sum_j \exp(e_{B,j})}, \text{ where } j = A, B, C, D.$

• 4. Neighbor aggregation.

$$z_B = \sigma(\sum_j \alpha_{B,j} \vec{h}'_j)$$
, where $j = A, B, C, D$.

• 5. Cross-entropy loss for link prediction. Layer 2 Layer 1 ... Z_A • • • B Α Z_B Z_A D В ... Target Node ...

• Graph Neural Networks (GNNs) consider text in documents as general attribute and do not specifically deal with text data. Consequently, they can not capture language representations or linguistic semantics in text corpora

Section 1: Text-Attributed Graph and Preliminaries

- Section 1.1: Formal Definition of Text-Attributed Graph (TAG)
- Section 1.2: Graph Neural Networks (GNNs)
- Section 1.3: Pre-trained Language Models (PLMs)
- Section 1.4: Topic Models (TMs)

 Pre-trained Language Models (PLMs) learn contextualized document representations that preserve textual semantics. Below we illustrate Transformer [1].

- 1. Positional encoding.
 - Suppose the input text is "the web conference".

Input embeddings: $e_i = w_i + p_i$, where i = the, web, conference

Word embedding Positional encoding:

$$p_{(pos,2i)} = \sin(pos/10000^{2i/\dim})$$

 $p_{(pos,2i+1)} = \cos(pos/10000^{2i/\dim})$

 $\pmb{p}_{the} = [p_{(0,0)}, p_{(0,1)}, \dots, p_{(0,\dim-1)}]$

- 1. Positional encoding.
 - Suppose the input text is "the web conference".

Input embeddings: $e_i = w_i + p_i$, where i = the, web, conference

• 2. Multi-head attention.

 $Q = EW^{Q}, K = EW^{K}, V = EW^{V}, \text{ where } E = [e_{the}, e_{web}, e_{conference}]$

- 1. Positional encoding.
 - Suppose the input text is "the web conference".

Input embeddings: $e_i = w_i + p_i$, where i = the, web, conference

• 2. Multi-head attention. $Q = EW^Q, K = EW^K, V = EW^V$, where $E = [e_{the}, e_{web}, e_{conference}]$ Att $(Q, K, V) = \operatorname{softmax} \left(\frac{QK^T}{\sqrt{\dim}}\right)V$ 3 F' $Q \times K^T$

- 1. Positional encoding.
 - Suppose the input text is "the web conference".

Input embeddings: $e_i = w_i + p_i$, where i = the, web, conference

• 2. Multi-head attention. $Q = EW^Q, K = EW^K, V = EW^V$, where $E = [e_{the}, e_{web}, e_{conference}]$ $Att(Q, K, V) = softmax \left(\frac{QK^T}{\sqrt{\dim}}\right)V$ MultiHeadAtt $(Q, K, V) = [Att_1(Q_1, K_1, V_1)|| ... ||Att<math>(Q_H, K_H, V_H)]W$

- 1. Positional encoding.
 - Suppose the input text is "the web conference".

Input embeddings: $e_i = w_i + p_i$, where i = the, web, conference

- 2. Multi-head attention. $Q = EW^Q, K = EW^K, V = EW^V$, where $E = [e_{the}, e_{web}, e_{conference}]$ $Att(Q, K, V) = softmax \left(\frac{QK^T}{\sqrt{\dim}}\right) V$ MultiHeadAtt $(Q, K, V) = [Att_1(Q_1, K_1, V_1)|| ... ||Att<math>(Q_H, K_H, V_H)]W$
- 3. Addition and normalization.
 - **E**' = LayerNorm(**E** + MultiHeadAtt(**Q**, **K**, **V**))

- 1. Positional encoding.
 - Suppose the input text is "the web conference".

Input embeddings: $e_i = w_i + p_i$, where i = the, web, conference

- 2. Multi-head attention. $Q = EW^Q, K = EW^K, V = EW^V$, where $E = [e_{the}, e_{web}, e_{conference}]$ $Att(Q, K, V) = softmax \left(\frac{QK^T}{\sqrt{\dim}}\right)V$ MultiHeadAtt $(Q, K, V) = [Att_1(Q_1, K_1, V_1)|| ... ||Att<math>(Q_H, K_H, V_H)]W$
- 3. Addition and normalization.
 - **E**' = LayerNorm(**E** + MultiHeadAtt(**Q**, **K**, **V**))
- 4. Feed forward. E'' = LayerNorm(E' + FFN(E'))

29

 Pre-trained Language Models (PLMs) mainly deal with text within each individual document only, and ignore the graph adjacency across documents, e.g., citations and hyperlinks.

Section 1: Text-Attributed Graph and Preliminaries

- Section 1.1: Formal Definition of Text-Attributed Graph (TAG)
- Section 1.2: Graph Neural Networks (GNNs)
- Section 1.3: Pre-trained Language Models (PLMs)
- Section 1.4: Topic Models (TMs)

 Topic Models (TMs) learn topic distributions as document representations. Below we illustrate NVDM [1].
 TOPIC 1 TOPIC 2 TOPIC 3

• 1. Variational encoding with **h**, i.e., Bag-of-Words.

 $\boldsymbol{\mu} = f_{\boldsymbol{\mu}}(f_{\mathrm{MLP}}(\boldsymbol{h})) \qquad \boldsymbol{\Sigma} = f_{\boldsymbol{\sigma}}(f_{\mathrm{MLP}}(\boldsymbol{h}))$

• 1. Variational encoding with **h**, i.e., Bag-of-Words.

 $\boldsymbol{\mu} = f_{\boldsymbol{\mu}}(f_{\mathrm{MLP}}(\boldsymbol{h})) \qquad \boldsymbol{\Sigma} = f_{\sigma}(f_{\mathrm{MLP}}(\boldsymbol{h}))$

• 2. Reparameterization.

$$\boldsymbol{\theta} = \operatorname{softmax} \left(\boldsymbol{\mu} + \boldsymbol{\Sigma}^{\frac{1}{2}} \boldsymbol{\epsilon} \right) \in \mathbb{R}^{K}, \text{ where } \boldsymbol{\epsilon} \sim \operatorname{Gaussian}(\boldsymbol{0}, \boldsymbol{I})$$
Topic distribution K is number of topics

 $h = \frac{\mu}{\mathbf{\Sigma}} \xrightarrow{\text{sampling}} encoder$

• 1. Variational encoding with *h*, i.e., Bag-of-Words.

 $\boldsymbol{\mu} = f_{\mu}(f_{\text{MLP}}(\boldsymbol{h})) \qquad \boldsymbol{\Sigma} = f_{\sigma}(f_{\text{MLP}}(\boldsymbol{h}))$

• 2. Reparameterization.

 $\boldsymbol{\theta} = \operatorname{softmax}\left(\boldsymbol{\mu} + \boldsymbol{\Sigma}^{\frac{1}{2}}\boldsymbol{\epsilon}\right) \in \mathbb{R}^{K}$, where $\boldsymbol{\epsilon} \sim \operatorname{Gaussian}(\boldsymbol{0}, \boldsymbol{I})$

• 3. Topic modeling decoding. $\beta_k = \operatorname{softmax}(W_k) \in \mathbb{R}^{|\mathcal{V}|}, \text{ where } W_k \text{ is randomly initialized}$ \uparrow Topic-word distribution \mathcal{V} is vocabulary of one topic k

• 1. Variational encoding with *h*, i.e., Bag-of-Words.

 $\boldsymbol{\mu} = f_{\mu}(f_{\text{MLP}}(\boldsymbol{h})) \qquad \boldsymbol{\Sigma} = f_{\sigma}(f_{\text{MLP}}(\boldsymbol{h}))$

• 2. Reparameterization.

 $\boldsymbol{\theta} = \operatorname{softmax}\left(\boldsymbol{\mu} + \boldsymbol{\Sigma}^{\frac{1}{2}}\boldsymbol{\epsilon}\right) \in \mathbb{R}^{K}$, where $\boldsymbol{\epsilon} \sim \operatorname{Gaussian}(\boldsymbol{0}, \boldsymbol{I})$

• 3. Topic modeling decoding. $\beta_k = \operatorname{softmax}(W_k) \in \mathbb{R}^{|\mathcal{V}|}$, where W_k is randomly initialized $\beta = [\beta_1; \beta_2; ..., \beta_K] \in \mathbb{R}^{K \times |\mathcal{V}|}$ is topic-word distribution $\widehat{h} = \theta \times \beta$

Topic Models (TMs)

• 1. Variational encoding with *h*, i.e., Bag-of-Words.

 $\boldsymbol{\mu} = f_{\mu}(f_{\text{MLP}}(\boldsymbol{h})) \qquad \boldsymbol{\Sigma} = f_{\sigma}(f_{\text{MLP}}(\boldsymbol{h}))$

• 2. Reparameterization.

 $\boldsymbol{\theta} = \operatorname{softmax}\left(\boldsymbol{\mu} + \boldsymbol{\Sigma}^{\frac{1}{2}}\boldsymbol{\epsilon}\right) \in \mathbb{R}^{K}$, where $\boldsymbol{\epsilon} \sim \operatorname{Gaussian}(\boldsymbol{0}, \boldsymbol{I})$

- 3. Topic modeling decoding. $\beta_k = \operatorname{softmax}(W_k) \in \mathbb{R}^{|\mathcal{V}|}$, where W_k is randomly initialized $\beta = [\beta_1; \beta_2; ..., \beta_K] \in \mathbb{R}^{K \times |\mathcal{V}|}$ is topic-word distribution
- $\widehat{h} = \theta \times \beta$ • 4. Cross-entropy loss between h and \widehat{h} .

SMU Classification: Restricted

Q & A

Yale University

School of Computing and Information Systems

Text-Attributed Graph Representation Learning: Methods, Applications, and Challenges Section 2 (45 min)

Delvin Ce Zhang¹, Menglin Yang¹, Rex Ying¹, and Hady W. Lauw² ¹Yale University, ²Singapore Management University

Tutorial Outline

- Section 1: Text-Attributed Graph and Preliminaries (30 min)
- Section 2: PLM-based Text-Attributed Graph Models (45 min)
- Section 3: TM-based Text-Attributed Graph Models (45 min)
- Section 4: Applications, Challenges, and Future Directions (45 min)
- Summary and Q&A

Section 2: PLM-based Text-Attributed Graph Models

- Section 2.1: PLMs for Static Text-Attributed Graph
- Section 2.2: PLMs for Heterogeneous Text-Attributed Graph
- Section 2.3: Textual-edge Text-Attributed Graph
- Section 2.4: Pre-training Strategy

- Static Text-Attributed Graph (TAG) : We observe the whole TAG at once.
- Existing works are split into cascaded architecture and nested architecture.

- We present GraphFormer [1] for the static scenario. Below figure is from [2].
- 1. Feature initialization.

$$\boldsymbol{H}_{i}^{1} = \text{Transformer}^{l=1}(\boldsymbol{d}_{i}), \text{ where } \boldsymbol{H}_{i}^{1} = \{\boldsymbol{h}_{i,CLS}^{1}, \boldsymbol{h}_{i,w_{1}}^{1}, \dots, \boldsymbol{h}_{i,w_{d}}^{1}\}$$

[1] Yang, J., Liu, Z., Xiao, S., Li, C., Lian, D., Agrawal, S., ... & Xie, X. (2021). Graphformers: Gnn-nested transformers for representation learning on textual graph. Advances in Neural Information Processing Systems, 34, 28798-28810.

[2] Jin, B., Zhang, W., Zhang, Y., Meng, Y., Zhang, X., Zhu, Q., & Han, J. (2023). PATTON: Language Model Pretraining on Text-Rich Networks. In 61st Annual Meeting of the Association for 43 Computational Linguistics, ACL 2023 (pp. 7005-7020). Association for Computational Linguistics (ACL).

- We present GraphFormer [1] for the static scenario. Below figure is from [2].
- 1. Feature initialization.

$$\boldsymbol{H}_{i}^{1} = \text{Transformer}^{l=1}(\boldsymbol{d}_{i}), \text{ where } \boldsymbol{H}_{i}^{1} = \{\boldsymbol{h}_{i,CLS}^{1}, \boldsymbol{h}_{i,w_{1}}^{1}, \dots, \boldsymbol{h}_{i,w_{d}}^{1}\}$$

- 2. Graph aggregation.
 - $\boldsymbol{z}_{i}^{1} = \text{GNN}\left(\boldsymbol{h}_{i,CLS}^{1}, \left\{\boldsymbol{h}_{j,CLS}^{1}\right\}_{j \in \mathcal{N}(i)}\right)$

[1] Yang, J., Liu, Z., Xiao, S., Li, C., Lian, D., Agrawal, S., ... & Xie, X. (2021). Graphformers: Gnn-nested transformers for representation learning on textual graph. Advances in Neural Information Processing Systems, 34, 28798-28810.

[2] Jin, B., Zhang, W., Zhang, Y., Meng, Y., Zhang, X., Zhu, Q., & Han, J. (2023). PATTON: Language Model Pretraining on Text-Rich Networks. In 61st Annual Meeting of the Association for 44 Computational Linguistics, ACL 2023 (pp. 7005-7020). Association for Computational Linguistics (ACL).

- We present GraphFormer [1] for the static scenario. Below figure is from [2].
- 1. Feature initialization.

$$\boldsymbol{H}_{i}^{1} = \text{Transformer}^{l=1}(\boldsymbol{d}_{i}), \text{ where } \boldsymbol{H}_{i}^{1} = \{\boldsymbol{h}_{i,CLS}^{1}, \boldsymbol{h}_{i,w_{1}}^{1}, \dots, \boldsymbol{h}_{i,w_{d}}^{1}\}$$

- 2. Graph aggregation.
 - $\mathbf{z}_{i}^{1} = \text{GNN}\left(\mathbf{h}_{i,CLS}^{1}, \left\{\mathbf{h}_{j,CLS}^{1}\right\}_{j \in \mathcal{N}(i)}\right)$
- 3. Concatenate graph embedding with tokens.

 $\widehat{H}_{i}^{1} = \text{Concat}(\mathbf{z}_{i}^{1}, \mathbf{H}_{i}^{1})$ $H_{i}^{2} = \text{Transformer}^{l=2}(\widehat{H}_{i}^{1})$

• Due to contextualization, H_i^2 preserves graph.

[2] Jin, B., Zhang, W., Zhang, Y., Meng, Y., Zhang, X., Zhu, Q., & Han, J. (2023). PATTON: Language Model Pretraining on Text-Rich Networks. In 61st Annual Meeting of the Association for 45 Computational Linguistics, ACL 2023 (pp. 7005-7020). Association for Computational Linguistics (ACL).

• 4. So far, we finish from layer 1 to 2. We repeat this process for L layers.

 $\boldsymbol{H}_{i}^{L} = \{\boldsymbol{h}_{i,CLS}^{L}, \boldsymbol{h}_{i,W_{1}}^{L}, \dots, \boldsymbol{h}_{i,W_{d}}^{L}\}$

- 4. So far, we finish from layer 1 to 2. We repeat this process for L layers.
 - $H_{i}^{L} = \{h_{i,CLS}^{L}, h_{i,W_{1}}^{L}, \dots, h_{i,W_{d}}^{L}\}$
- 5. Contrastive loss.

$$\mathcal{L} = -\log \frac{\exp(\langle \boldsymbol{h}_{i,CLS}^{L}, \boldsymbol{h}_{j,CLS}^{L} \rangle)}{\exp(\langle \boldsymbol{h}_{i,CLS}^{L}, \boldsymbol{h}_{j,CLS}^{L} \rangle) + \sum_{b \in B \setminus j} \exp(\langle \boldsymbol{h}_{i,CLS}^{L}, \boldsymbol{h}_{b,CLS}^{L} \rangle)}$$

$$\bigcup$$
Documents in a minibatch *B*

- Experiments
- 1. Datasets

	Product	DBLP	Wiki
#Item	5,643,688	4,894,081	4,818,679
#N	4.71	9.31	8.86
#Train	22,146,934	3,009,506	7,145,834
#Valid	30,000	60,000	66,167
#Test	306,742	100,000	100,000

• Experiments

- 2. Link prediction
 - One query document is provided with 1 positive neighbor and 299 negative samples.

			Product			DBLP			Wiki	
Models w/o graph	Methods	P@1	NDCG	MRR	P@1	NDCG	MRR	P@1	NDCG	MRR
	PLM	0.6563	0.7911	0.7344	0.5673	0.7484	0.6777	0.3466	0.5799	0.4712
	TNVE	0.4618	0.6204	0.5364	0.2978	0.5295	0.4163	0.1786	0.4274	0.2933
	IFTN	0.5233	0.6740	0.5982	0.3691	0.5798	0.4773	0.1838	0.4276	0.2945
	PLM+GAT	0.7540	0.8637	0.8232	0.6633	0.8204	0.7667	0.3006	0.5430	0.4270
Models with cascaded	PLM+Max	0.7570	0.8678	0.8280	0.6934	0.8386	0.7900	0.3712	0.6071	0.5022
architecture	PLM+Mean	0.7550	0.8671	0.8271	0.6896	0.8359	0.7866	0.3664	0.6037	0.4980
	PLM+Att	0.7513	0.8652	0.8246	0.6910	0.8366	0.7875	0.3709	0.6067	0.5018
	GraphFormers	0.7786	0.8793	0.8430	0.7267	0.8565	0.8133	0.3952	0.6230	0.5220

Section 2: PLM-based Text-Attributed Graph Models

- Section 2.1: PLMs for Static Text-Attributed Graph
- Section 2.2: PLMs for Heterogeneous Text-Attributed Graph
- Section 2.3: Textual-edge Text-Attributed Graph
- Section 2.4: Pre-training Strategy

- Documents are associated with meta-data, e.g., authors and venues.
 - Papers written by the same authors discuss similar research topics;
 - News articles edited by the same journalists report similar events.
- Documents + their meta-data \rightarrow heterogeneous graph.
- Challenges:
 - Previous works do not model meta-data;
 - Some meta-data, such as authors, do not have texts.
- Here we specifically present Heterformer [1].

• 1. Textless node initialization.

 $h_v = W_{\phi_v} z_v$, where z_v is randomly initialized embedding \downarrow ϕ_v is node type of v

• 1. Textless node initialization.

 $h_v = W_{\phi_v} z_v$, where z_v is randomly initialized embedding

• 2. Text-rich node initialization.

 $\boldsymbol{H}_{i}^{1} = \text{Transformer}^{l=1}(\boldsymbol{d}_{i}),$ where $\boldsymbol{H}_{i}^{1} = \{\boldsymbol{h}_{i,CLS}^{1}, \boldsymbol{h}_{i,w_{1}}^{1}, \dots, \boldsymbol{h}_{i,w_{d}}^{1}\}$

• 1. Textless node initialization.

 $h_v = W_{\phi_v} z_v$, where z_v is randomly initialized embedding

- 2. Text-rich node initialization. $H_i^1 = \text{Transformer}^{l=1}(d_i),$ where $H_i^1 = \{h_{i,CLS}^1, h_{i,W_1}^1, \dots, h_{i,W_d}^1\}$
- 3. Textless neighbor aggregation.

 $\boldsymbol{z}_{i,TL}^{1} = \text{GNN} \left(\boldsymbol{h}_{i,CLS}^{1}, \{ \boldsymbol{h}_{v}^{1} \}_{v \in \mathcal{N}_{TL}(i)} \right)$ \downarrow Textless neighbor set

• 1. Textless node initialization.

 $h_v = W_{\phi_v} z_v$, where z_v is randomly initialized embedding

- 2. Text-rich node initialization. $H_i^1 = \text{Transformer}^{l=1}(d_i),$ where $H_i^1 = \{h_{i,CLS}^1, h_{i,w_1}^1, \dots, h_{i,w_d}^1\}$
- 3. Textless neighbor aggregation. $z_{i,TL}^1 = \text{GNN}(h_{i,CLS}^1, \{h_{v}^1\}_{v \in \mathcal{N}_{TL}(i)})$
- 4. Text-rich neighbor aggregation.

$$\boldsymbol{z}_{i,TR}^{1} = \text{GNN}\left(\boldsymbol{h}_{i,CLS}^{1}, \left\{\boldsymbol{h}_{v,CLS}^{1}\right\}_{v \in \mathcal{N}_{TR}(i)}\right)$$

Text-rich neighbor set

• 1. Textless node initialization.

 $h_v = W_{\phi_v} z_v$, where z_v is randomly initialized embedding

- 2. Text-rich node initialization. $H_i^1 = \text{Transformer}^{l=1}(d_i),$ where $H_i^1 = \{h_{i,CLS}^1, h_{i,w_1}^1, \dots, h_{i,w_d}^1\}$
- 3. Textless neighbor aggregation. $z_{i,TL}^1 = \text{GNN}(h_{i,CLS}^1, \{h_{v}^1\}_{v \in \mathcal{N}_{TL}(i)})$
- 4. Text-rich neighbor aggregation. $\mathbf{z}_{i,TR}^{1} = \text{GNN}\left(\mathbf{h}_{i,CLS}^{1}, \left\{\mathbf{h}_{\nu,CLS}^{1}\right\}_{\nu \in \mathcal{N}_{TR}(i)}\right)$
- 5. Concatenate graph with token embeddings. $\widehat{H}_{i}^{1} = \text{Concat}(\mathbf{z}_{i,TR}^{1}, \mathbf{H}_{i}^{1}, \mathbf{z}_{i,RL}^{1}) \quad H_{i}^{2} = \text{Transformer}^{l=2}(\widehat{H}_{i}^{1})$

- 6. So far, we finish from layer 1 to 2. We repeat this process for L layers.
 - $\boldsymbol{H}_{i}^{L} = \{\boldsymbol{h}_{i,CLS}^{L}, \boldsymbol{h}_{i,W_{1}}^{L}, \dots, \boldsymbol{h}_{i,W_{d}}^{L}\}$
- 7. Contrastive link prediction loss.

• Experiments

• 1. Datasets

Dataset	Node	Edge
DBLP	# paper*: 3,597,191 # venue: 28,638 # author: 2,717,797	# paper-paper: 36,787,329 # venue-paper: 3,633,613 # author-paper: 10,212,497
Twitter	# tweet*: 279,694 # POI*: 36,895 # hashtag: 72,297 # user: 76,398 # mention: 24,089	<pre># tweet-POI: 279,694 # user-tweet: 195,785 # hashtag-tweet: 194,939 # mention-tweet: 50,901</pre>
Goodreads	<pre># book*:1,097,438 # shelves: 6,632 # author: 205,891 # format: 768 # publisher: 62,934 # language code: 139</pre>	 # book-book: 11,745,415 # shelves-book: 27,599,160 # author-book: 1,089,145 # format-book: 588,677 # publisher-book: 591,456 # language code-book: 485,733

• Experiments

• 2. Link prediction

-	Method	PREC	DBLP MRR	NDCG	PREC	Twitter MRR	NDCG	PREC	Goodreads MRR	NDCG
Models w/o graph	MeanSAGE BERT	0.70186 0.75685	0.79643 0.83400	0.84372 0.87262	0.64890 0.71792	$0.74501 \\ 0.78331$	0.79911 0.82653	$0.63020 \\ 0.55711$	0.74086 0.66675	0.80012 0.73945
Models w/o meta-data	BERT+MeanSAGE BERT+MAXSAGE BERT+GAT GraphFormers	0.81308 0.81932 0.81188 0.83242	0.87789 0.88250 0.87705 0.89158	0.90695 0.91051 0.90630 0.91753	0.72007 0.71978 0.72308 0.72583	0.78452 0.78451 0.78731 0.78906	0.82754 0.82762 0.83000 0.83120	0.73012 0.72803 0.73328 0.74436	0.81668 0.81639 0.81700 0.82600	$\begin{array}{c} 0.85935 \\ 0.85930 \\ 0.85931 \\ 0.86649 \end{array}$
Models with meta-data	BERT+RGCN BERT+HAN BERT+HGT BERT+SHGN GraphFormers++	0.79786 0.81359 0.81704 0.81485 0.82333	0.86327 0.87823 0.88138 0.87854 0.88557	0.89448 0.90720 0.90978 0.90736 0.91296	0.71106 0.72365 0.71532 0.72176 0.71587	0.77643 0.78804 0.78003 0.78664 0.77989	0.82093 0.83056 0.82372 0.82953 0.82359	0.74883 0.73291 0.72237 0.73623 0.75361	0.83027 0.81741 0.81118 0.81950 0.83284	$\begin{array}{c} 0.86986\\ 0.85973\\ 0.85519\\ 0.86134\\ 0.87170\end{array}$
-	Heterformer	0.84736*	0.90193*	0.92547*	0.72716*	0.79076*	0.83276*	0.76328*	0.84000*	0.87731*

• Experiments

• 3. Inductive text-rich node classification

Mathad	DB	SLP	Goodreads			
Method	PREC	NDCG	PREC	NDCG		
BERT	0.71782	0.83493	0.96373	0.91734		
BERT+MaxSAGE	0.72987	0.84266	0.97746	0.93670		
BERT+MeanSAGE	0.73058	0.84285	0.97697	0.93552		
BERT+GAT	0.71328	0.83205	0.97345	0.93035		
GraphFormers	0.73634	0.84652	0.97667	0.93512		
BERT+HAN	0.71523	0.83371	0.97365	0.93057		
BERT+HGT	0.75917	0.86049	0.97890	0.93869		
BERT+SHGN	0.71512	0.83306	0.97365	0.93099		
GraphFormers++	0.75096	0.85534	0.97984	0.94027		
Heterformer	0.76700*	0.86526*	0.98243*	0.94513*		

Section 2: PLM-based Text-Attributed Graph Models

- Section 2.1: PLMs for Static Text-Attributed Graph
- Section 2.2: PLMs for Heterogeneous Text-Attributed Graph
- Section 2.3: Textual-edge Text-Attributed Graph
- Section 2.4: Pre-training Strategy

• Documents appear on edges, instead of nodes. We present Edgeformers [1].

(a) Online user-product review graph

(b) Email communication graph

• 1. Feature initialization.

$$H_e^1 = \text{Transformer}^{l=1}(d_e)$$
, where $H_e^1 = \{h_{e,CLS}^1, h_{e,W_1}^1, \dots, h_{e,W_e}^1\}$

• 1. Feature initialization.

 $H_e^1 = \text{Transformer}^{l=1}(d_e)$, where $H_e^1 = \{h_{e,CLS}^1, h_{e,w_1}^1, \dots, h_{e,w_e}^1\}$

• 2. Concatenate graph embeddings with tokens.

 $\widehat{H}_{e}^{1} = \text{Concat}(\mathbf{z}_{i}^{1}, \mathbf{z}_{j}^{1}, \mathbf{H}_{e}^{1})$

• 1. Feature initialization.

 $H_e^1 = \text{Transformer}^{l=1}(d_e)$, where $H_e^1 = \{h_{e,CLS}^1, h_{e,w_1}^1, \dots, h_{e,w_e}^1\}$

- 2. Concatenate graph embeddings with tokens. $\widehat{H}_{e}^{1} = \text{Concat}(\mathbf{z}_{i}^{1}, \mathbf{z}_{j}^{1}, \mathbf{H}_{e}^{1})$
- 3. Transformer layer.

 $H_e^2 = \text{Transformer}^{l=2}(\widehat{H}_e^1)$

• 1. Feature initialization.

 $H_e^1 = \text{Transformer}^{l=1}(d_e)$, where $H_e^1 = \{h_{e,CLS}^1, h_{e,W_1}^1, \dots, h_{e,W_e}^1\}$

- 2. Concatenate graph embeddings with tokens.

 *Ĥ*_e¹ = Concat(z_i¹, z_j¹, *H*_e¹)
- 3. Transformer layer.

 $H_e^2 = \text{Transformer}^{l=2}(\widehat{H}_e^1)$

- 4. Repeat steps 2 and 3 for *L* layers. $H_e^L = \{h_{e,CLS}^L, h_{e,w_1}^L, \dots, h_{e,w_e}^L\}$
- 5. Edge classification with cross-entropy loss.

- 1. Local edge aggregation. $\overline{H}_{e}^{l} = \text{MultiHeadAtt}(h_{e_{1},CLS}^{l}, h_{e_{2},CLS}^{l}, h_{e_{3},CLS}^{l})$ $\widehat{H}_{e}^{l} = \text{Concat}(z_{i}^{l}, z_{j}^{l}, \overline{h}_{e}^{l}, H_{e}^{l})$ $H_{e}^{l+1} = \text{Transformer}^{l+1}(\widehat{H}_{e}^{l})$
- 2. Global edge aggregation. $\alpha_{e,v} = \operatorname{softmax}(\boldsymbol{h}_{e,CLS}^{L}\boldsymbol{W}\boldsymbol{z}_{v})$

$$\boldsymbol{h}_{\boldsymbol{\nu}} = \sum_{e \in \{e_1, e_2, e_3\}} \alpha_{e, \boldsymbol{\nu}} \boldsymbol{h}_{e, CLS}^L$$

- Experiments
- 1. Datasets

Dataset	# Node	# Edge
Amazon-Movie	173,986	1,697,533
Amazon-Apps	100,468	752,937
Goodreads-Crime	385,203	1,849,236
Goodreads-Children	192,036	734,640
StackOverflow	129,322	281,657

• Experiments

• 2. Edge classification with Edgeformer-E

		Amazor	n-Movie	Amazo	n-Apps	Goodread	Goodreads-Children		
	Model	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1
Cascaded method	TF-IDF TF-IDF+nodes	50.01 53.59	64.22 66.34	48.30 50.56	62.88 65.08	43.07 49.35	51.72 57.50	39.42 47.32	49.90 56.78
	BERT BERT+nodes	61.38 <i>63.00</i>	71.36 72.45	59.11 59.72	69.27 70.82	56.41 58.64	61.29 65.02	51.57 54.42	57.72 60.46
	Edgeformer-E	64.18	73.59	60.67	71.28	61.03	65.86	57.45	61.71

• Experiments

• 3. Link prediction with Edgeformer-N

	Amazor	n-Movie	Amazo	on-Apps	Goodreads-Crime		Goodrea	ds-Children	StackOverflow	
Model	MRR	NDCG	MRR	NDCG	MRR	NDCG	MRR	NDCG	MRR	NDCG
MF	0.2032	0.3546	0.1482	0.3052	0.1923	0.3443	0.1137	0.2716	0.1040	0.2642
MeanSAGE	0.2138	0.3657	0.1766	0.3343	0.1832	0.3368	0.1066	0.2647	0.1174	0.2768
MaxSAGE	0.2178	0.3694	0.1674	0.3258	0.1846	0.3387	0.1066	0.2647	0.1173	0.2769
GIN	0.2140	0.3648	0.1797	0.3362	0.1846	0.3374	0.1128	0.2700	0.1189	0.2778
CensNet	0.2048	0.3568	0.1894	0.3457	0.1880	0.3398	0.1157	0.2726	0.1235	0.2806
NENN	0.2565	0.4032	0.1996	0.3552	0.2173	0.3670	0.1297	0.2854	0.1257	0.2854
BERT	0.2391	0.3864	0.1790	0.3350	0.1986	0.3498	0.1274	0.2836	0.1666	0.3252
BERT+MaxSAGE	0.2780	0.4224	0.2055	0.3602	0.2193	0.3694	0.1312	0.2872	0.1681	0.3264
BERT+MeanSAGE	0.2491	0.3972	0.1983	0.3540	0.1952	0.3477	0.1223	0.2791	0.1678	0.3264
BERT+GIN	0.2573	0.4037	0.2000	0.3552	0.2007	0.3522	0.1238	0.2801	0.1708	0.3279
GraphFormers	0.2756	0.4198	0.2066	0.3607	0.2176	0.3684	0.1323	0.2887	0.1693	0.3278
BERT+CensNet	0.1919	0.3462	0.1544	0.3132	0.1437	0.3000	0.0847	0.2436	0.1173	0.2789
BERT+NENN	0.2821	0.4256	0.2127	0.3666	0.2262	0.3756	0.1365	0.2925	0.1619	0.3215
Edgeformer-N	0.2919	0.4344	0.2239	0.3771	0.2395	0.3875	0.1446	0.3000	0.1754	0.3339
$+\Delta\%$	3.5%	2.1%	5.3%	2.9%	5.9%	3.2%	- <u>5</u> .9%	2.6%	2.7%	1.8%

Cascaded models

Section 2: PLM-based Text-Attributed Graph Models

- Section 2.1: PLMs for Static Text-Attributed Graph
- Section 2.2: PLMs for Heterogeneous Text-Attributed Graph
- Section 2.3: Textual-edge Text-Attributed Graph
- Section 2.4: Pre-training Strategy
Pre-training Strategy

• Pre-training:

• Given Text-Attributed Graph (TAG) $\mathcal{G} = \{\mathcal{D}, \mathcal{E}\}$, we train the model in a self-supervised method only using textual content \mathcal{D} and graph structure \mathcal{E} .

• Fine-tuning:

• Given the pre-trained model, we further optimize its parameters with a specific downstream task, such as text classification.

• We present Patton [1] and Specter [2].

[1] Jin, B., Zhang, W., Zhang, Y., Meng, Y., Zhang, X., Zhu, Q., & Han, J. (2023). PATTON: Language Model Pretraining on Text-Rich Networks. In 61st Annual Meeting of the Association for Computational Linguistics (ACL).

[2] Cohan, A., Feldman, S., Beltagy, I., Downey, D., & Weld, D. S. (2020). SPECTER: Document-level representation learning using citation-informed transformers. In 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020 (pp. 2270-2282). Association for Computational Linguistics (ACL).

- Patton is a pre-training model for GraphFormer. Below is a quick review.
- 1. Feature initialization.

$$\boldsymbol{H}_{i}^{1} = \text{Transformer}^{l=1}(\boldsymbol{d}_{i}), \text{ where } \boldsymbol{H}_{i}^{1} = \{\boldsymbol{h}_{i,CLS}^{1}, \boldsymbol{h}_{i,w_{1}}^{1}, \dots, \boldsymbol{h}_{i,w_{d}}^{1}\}$$

• 2. Graph aggregation.

 $\boldsymbol{z}_{i}^{1} = \text{GNN}\left(\boldsymbol{h}_{i,CLS}^{1}, \left\{\boldsymbol{h}_{j,CLS}^{1}\right\}_{j \in \mathcal{N}(i)}\right)$

• 3. Concatenate graph embedding with tokens.

 $\widehat{H}_{i}^{1} = \text{Concat}(\mathbf{z}_{i}^{1}, \mathbf{H}_{i}^{1}) \qquad \mathbf{H}_{i}^{2} = \text{Transformer}^{l=2}(\widehat{H}_{i}^{1})$

• Due to contextualization, H_i^2 preserves graph.

- After we obtain document representations, pre-training loss has two parts.
 - $H_{i}^{L} = \{h_{i,CLS}^{L}, h_{i,W_{1}}^{L}, \dots, h_{i,W_{d}}^{L}\}$
- Part 1: Masked Language Modeling (MLM). $p_{w_j} = \operatorname{softmax}(Wh_{i,w_j}^L) \quad \mathcal{L}_{MLM} = -\sum_{w_j \in Masked} \log p_{w_j}$ Parameter for MLM

• After we obtain document representations, pre-training loss has two parts.

- $H_{i}^{L} = \{h_{i,CLS}^{L}, h_{i,W_{1}}^{L}, \dots, h_{i,W_{d}}^{L}\}$
- Part 1: Masked Language Modeling (MLM). $p_{w_j} = \operatorname{softmax}(Wh_{i,w_j}^L)$ $\mathcal{L}_{MLM} = -\sum_{w_j \in Masked} \log p_{w_j}$ • Part 2: Masked Node Prediction (MNP). $\mathcal{L}_{MNP} = -\log \frac{\exp(\langle h_{i,CLS}^L, h_{j,CLS}^L \rangle)}{\exp(\langle h_{i,CLS}^L, h_{j,CLS}^L \rangle) + \sum_{b \in B \setminus j} \exp(\langle h_{i,CLS}^L, h_{b,CLS}^L \rangle)}$ Documents in a minibatch *B*

- After we obtain document representations, pre-training loss has two parts.
 - $H_{i}^{L} = \{ h_{i,CLS}^{L}, h_{i,W_{1}}^{L}, \dots, h_{i,W_{d}}^{L} \}$
- Part 1: Masked Language Modeling (MLM). $p_{w_{j}} = \operatorname{softmax}(Wh_{i,w_{j}}^{L}) \quad \mathcal{L}_{MLM} = -\sum_{w_{j} \in Masked} \log p_{w_{j}}$ • Part 2: Masked Node Prediction (MNP). $\exp(\langle h_{i,CLS}^{L}, h_{j,CLS}^{L} \rangle) \quad \exp(\langle h_{i,CLS}^{L}, h_{b,CLS}^{L} \rangle)$
 - Final pre-training loss.

 $\mathcal{L} = \mathcal{L}_{MLM} + \mathcal{L}_{MNP}$

• 1. Fine-tune with text classification.

 $\widehat{\boldsymbol{p}} = \operatorname{softmax} \left(f_{\text{MLP}} (\boldsymbol{h}_{i,CLS}^L) \right)$ $\mathcal{L}_{\text{TextClf}} = \operatorname{CrossEntropy}(\widehat{\boldsymbol{p}}, \boldsymbol{p})$

• 1. Fine-tune with text classification.

 $\widehat{\boldsymbol{p}} = \operatorname{softmax} \left(f_{\text{MLP}} (\boldsymbol{h}_{i,CLS}^{L}) \right)$ $\mathcal{L}_{\text{TextClf}} = \operatorname{CrossEntropy} (\widehat{\boldsymbol{p}}, \boldsymbol{p})$

• 2. Fine-tune with link prediction.

 $\mathcal{L}_{\text{MNP}} = -\log \frac{\exp(\langle \boldsymbol{h}_{i,CLS}^{L}, \boldsymbol{h}_{j,CLS}^{L} \rangle)}{\exp(\langle \boldsymbol{h}_{i,CLS}^{L}, \boldsymbol{h}_{j,CLS}^{L} \rangle) + \sum_{b \in B \setminus j} \exp(\langle \boldsymbol{h}_{i,CLS}^{L}, \boldsymbol{h}_{b,CLS}^{L} \rangle)}$

• Experiments

• 1. Datasets

Dataset	#Nodes	#Edges	#Fine-Classes	#Coarse-Classes
Mathematics	490,551	2,150,584	14,271	18
Geology	431,834	1,753,762	7,883	17
Economics	178,670	1,042,253	5,205	40
Clothes	889,225	7,876,427	2,771	9
Sports	314,448	3,461,379	3,034	16

• Experiments

• 2. Document classification

	Mathema Mathema		natics Geology		Economics		Clothes		Sports		
	Method	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1
	BERT	$18.14_{0.07}$	$22.04_{0.32}$	$21.97_{0.87}$	$29.63_{0.36}$	$14.17_{0.08}$	$19.77_{0.12}$	$45.10_{1.47}$	$68.54_{2.25}$	$31.88_{0.23}$	$34.58_{0.56}$
	GraphFormers	$18.69_{0.52}$	$23.24_{0.46}$	$22.64_{0.92}$	$31.02_{1.16}$	$13.68_{1.03}$	$19.00_{1.44}$	$46.27_{1.92}$	$68.97_{2.46}$	$43.77_{0.63}$	$50.47_{0.78}$
w/o protrain	SciBERT	$23.50_{0.64}$	$23.10_{2.23}$	$29.49_{1.25}$	$37.82_{1.89}$	$15.91_{0.48}$	$21.32_{0.66}$	-	-	-	-
w/o pretrain	SPECTER	$23.37_{0.07}$	$29.83_{0.96}$	$30.40_{0.48}$	$38.54_{0.77}$	$16.16_{0.17}$	$19.84_{0.47}$	-	-	-	-
on TAG	SimCSE (unsup)	$20.12_{0.08}$	$26.11_{0.39}$	$38.78_{0.19}$	$38.55_{0.17}$	$14.54_{0.26}$	$19.07_{0.43}$	$42.70_{2.32}$	$58.72_{0.34}$	$41.91_{0.85}$	$59.19_{0.55}$
	SimCSE (sup)	$20.39_{0.07}$	$25.56_{0.00}$	$25.66_{0.28}$	$33.89_{0.40}$	$15.03_{0.53}$	$18.64_{1.32}$	$52.82_{0.87}$	$75.54_{0.98}$	$46.69_{0.10}$	$59.19_{0.55}$
	LinkBERT	$15.78_{0.91}$	$19.75_{1.19}$	$24.08_{0.58}$	$31.32_{0.04}$	$12.71_{0.12}$	$16.39_{0.22}$	$44.94_{2.52}$	$65.33_{4.34}$	$35.60_{0.33}$	$38.30_{0.09}$
pretrain only	BERT.MLM	$23.44_{0.39}$	$31.75_{0.58}$	$36.31_{0.36}$	$48.04_{0.69}$	$16.60_{0.21}$	$22.71_{1.16}$	$46.98_{0.84}$	$68.00_{0.84}$	$62.21_{0.13}$	$75.43_{0.74}$
with MLM	SciBERT.MLM	$23.34_{0.42}$	$30.11_{0.97}$	$36.94_{0.28}$	$46.54_{0.40}$	$16.28_{0.38}$	$21.41_{0.81}$	-	-	-	-
	SimCSE.in-domain	$25.15_{0.09}$	$29.85_{0.20}$	$38.91_{0.08}$	$48.93_{0.14}$	$18.08_{0.22}$	$23.79_{0.44}$	$57.03_{0.20}$	$80.16_{0.31}$	$65.57_{0.35}$	$75.22_{0.18}$
	PATTON	$27.58_{0.03}$	32.82 _{0.01}	$39.35_{0.06}$	$48.19_{0.15}$	$19.32_{0.05}$	$25.12_{0.05}$	$60.14_{0.28}$	84.88 0.09	67.57 _{0.08}	78.60 _{0.15}
	SciPATTON	$27.35_{0.04}$	$31.70_{0.01}$	$39.65_{0.10}$	48.93 _{0.06}	$19.91_{0.08}$	$25.68_{0.32}$	-	-	-	-
Ablation	w/o NMLM	$25.91_{0.45}$	$27.79_{2.07}$	$\overline{38.78}_{0.19}$	$48.48_{0.17}$	$18.86_{0.23}$	$24.25_{0.26}$	$56.68_{0.24}$	$80.27_{0.17}$	$65.83_{0.28}$	$76.24_{0.54}$
AUIdLIUII	w/o MNP	$24.79_{0.65}$	$29.44_{1.50}$	$38.00_{0.73}$	$47.82_{1.06}$	$18.69_{0.59}$	$25.63_{1.44}$	$47.35_{1.20}$	$68.50_{2.60}$	$64.23_{1.53}$	$76.03_{1.67}$

Pre-training Strategy: Specter

• 1. After obtaining document representations, we have pre-training loss.

$$\mathcal{L} = \max\{\operatorname{dist}(\boldsymbol{h}_{Q,CLS}, \boldsymbol{h}_{+,CLS}) - \operatorname{dist}(\boldsymbol{h}_{Q,CLS}, \boldsymbol{h}_{-,CLS}) + m, 0\}$$
$$\operatorname{dist}(\boldsymbol{h}_{Q,CLS}, \boldsymbol{h}_{+,CLS}) = \left| \left| \boldsymbol{h}_{Q,CLS} - \boldsymbol{h}_{+,CLS} \right| \right|_{2}$$

Section 2: PLM-based Text-Attributed Graph Models

- Section 2.1: PLMs for Static Text-Attributed Graph
- Section 2.2: PLMs for Heterogeneous Text-Attributed Graph
- Section 2.3: Textual-edge Text-Attributed Graph
- Section 2.4: Pre-training Strategy

SMU Classification: Restricted

Q & A

Yale University

School of Computing and Information Systems

Text-Attributed Graph Representation Learning: Methods, Applications, and Challenges Section 3 (45 min)

Delvin Ce Zhang¹, Menglin Yang¹, Rex Ying¹, and Hady W. Lauw² ¹Yale University, ²Singapore Management University

Tutorial Outline

- Section 1: Text-Attributed Graph and Preliminaries (30 min)
- Section 2: PLM-based Text-Attributed Graph Models (45 min)
- Section 3: TM-based Text-Attributed Graph Models (45 min)
- Section 4: Applications, Challenges, and Future Directions (45 min)
- Summary and Q&A

Section 3: TM-based Text-Attributed Graph Models

- Section 3.1: TMs for Static Text-Attributed Graph
- Section 3.2: TMs for Heterogeneous Text-Attributed Graph
- Section 3.3: Hierarchical Text-Attributed Graph

TMs for Static Text-Attributed Graph

- Static Text-Attributed Graph (TAG) : We observe the whole TAG at once.
- We present Adjacent-Encoder [1] and DBN [2].

(a) Auto-Encoder

[1] Zhang, C., & Lauw, H. W. (2020, April). Topic modeling on document networks with adjacent-encoder. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 04, pp. 6737-6745).

[2] Zhang, D. C., & Lauw, H. W. (2023). Topic Modeling on Document Networks with Dirichlet Optimal Transport Barycenter. IEEE Transactions on Knowledge and Data Engineering.

TMs for Static Text-Attributed Graph

- Static Text-Attributed Graph (TAG) : We observe the whole TAG at once.
- We present Adjacent-Encoder [1] and DBN [2].

(a) Auto-Encoder

[1] Zhang, C., & Lauw, H. W. (2020, April). Topic modeling on document networks with adjacent-encoder. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 04, pp. 6737-6745).

[2] Zhang, D. C., & Lauw, H. W. (2023). Topic Modeling on Document Networks with Dirichlet Optimal Transport Barycenter. IEEE Transactions on Knowledge and Data Engineering.

• 1. Encoding. Can be a MLP, GNN, or PLM.

- 1. Encoding. Can be a MLP, GNN, or PLM.
 - $h_i = \tanh(Wd_i + b)$
- 2. Neighbor attention.

$$\hat{\alpha}_{ij} = \boldsymbol{h}_i^{\mathsf{T}} \boldsymbol{h}_j \qquad \alpha_{ij} = \frac{\exp(\hat{\alpha}_{ij})}{\sum_{j' \in \mathcal{N}(i)} \exp(\hat{\alpha}_{ij'})}$$

• 1. Encoding. Can be a MLP, GNN, or PLM.

 $h_i = \tanh(Wd_i + b)$

• 2. Neighbor attention.

$$\hat{\alpha}_{ij} = \boldsymbol{h}_i^{\mathsf{T}} \boldsymbol{h}_j \qquad \alpha_{ij} = \frac{\exp(\hat{\alpha}_{ij})}{\sum_{j' \in \mathcal{N}(i)} \exp(\hat{\alpha}_{ij'})}$$

• 3. Neighbor aggregation.

$$\widetilde{\boldsymbol{h}}_i = \sum_{j \in \mathcal{N}(i)} \alpha_{ij} \boldsymbol{h}_j$$

• 1. Encoding. Can be a MLP, GNN, or PLM.

 $h_i = \tanh(Wd_i + b)$

• 2. Neighbor attention.

$$\hat{\alpha}_{ij} = \boldsymbol{h}_i^{\mathsf{T}} \boldsymbol{h}_j \qquad \alpha_{ij} = \frac{\exp(\hat{\alpha}_{ij})}{\sum_{j' \in \mathcal{N}(i)} \exp(\hat{\alpha}_{ij'})}$$

• 3. Neighbor aggregation.

$$\widetilde{\boldsymbol{h}}_i = \sum_{j \in \mathcal{N}(i)} \alpha_{ij} \boldsymbol{h}_j$$

• 4. Neighbor reconstruction.

$$\widehat{\boldsymbol{d}}_{i} = \operatorname{sigmoid}(\boldsymbol{W}^{\mathsf{T}}\widetilde{\boldsymbol{h}}_{i} + \boldsymbol{c})$$

$$l(\boldsymbol{d}_{j}, \widehat{\boldsymbol{d}}_{i}) = -\sum_{w \in \mathcal{V}} [d_{j,w} \log(\widehat{d}_{i,w}) + (1 - d_{j,w}) \log(1 - \widehat{d}_{i,w})]$$
Neighbor document

- Experiments
- 1. Datasets

Name	#classes	#documents	#edges	vocabulary
DS	9	570	1336	3085
HA	6	223	515	2073
ML	7	1980	5748	4431
PL	9	1553	4851	4105

• Experiments

• 2. Document classification

lassillation					
	Model	Document Classification			tion
		DS	HA	ML	PL
	Adjacent-Encoder	0.739	0.842	0.864	0.772
	AE	0.558	0.688	0.739	0.616
	DAE	0.656	0.799	0.790	0.694
	CAE	0.558	0.685	0.741	0.620
Models w/o graph	VAE	0.652	0.789	0.796	0.679
	KSAE	0.537	0.672	0.710	0.581
	KATE	0.628	0.808	0.762	0.651
	ProdLDA	0.637	0.780	0.764	0.631
	RTM	0.543	0.637	0.663	0.574
Models with graph	PLANE	0.690	0.799	0.750	0.648
	NRTM	0.591	0.816	0.549	0.503
	VGAE	0.671	0.827	0.807	0.718

- Experiments
- 3. Topic coherence

	Topic	Adjacent-Encoder
MDP	1	maze, markov, mdp, observable, minute, intractable, severe, markovian, pomdp, analog
KNN	2	move, 0-1, image, nearest, promoter, neighbor, grid, k-nearest, analogy, sketch
RL	3	reward, influence, recurrent, credit, exploratory, max, reinforcement, net, reactive, policy
Markov chain	4	inference, hmm, graphical, practitioner, translation, defense, methodological, causal, probable, assist
Neural network	5	pair, net, coordination, backpropagation, stronger, broad, network, classic, pendulum, multiclass

• Experiments

• 3. Topic coherence

$$PMI = \log \frac{p(w_i, w_j)}{p(w_i)p(w_j)} \xrightarrow{\text{Total number of } co-occurrences}$$

Number of occurrence of each word w_i

If two words w_i and w_j discuss the same topic, they should have high co-occurrence $p(w_i, w_j)$

Model	PMI						
	DS	HA	ML	PL			
Adjacent-Encoder	2.360	2.054	2.180	2.499			
AE	0.294	0.446	0.665	0.969			
DAE	1.170	1.125	1.203	1.553			
CAE	0.348	0.558	0.526	0.684			
VAE	0.685	0.793	1.831	1.132			
KSAE	0.547	0.285	0.770	0.759			
KATE	1.312	1.755	1.619	2.003			
ProdLDA	1.638	1.315	1.837	2.088			
RTM	1.279	1.678	1.199	1.615			
PLANE	1.585	1.847	1.756	2.099			
NRTM	1.533	2.041	1.328	1.632			

TMs for Static Text-Attributed Graph

- Static Text-Attributed Graph (TAG) : We observe the whole TAG at once.
- We present Adjacent-Encoder [1] and DBN [2].

[1] Zhang, C., & Lauw, H. W. (2020, April). Topic modeling on document networks with adjacent-encoder. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 04, pp. 6737-6745).

[2] Zhang, D. C., & Lauw, H. W. (2023). Topic Modeling on Document Networks with Dirichlet Optimal Transport Barycenter. IEEE Transactions on Knowledge and Data Engineering.

TMs for Static Text-Attributed Graph: DBN

- The difference between Adjacent-Encoder and DBN is their decoders.
- Adjacent-Encoder uses MLP, while DBN uses Optimal Transport (OT).

$$\min \sum_{j \in \mathcal{N}(i)} \alpha_{ij} d_{OT}(\widetilde{\boldsymbol{h}}_i, \boldsymbol{d}_j)$$

Optimal Transport distance

TMs for Static Text-Attributed Graph: DBN

- The difference between Adjacent-Encoder and DBN is their decoders.
- Adjacent-Encoder uses MLP, while DBN uses Optimal Transport (OT).
- OT measures the distance between two probability distributions.

TMs for Static Text-Attributed Graph: DBN

- The difference between Adjacent-Encoder and DBN is their decoders.
- Adjacent-Encoder uses MLP, while DBN uses Optimal Transport (OT).
- OT measures the distance between two probability distributions.

- Experiments
- 1. Datasets

Name	#Documents	#Links	Vocabulary	#Labels	#Words/doc
DS	1,703	3,234	3,134	9	58.0
ML	3,087	8,573	3,040	7	64.2
PL	2,597	7,754	3,106	9	64.0
Aminer	42,564	40,269	4,094	10	6.5
Web	445,657	565,502	10,015	N.A.	79.8

• Experiments

• 2. Document classification

	Modal	Micro F1 score				
	Iviodei	DS	ML	PL	Aminer	
	ProdLDA	51.4 ± 1.1	67.0 ± 0.6	51.8 ± 0.6	40.5 ± 0.0	
	DVAE	54.7 ± 2.2	$68.9 {\pm} 0.6$	55.7 ± 1.3	66.1 ± 0.5	
Madalaw/a graph	ETM	42.2 ± 2.4	53.9 ± 1.8	$45.0{\pm}2.1$	53.2 ± 0.7	
wodels w/o graph	WLDA	34.0 ± 3.6	32.4 ± 1.1	30.5 ± 3.1	47.8 ± 2.1	
	NSTM	42.5 ± 1.8	46.3 ± 1.8	42.0 ± 1.6	48.4 ± 0.3	
	GTM	39.1±1.6	45.9 ± 1.4	40.8 ± 1.6	65.2 ± 0.2	
	RTM	50.1 ± 2.3	$63.7 {\pm} 0.9$	52.3 ± 0.7	53.0±0.7	
	NRTM	38.2 ± 1.2	45.5 ± 1.2	39.2 ± 1.5	47.7 ± 3.9	
Optimal transport is better	Adjacent-Encoder	58.8 ± 1.2	$72.8 {\pm} 0.6$	60.0 ± 1.7	59.5 ± 0.2	
	LANTM	56.8 ± 2.4	71.8 ± 1.0	62.6 ± 1.3	N.A.	
	GTNN	52.9 ± 1.4	68.6 ± 1.1	59.5 ± 2.3	65.5 ± 0.4	
Models with graph	GRTM	56.5 ± 1.9	51.7 ± 2.3	45.2 ± 1.0	70.7 ± 0.2	
5 1	GNCTM	63.7 ± 1.4	77.8 ± 1.1	65.5 ± 3.8	$\overline{69.3 \pm 1.2}$	
	NetDTM	$\overline{62.3 \pm 1.0}$	74.8 ± 1.0	$\overline{63.0 \pm 1.1}$	68.1 ± 0.1	
	VGATM	63.6 ± 2.1	74.8 ± 1.3	64.3 ± 0.9	57.2 ± 0.7	
	VGAE	39.8±2.0	56.6 ± 1.7	47.6 ± 3.4	64.7 ± 0.5	
	PGCL	62.9±1.2	74.9±1.2	64.7±1.1	69.7±0.4	
	DBN	66.2±1.4	78.4 ± 0.8	67.3±0.5	71.2 ± 0.4	

103

- Experiments
- 2. Topic coherence

Model		Topic Coherence NPMI						
Model	DS	ML	PL	Aminer	Web			
ProdLDA	10.5 ± 0.3	10.9 ± 0.7	12.1 ± 0.7	8.9 ± 0.0	21.2 ± 0.2			
DVAE	15.5 ± 0.2	14.7 ± 0.1	15.0 ± 0.1	13.7 ± 0.1	17.6 ± 0.2			
ETM	7.3 ± 0.2	7.1 ± 0.2	8.7 ± 0.1	5.4 ± 0.3	16.4 ± 0.6			
WLDA	8.7 ± 0.3	9.8 ± 0.3	11.7 ± 0.4	14.0 ± 1.6	23.9 ± 0.8			
NSTM	19.0 ± 1.0	17.2 ± 0.7	19.2 ± 0.7	$24.0 {\pm} 0.3$	27.9 ± 0.5			
RTM	7.6 ± 0.3	7.1 ± 0.3	9.3 ± 0.2	4.7 ± 0.3	20.9 ± 0.4			
NRTM	8.2 ± 0.5	9.4 ± 0.1	10.9 ± 0.5	6.1 ± 0.8	26.1 ± 0.3			
Adjacent-Encoder	12.0 ± 0.2	9.9 ± 0.9	11.3 ± 0.9	3.5 ± 0.5	15.2 ± 0.1			
LANTM	6.4 ± 0.5	5.4 ± 0.3	7.2 ± 0.8	N.A.	N.A.			
GTNN	9.9±1.5	7.2 ± 0.6	5.8 ± 0.6	7.6 ± 0.6	7.7±1.7			
DBN	22.7±0.4	21.5±0.6	20.9±0.5	23.6±0.4	28.5 ± 0.2			

Section 3: TM-based Text-Attributed Graph Models

- Section 3.1: TMs for Static Text-Attributed Graph
- Section 3.2: TMs for Heterogeneous Text-Attributed Graph
- Section 3.3: Hierarchical Text-Attributed Graph

TMs for Heterogeneous Text-Attributed Graph

- Documents have authors and publication venues.
 - Papers written by the same authors discuss similar research topics;
 - News articles edited by the same journalists report similar events.

TMs for Heterogeneous Text-Attributed Graph

- Documents have authors and publication venues.
 - Papers written by the same authors discuss similar research topics;
 - News articles edited by the same journalists report similar events.
- Challenges
 - Existing works for text-attributed graph ignore authorship and venues.
- We present VGATM [1] in this section.

TMs for Heterogeneous Text-Attributed Graph

- Given a corpus $\mathcal{C} = \{\mathcal{D}, \mathcal{A}, \mathcal{V}\}$, we construct a graph.
- Semantic word layer

 $S_{sem} = \cos(g(w_i), g(w_j))$

Pre-trained word embedding of word w_i

• For each w_i , its top-5 scores with w_i are neighbors.

- Given a corpus $C = \{D, A, V\}$, we construct a graph.
- Semantic word layer

 $S_{sem} = \cos(g(w_i), g(w_j))$

Syntactic word layer

 $S_{syn} = \frac{N_{syn}(w_i, w_j)}{N_{co-occur}(w_i, w_j)} \xleftarrow{\text{Number of times that}}_{w_i \text{ and } w_j \text{ have syntactic relation}}$ $\overrightarrow{N_{co-occur}(w_i, w_j)}$ $\overrightarrow{\text{Total number of co-occurrences}}$

Text

graph

with

4 layers

Total number of

co-occurrences

- Given a corpus $\mathcal{C} = \{\mathcal{D}, \mathcal{A}, \mathcal{V}\}$, we construct a graph.
- Semantic word layer

 $S_{sem} = \cos(g(w_i), g(w_j))$

Syntactic word layer

$$S_{syn} = \frac{N_{syn}(w_i, w_j)}{N_{co-occur}(w_i, w_j)}$$

• Contextual word layer

L.

$$S_{ctx}(w_i, w_j) = \log \frac{p(w_i, w_j)}{p(w_i)p(w_j)}$$

Number of occurrence of each word w_i

- 1. Graph Convolutional Encoder
- 2. Graph Decoder

- Intra-layer embedding propagation
- Linear transformation.

$$\tilde{\mathbf{z}}_i^{(l)} = \mathbf{W}_o^{(l)} \mathbf{z}_i^{(l-1)}$$

- Intra-layer embedding propagation
- Linear transformation.

 $\tilde{\mathbf{z}}_i^{(l)} = \mathbf{W}_o^{(l)} \mathbf{z}_i^{(l-1)}$

• Intra-layer neighbor attention.

$$\alpha_{ij} = \operatorname{softmax}\left(\operatorname{LeakyReLU}(\mathbf{b}_{o}^{(l)\top}[\tilde{\mathbf{z}}_{i}^{(l)}||\tilde{\mathbf{z}}_{j}^{(l)}])\right), \quad j \in \mathcal{N}_{o}(i)$$

$$2K$$
 \times $2K$

- Intra-layer embedding propagation
- Linear transformation.

 $\tilde{\mathbf{z}}_i^{(l)} = \mathbf{W}_o^{(l)} \mathbf{z}_i^{(l-1)}$

Intra-layer neighbor attention.

 $\alpha_{ij} = \operatorname{softmax}\left(\operatorname{LeakyReLU}(\mathbf{b}_o^{(l)\top}[\tilde{\mathbf{z}}_i^{(l)}||\tilde{\mathbf{z}}_j^{(l)}])\right), \quad j \in \mathcal{N}_o(i)$

• Intra-layer embedding propagation.

$$\mathbf{z}_{i}^{(l)} = \tanh\left(\frac{1}{2}(\tilde{\mathbf{z}}_{i}^{(l)} + \sum_{j \in \mathcal{N}_{o}(i)} \alpha_{ij}\tilde{\mathbf{z}}_{j}^{(l)})\right)$$

- Intra-layer embedding propagation
- Linear transformation.

 $\tilde{\mathbf{z}}_i^{(l)} = \mathbf{W}_o^{(l)} \mathbf{z}_i^{(l-1)}$

Intra-layer neighbor attention.

 $\alpha_{ij} = \operatorname{softmax}\left(\operatorname{LeakyReLU}(\mathbf{b}_{o}^{(l)\top}[\tilde{\mathbf{z}}_{i}^{(l)}||\tilde{\mathbf{z}}_{j}^{(l)}])\right), \quad j \in \mathcal{N}_{o}(i)$

• Intra-layer embedding propagation.

$$\mathbf{z}_{i}^{(l)} = \tanh\left(\frac{1}{2}(\tilde{\mathbf{z}}_{i}^{(l)} + \sum_{j \in \mathcal{N}_{o}(i)} \alpha_{ij}\tilde{\mathbf{z}}_{j}^{(l)})\right)$$

• Repeat above process for (L-1) times.

- Cross-layer embedding propagation
- Cross-word-layer mean pooling. $\mathbf{z}_{w}^{(L-1)} = \text{mean}(\mathbf{z}_{w,ctx}^{(L-1)}, \mathbf{z}_{w,syn}^{(L-1)}, \mathbf{z}_{w,sem}^{(L-1)})$

- Cross-layer embedding propagation
- Cross-word-layer mean pooling. $\mathbf{z}_{w}^{(L-1)} = \text{mean}(\mathbf{z}_{w,ctx}^{(L-1)}, \mathbf{z}_{w,syn}^{(L-1)}, \mathbf{z}_{w,sem}^{(L-1)})$
- Cross-layer embedding propagation. $1 \quad (I) \quad z(I) = z(I) \quad z(I) = z(I) \quad z(I) = z($

$$\boldsymbol{\mu}_{d} = (1 - \eta) \times \frac{1}{2} (\tilde{\mathbf{z}}_{d}^{(L)} + \tilde{\mathbf{h}}_{d}^{(L)}) + \eta \times \operatorname{mean}(\tilde{\mathbf{h}}_{w}^{(L)}, \tilde{\mathbf{h}}_{a}^{(L)}, \tilde{\mathbf{h}}_{v}^{(L)})$$

- 1. Graph Convolutional Encoder
- 2. Graph Decoder

• Negative sampling decoder.

$$\sum_{w:d_{w}=1} [\log \phi(\mathbf{z}_{d}^{\top} \mathbf{z}_{w}) + \sum_{m=1}^{M} \mathbb{E}_{w' \sim p_{n}(w)} \log \phi(-\mathbf{z}_{d}^{\top} \mathbf{z}_{w'})]$$

inner product
negative sampling

- Experiments
- 1. Datasets

Name	#Documents	#Authors	#Venues	#Doc-Doc Edges	Vocabulary	#Labels
ML	2,947	2,814	N.A.	8,146	5,814	7
PL	2,449	2,778	N.A.	7,274	5,066	9
COVID	1,500	880	169	5,706	5,083	5
HEP-TH	20,151	10,432	343	234,193	5,001	N.A.
Aminer	114,741	143,534	50	265,345	10,018	10
Web	445,657	36,405	N.A.	565,502	10,015	N.A.

• Experiments

• 2. Document classification

	Model	ML	PL	COVID	Aminer
	ProdLDA	69.3 ± 0.7	53.1 ± 2.5	73.9 ± 1.6	64.0±0.2
	WLDA	31.8 ± 3.5	33.2 ± 1.8	65.6 ± 2.5	65.5 ± 0.2
Models w/o authors or venues	NSTM	45.2 ± 2.6	41.3 ± 3.2	69.0 ± 2.1	44.6 ± 0.3
	DVAE	70.8 ± 1.3	58.7 ± 1.5	77.8 ± 2.1	67.4±0.3
	ATM	52.0 ± 1.3	43.8 ± 3.0	72.4 ± 1.7	64.1±0.8
	RTM	61.6 ± 2.4	53.3 ± 1.4	70.5 ± 3.2	58.8 ± 0.5
Models with authors or venues	Adjacent-Encoder	80.5 ± 0.6	72.2 ± 0.9	83.7±1.0	49.6 ± 0.3
	LANTM	73.5 ± 1.6	61.8 ± 0.9	78.2±1.6	N.A.
	VGAE	67.7±1.9	55.0 ± 2.3	56.4 ± 4.6	63.6±0.6
	VGATM	81.5±0.4	73.7 ± 0.5	83.2±1.1	98.0±0.1

- Experiments
- 3. Topic coherence

Model	Topic Coherence NPMI						
Model	ML	PL	COVID	HEP-TH	Aminer	Web	
ProdLDA	10.0 ± 0.7	9.4 ± 0.5	12.0 ± 0.7	10.3 ± 0.6	9.3±0.5	21.2 ± 0.2	
WLDA	9.7 ± 0.2	11.6 ± 0.1	12.5 ± 0.5	13.7 ± 0.4	17.9 ± 0.5	$23.9{\pm}0.8$	
DVAE	14.7 ± 0.0	15.2 ± 0.1	15.8 ± 0.1	14.8 ± 0.1	15.5 ± 0.1	17.6 ± 0.2	
ATM	10.2 ± 0.4	12.0 ± 0.5	9.8 ± 0.2	10.2 ± 0.3	15.0 ± 0.2	23.2 ± 0.7	
RTM	7.3±0.2	8.9±0.5	16.2 ± 0.5	6.6±0.3	10.8 ± 0.3	20.9 ± 0.4	
Adjacent-Encoder	12.4 ± 0.9	12.5 ± 0.7	13.8 ± 0.4	13.4 ± 0.4	11.4 ± 0.2	15.2 ± 0.1	
LANTM	9.9 ± 1.2	9.8 ± 0.7	8.6 ± 0.3	10.4 ± 1.5	N.A.	N.A.	
TVGAE	3.3±0.5	3.8 ± 0.5	5.2 ± 0.5	N.A.	2.6±0.3	N.A.	
VGATM	13.6±1.1	20.5±1.0	19.4±1.8	19.0±0.0	21.7±1.1	23.7 ± 1.7	

Section 3: TM-based Text-Attributed Graph Models

- Section 3.1: TMs for Static Text-Attributed Graph
- Section 3.2: TMs for Heterogeneous Text-Attributed Graph
- Section 3.3: Hierarchical Text-Attributed Graph

• Hierarchical topics ${\cal D}$

- Some articles report global COVID situation, while others focus on specific event.
- \rightarrow Text hierarchy \mathcal{D}

• Hierarchical graph ${\cal E}$

- A breaking news article is traced by following articles reporting subsequent events.
- \rightarrow Graph hierarchy \mathcal{E}

• We present HGTM [1] in this section, a hyperbolic GNN-based topic model.

• We present HGTM [1] in this section, a hyperbolic GNN-based topic model.

[1] Zhang, D. C., Ying, R., & Lauw, H. W. (2023, August). Hyperbolic graph topic modeling network with continuously updated topic tree. In Proceedings of the 29th ACM SIGKDD 1 Conference on Knowledge Discovery and Data Mining (pp. 3206-3216).

- Hyperbolic Graph Encoder (for graph hierarchy \mathcal{E})
- 1. Given a Text-Attributed Graph G = {D, E}, we construct a two-layer graph for documents and words.

- Hyperbolic Graph Encoder (for graph hierarchy \mathcal{E})
- 2. Intra-layer encoding
 - A. Hyperbolic linear transformation

 $\tilde{\mathbf{z}}_d^{\prime(l)} = \exp_{\mathbf{0}}^c(\mathbf{W}^{(l)}\log_{\mathbf{0}}^c(\mathbf{z}_d^{(l-1)}))$

- B. Hyperbolic neighbor attention $a_{ij} = \operatorname{softmax} \left(\sigma \left(\boldsymbol{\beta}^{(l) \top} [\log_{\mathbf{0}}^{c} (\tilde{\mathbf{z}}_{d_i}^{(l)}) || \log_{\mathbf{0}}^{c} (\tilde{\mathbf{z}}_{d_j}^{(l)})] \right) \right) \text{ where } d_j \in \mathcal{N}(i)$
- C. Hyperbolic aggregation

$$\mathbf{z}_{d_i}^{(l)} = f_{\text{act}}^{c,c'} \left(\exp_{\mathbf{0}}^c \left(\frac{1}{2} \left(\log_{\mathbf{0}}^c (\tilde{\mathbf{z}}_{d_i}^{(l)}) + \sum_{d_j \in \mathcal{N}(i)} a_{ij} \log_{\mathbf{0}}^c (\tilde{\mathbf{z}}_{d_j}^{(l)}) \right) \right) \right)$$

• Summarizing above three steps, we have

$$\mathbf{Z_{intra}} = HGNN(d, N_{intra}(d))$$

- Hyperbolic Graph Encoder (for graph hierarchy \mathcal{E})
- 3. Cross-layer encoding

 $\mathbf{z_{cross}} = HGNN(d, N_{cross}(d))$

• 4. Hyperbolic mean pooling

$$z_d = \exp\left(\frac{1}{2} \times (\log(\mathbf{z_{intra}}) + \log(\mathbf{z_{cross}}))\right)$$

- Tree-Structured Decoder (for text hierarchy \mathcal{D})
- 1. Initialize a latent topic tree

- Tree-Structured Decoder (for text hierarchy \mathcal{D})
- 1. Initialize a latent topic tree
- 2. For doc d, evaluate path distribution

$$p(k_1 \to k_2 \to k_6) = p(k_6 | k_2) p(k_2 | k_1) p(k_1)$$
$$p(k_2 | k_1) = \frac{\left(1 + \operatorname{dist}(z_d, t_{k_2})\right)^{-1}}{\sum_{k' = k_2, k_3, k_4} \left(1 + \operatorname{dist}(z_d, t_{k'})\right)^{-1}}$$

• 3. Evaluate level distribution

$$p(\text{level } s) = \frac{(1+h(s)^2)^{-1}}{\sum_{s'=1,2,3} (1+h(s')^2)^{-1}} \quad \text{where} \quad h(s)^2 = \min\left\{\text{dist}(z_d, t_{k_s})^2 \middle| k_s \in \text{level } s\right\}$$

- Tree-Structured Decoder (for text hierarchy \mathcal{D})
- 4. Topic distribution

$$p(k_2) = p(s = 2) \times (p(\text{path 1}) + p(\text{path 2}) + p(\text{path 3}))$$

$$\theta_d = [p(k_1), p(k_2), \dots, p(k_9)]$$

• 5. Decoding with cross-entropy loss $\hat{d} = \operatorname{softmax}(\beta \theta_d)$

- Experiments
- 1. Datasets

Name	#Documents	#Links	Vocabulary	#Labels
ML	3,087	8,573	2,885	7
PL	2,597	7,754	3,106	9
COVID	1,500	5,706	5,083	5
Aminer	114,741	265,345	10,018	10
Web	445,657	565,502	10,015	N.A.

• Experiments

• 2. Document classification

	Model	Micro F1 score					
	Woder	ML	PL	COVID	Aminer		
Models with graph hierarchy	HGCN	82.6±1.3	70.3±1.0	86.0 ± 0.5	67.6±1.0		
but without text hierarchy	LGCN	73.0±2.2	62.8 ± 2.6	60.5 ± 5.0	N.A.		
	TextGCN	78.3±0.7	67.5±0.7	83.7±0.5	N.A.		
Models with text biorarchy	HyperGAT	80.0±0.4	65.8 ± 2.5	84.3±1.2	74.2 ± 1.5		
but without graph hierarchy	HINT	69.5±1.1	55.4 ± 2.3	85.7±1.5	66.5 ± 0.5		
Sur Without Braph merarchy	HGTM	83.8±0.5	72.2 ± 1.4	86.3±1.7	70.0 ± 0.3		

• Experiments

• 3. Topic coherence	Madal	Topic Coherence NPMI (higher is better)				
	wouer	ML	PL	COVID	Aminer	Web
	ProdLDA	10.9 ± 0.7	12.1 ± 0.7	12.0 ± 0.7	9.3 ± 0.5	21.2 ± 0.2
	ETM	7.1±0.2	$8.7 {\pm} 0.1$	8.2 ± 0.7	5.4 ± 0.3	16.4 ± 0.6
	NSTM	17.2 ± 0.7	19.2 ± 0.7	22.0 ± 0.6	15.5 ± 0.3	24.0 ± 0.3
	GATON	17.4 ± 1.0	5.4 ± 1.1	13.8 ± 1.2	19.4 ± 1.5	4.8 ± 1.1
	GraphBTM	5.1±0.5	$7.0 {\pm} 0.4$	$10.4 {\pm} 0.1$	8.2 ± 0.3	N.A.
	GNTM	12.1±0.3	$15.4 {\pm} 0.7$	$13.8 {\pm} 0.8$	17.3 ± 0.4	23.8 ± 0.3
	nCRP	2.2±0.1	2.2 ± 0.1	$3.0{\pm}0.1$	0.2 ± 0.1	2.8 ± 0.0
	TSNTM	12.1±0.6	15.1 ± 0.8	14.1 ± 0.8	17.6 ± 0.8	26.6 ± 2.3
	HTV	10.8 ± 1.0	13.3 ± 1.8	16.6 ± 2.5	17.2 ± 0.6	26.5 ± 0.9
	RTM	7.1±0.3	9.3 ± 0.2	16.2 ± 0.5	10.8 ± 0.3	20.9 ± 0.4
Modeling hierarchy is useful	Adjacent-Encoder	9.9±0.9	11.3 ± 0.9	$13.8 {\pm} 0.4$	11.4 ± 0.2	15.2 ± 0.1
	LANTM	5.4±0.3	7.2 ± 0.8	8.6 ± 0.3	N.A.	N.A.
	GTNN	7.2 ± 0.6	5.8 ± 0.6	13.5 ± 2.7	12.6 ± 0.5	7.9 ± 1.6
	HINT	6.6±2.2	8.6 ± 2.4	11.6 ± 3.0	12.1 ± 3.3	N.A.
	HGTM	19.0±2.6	$21.9{\pm}2.8$	23.3±3.1	20.5 ± 1.4	25.0 ± 1.7
		-				

Section 3: TM-based Text-Attributed Graph Models

- Section 3.1: TMs for Static Text-Attributed Graph
- Section 3.2: TMs for Heterogeneous Text-Attributed Graph
- Section 3.3: Hierarchical Text-Attributed Graph

SMU Classification: Restricted

Q & A

Yale University

School of Computing and Information Systems

Text-Attributed Graph Representation Learning: Methods, Applications, and Challenges Section 4 (45 min)

Delvin Ce Zhang¹, Menglin Yang¹, Rex Ying¹, and Hady W. Lauw² ¹Yale University, ²Singapore Management University

Tutorial Outline

- Section 1: Text-Attributed Graph and Preliminaries (30 min)
- Section 2: PLM-based Text-Attributed Graph Models (45 min)
- Section 3: TM-based Text-Attributed Graph Models (45 min)
- Section 4: Applications, Challenges, and Future Directions (45 min)
- Summary and Q&A

Section 4: Applications, Challenges, and Directions

- Section 4.1: Text Classification
- Section 4.2: Question Answering
- Section 4.3: Citation Recommendation
- Section 4.4: Challenges and Future Directions

Text Classification

- Text-Attributed Graph can be used for text classification where graph structure is auxiliary data to complement textual content.
- We present G2P2 [1] in this section.

Text Classification

- Pre-training
- 1. Text and graph encodings.

 $\mathbf{z}_i = \text{GNN}(d_i, \mathcal{N}(i))$ $\mathbf{t}_i = \text{Transformer}(d_i)$

Text Classification

- Pre-training
- 1. Text and graph encodings.

 $\mathbf{z}_i = \text{GNN}(d_i, \mathcal{N}(i))$ $\mathbf{t}_i = \text{Transformer}(d_i)$

• 2. Loss 1: text-node interaction. $\mathcal{L}_1 = \text{CrossEntropy}(\exp(\tau) \times \cos(\mathbf{Z}, \mathbf{T}), \text{Diag}(N))$ Learnable scalar Diagonal matrix

- Pre-training
- 1. Text and graph encodings.

 $\mathbf{z}_i = \text{GNN}(d_i, \mathcal{N}(i))$ $\mathbf{t}_i = \text{Transformer}(d_i)$

• 2. Loss 1: text-node interaction. $\mathcal{L}_1 = \text{CrossEntropy}(\exp(\tau) \times \cos(\mathbf{Z}, \mathbf{T}), \text{Diag}(N))$ $+ \text{CrossEntropy}(\exp(\tau) \times \cos(\mathbf{Z}, \mathbf{T})^{\mathsf{T}}, \text{Diag}(N))$

- Pre-training
- 1. Text and graph encodings.

 $\mathbf{z}_i = \text{GNN}(d_i, \mathcal{N}(i))$ $\mathbf{t}_i = \text{Transformer}(d_i)$

- 2. Loss 1: text-node interaction. $\mathcal{L}_1 = \text{CrossEntropy}(\exp(\tau) \times \cos(\mathbf{Z}, \mathbf{T}), \text{Diag}(N))$ $+ \text{CrossEntropy}(\exp(\tau) \times \cos(\mathbf{Z}, \mathbf{T})^{\mathsf{T}}, \text{Diag}(N))$
- 3. Loss 2: text-summary interaction. $s_i = mean(t_i, t_j | j \in \mathcal{N}(i))$
- $\mathcal{L}_{2} = \text{CrossEntropy}(\exp(\tau) \times \cos(\boldsymbol{T}, \boldsymbol{S}), \text{Diag}(N)) \\ + \text{CrossEntropy}(\exp(\tau) \times \cos(\boldsymbol{T}, \boldsymbol{S})^{\mathsf{T}}, \text{Diag}(N))$

- Pre-training
- 1. Text and graph encodings.

 $\mathbf{z}_i = \text{GNN}(d_i, \mathcal{N}(i))$ $\mathbf{t}_i = \text{Transformer}(d_i)$

- 2. Loss 1: text-node interaction. $\mathcal{L}_1 = \text{CrossEntropy}(\exp(\tau) \times \cos(\mathbf{Z}, \mathbf{T}), \text{Diag}(N))$ $+ \text{CrossEntropy}(\exp(\tau) \times \cos(\mathbf{Z}, \mathbf{T})^{\mathsf{T}}, \text{Diag}(N))$
- 3. Loss 2: text-summary interaction. $s_i = mean(t_i, t_j | j \in \mathcal{N}(i))$
- $\mathcal{L}_2 = \text{CrossEntropy}(\exp(\tau) \times \cos(\boldsymbol{T}, \boldsymbol{S}), \text{Diag}(N))$ $+ \text{CrossEntropy}(\exp(\tau) \times \cos(\boldsymbol{T}, \boldsymbol{S})^{\top}, \text{Diag}(N))$
- 4. Loss 3: Node-summary interaction. $\mathcal{L}_3 = \text{CrossEntropy}(\exp(\tau) \times \cos(\mathbf{Z}, \mathbf{S}), \text{Diag}(N))$ $+ \text{CrossEntropy}(\exp(\tau) \times \cos(\mathbf{Z}, \mathbf{S})^{\mathsf{T}}, \text{Diag}(N))$

- Zero-shot fine-tuning:
- 1. Prompt.

 $p_y =$ "paper of" + [CLASS_y]

- Zero-shot fine-tuning:
- 1. Prompt.

 $p_y =$ "paper of" + [CLASS_y]

• 2. Obtain class embeddings.

$$w_y = \text{Transformer}(p_c)$$
, where $y = 1, 2, ..., N$
 \downarrow
Total number of classes

- Zero-shot fine-tuning:
- 1. Prompt.

 $p_y = "paper of" + [CLASS_y]$

• 2. Obtain class embeddings.

 $w_y = \text{Transformer}(p_c)$, where y = 1, 2, ..., N

• 3. Evaluate class similarity.

 $p(y|\mathbf{z}_i) = \operatorname{softmax}(\cos(\mathbf{z}_i, \mathbf{w}_y)), \text{ where } y = 1, 2, ..., N$

- Few-shot fine-tuning:
- Label texts of N classes Trainable prompt emb. • 1. Prompt. $\models \begin{bmatrix} \mathbf{h}_1, \cdots, \mathbf{h}_M, \mathbf{h}_{y_1} \end{bmatrix} \\ \models \begin{bmatrix} \mathbf{h}_1, \cdots, \mathbf{h}_M, \mathbf{h}_{y_2} \end{bmatrix} \\ \vdots$ $y_1 = \mathsf{NLP}$ Pre-trained y_2 = Recommendation $d_i = [\mathbf{h}_{i,1}, \mathbf{h}_{i,2}, ..., \mathbf{h}_{i,M}]$ $d_j = [\mathbf{h}_{j,1}, \mathbf{h}_{j,2}, ..., \mathbf{h}_{j,M}]$, where $j \in \mathcal{N}(i)$ + transformer θ_T^0 in (a) $[\mathbf{h}_1, \cdots, \mathbf{h}_M, \mathbf{h}_{y_N}]$ y_N = Computer vision • For a document d_i , obtain its first M words. \mathbf{W}_1 W_2 \mathbf{W}_N Graph contexts of target Classification weights h_1 Visual QA ... initialize \mathbf{h}_M The BERT model ... Language $\mathbf{z}_1 \mathbf{w}_N$ $\mathbf{z}_1 \mathbf{w}_1$ Z₁W backpropagation (4) (1) models are target node emb. (5)

The

translation

Pre-trained

- Few-shot fine-tuning:
- Label texts of N classes Trainable prompt emb. • 1. Prompt. $\models \begin{bmatrix} \mathbf{h}_1, \cdots, \mathbf{h}_M, \mathbf{h}_{y_1} \end{bmatrix} \\ \models \begin{bmatrix} \mathbf{h}_1, \cdots, \mathbf{h}_M, \mathbf{h}_{y_2} \end{bmatrix} \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ (2) \end{bmatrix}$ $y_1 = \mathsf{NLP}$ y₂ = Recommendation $d_i = [\mathbf{h}_{i,1}, \mathbf{h}_{i,2}, ..., \mathbf{h}_{i,M}]$ $d_j = [\mathbf{h}_{j,1}, \mathbf{h}_{j,2}, ..., \mathbf{h}_{j,M}]$, where $j \in \mathcal{N}(i)$ in (a) $[\mathbf{h}_1, \cdots, \mathbf{h}_M, \mathbf{h}_{\gamma_N}]$ $\boldsymbol{h}_m = \operatorname{mean}(\boldsymbol{h}_{i,m}, \boldsymbol{h}_{j,m} | j \in \mathcal{N}(i))$ y_N = Computer vision • For a document d_i , obtain its first M words. \mathbf{W}_1 W_2 \mathbf{W}_N Graph contexts of target Classification weights h_1 Visual QA ... initialize \mathbf{h}_M The BERT model ... Language $\mathbf{z}_1 \mathbf{w}_N$ $\mathbf{z}_1 \mathbf{w}_1$ Z₁W backpropagation (4) (1) models are target node emb. (5) The Pre-trained translation

- Few-shot fine-tuning:
- Label texts of N classes Trainable prompt emb. • 1. Prompt. $\models \begin{bmatrix} \mathbf{h}_1, \cdots, \mathbf{h}_M, \mathbf{h}_{y_1} \end{bmatrix} \\ \models \begin{bmatrix} \mathbf{h}_1, \cdots, \mathbf{h}_M, \mathbf{h}_{y_2} \end{bmatrix} \\ \models \text{transformer } \theta_T^0 \\ \text{in } (z)$ $y_1 = NLP$ y_2 = Recommendation $d_i = [\mathbf{h}_{i,1}, \mathbf{h}_{i,2}, ..., \mathbf{h}_{i,M}]$ $d_j = [\mathbf{h}_{j,1}, \mathbf{h}_{j,2}, ..., \mathbf{h}_{j,M}]$, where $j \in \mathcal{N}(i)$ in (a) $[\mathbf{h}_1, \cdots, \mathbf{h}_M, \mathbf{h}_{\mathcal{V}_N}]$ $\boldsymbol{h}_m = \operatorname{mean}(\boldsymbol{h}_{i,m}, \boldsymbol{h}_{j,m} | j \in \mathcal{N}(i))$ y_N = Computer vision • For a document d_i , obtain its first M words. W₁ W_2 \mathbf{W}_N Graph contexts of target Classification weights h_1 2. Obtain class embeddings. Visual QA ... initialize \mathbf{h}_{M} The BERT model ... Language $\boldsymbol{w}_{y} = \text{Transformer}([\boldsymbol{h}_{1}, \boldsymbol{h}_{2}, \dots, \boldsymbol{h}_{M}, \boldsymbol{h}_{CLASS_{v}}]), \text{ where } y = 1, 2, \dots, Y$ $\mathbf{z}_1 \mathbf{w}_N$ $\mathbf{z}_1 \mathbf{w}_1$ Z_1W backpropagation $(\mathbf{4})$ models are target node emb. (5) The Pre-trained translation

- Few-shot fine-tuning:
- Label texts of N classes Trainable prompt emb. • 1. Prompt. $\rightarrow \begin{bmatrix} \mathbf{h}_1, \cdots, \mathbf{h}_M, \mathbf{h}_{y_1} \\ \mathbf{h}_1, \cdots, \mathbf{h}_M, \mathbf{h}_{y_2} \end{bmatrix}$ $y_1 = NLP$ Pre-trained y_2 = Recommendation $d_i = [\mathbf{h}_{i,1}, \mathbf{h}_{i,2}, ..., \mathbf{h}_{i,M}]$ $d_j = [\mathbf{h}_{j,1}, \mathbf{h}_{j,2}, ..., \mathbf{h}_{j,M}]$, where $j \in \mathcal{N}(i)$ in (a) $[\mathbf{h}_1, \cdots, \mathbf{h}_M, \mathbf{h}_{y_N}]$ $\boldsymbol{h}_m = \operatorname{mean}(\boldsymbol{h}_{i,m}, \boldsymbol{h}_{i,m} | j \in \mathcal{N}(i))$ y_N = Computer vision • For a document d_i , obtain its first M words. W₁ W_2 \mathbf{W}_N Graph contexts of target Classification weights \mathbf{h}_1 2. Obtain class embeddings. Visual QA ... initialize \mathbf{h}_{M} The BERT model ... Language $w_y = \text{Transformer}([h_1, h_2, ..., h_M, h_{CLASS_y}]), \text{ where } y = 1, 2, ..., Y$ $\mathbf{z}_1 \mathbf{w}_N$ $|\mathbf{z}_1\mathbf{w}_1| |\mathbf{z}_1\mathbf{w}|$ backpropagation $(\mathbf{4})$ models are target node emb. • 3. Evaluate class similarity. (5) The

translation

 $p(y|\mathbf{z}_i) = \operatorname{softmax}(\cos(\mathbf{z}_i, \mathbf{w}_y)), \text{ where } y = 1, 2, ..., Y$

Pre-trained

- Experiments
- 1. Datasets

Dataset	Cora	Art	Industrial	M.I.
# Documents	25,120	1,615,902	1,260,053	905,453
# Links	182,280	4,898,218	3,101,670	2,692,734
# Avg. doc length	141.26	54.23	52.15	84.66
# Avg. node deg	7.26	3.03	2.46	2.97
# Total classes	70	3,347	2,462	1,191

• Experiments

• 2. Zero-shot text classification

		Cora	Art	Industrial	M.I.
	RoBERTa	30.46 ± 2.01	42.80 ± 0.94	42.89 ± 0.97	36.40 ± 1.20
	RoBERTa*	39.58 ± 1.26	34.77 ± 0.65	37.78 ± 0.32	32.17 ± 0.68
Models w/o graph structure	RoBERTa*+d	45.53 ± 1.33	36.11 ± 0.66	39.40 ± 1.22	37.65 ± 0.33
	BERT	23.58 ± 1.88	35.88 ± 1.44	37.32 ± 0.85	37.42 ± 0.80
	BERT*	23.38 ± 1.96	54.27 ± 1.85	56.02 ± 1.22	50.19 ± 0.72
	BERT*+d	26.65 ± 1.71	<u>56.61</u> ±1.76	55.93 ± 0.96	<u>52.13</u> ±0.88
	G2P2	63.52±2.89	76.52 ± 0.59	76.66±0.31	74.60 ± 0.62
	G2P2+d	65.28 *±3.12	76.99 *±0.60	$77.43^{*} \pm 0.27$	75.86 *±0.69
	(improv.)	(+45.38%)	(+36.00%)	(+38.22%)	(+45.52%)

• Experiments

• 3. Five-shot text classification

	Co	ora	Art		Indu	strial	M.I.	
	Accuracy	Macro-F1	Accuracy	Macro-F1	Accuracy	Macro-F1	Accuracy	Macro-F1
GCN	41.15±2.41	34.50 ± 2.23	22.47 ± 1.78	15.45 ± 1.14	21.08±0.45	15.23 ± 0.29	22.54±0.82	16.26 ± 0.72
SAGE _{sup}	41.42 ± 2.90	35.14 ± 2.14	22.60 ± 0.56	16.01 ± 0.28	20.74 ± 0.91	15.31 ± 0.37	22.14 ± 0.80	16.69 ± 0.62
TextGCN	59.78 ± 1.88	55.85 ± 1.50	43.47 ± 1.02	32.20 ± 1.30	53.60 ± 0.70	45.97 ± 0.49	46.26 ± 0.91	38.75 ± 0.78
GPT-GNN	76.72±2.02	72.23 ± 1.17	65.15±1.37	52.79 ± 0.83	62.13±0.65	54.47 ± 0.67	67.97±2.49	59.89 ± 2.51
DGI	<u>78.42</u> ±1.39	74.58 ± 1.24	65.41 ± 0.86	53.57 ± 0.75	52.29 ± 0.66	45.26 ± 0.51	68.06 ± 0.73	60.64 ± 0.61
SAGE _{self}	77.59 ± 1.71	73.47 ± 1.53	76.13 ± 0.94	65.25 ± 0.31	71.87 ± 0.61	65.09 ± 0.47	77.70 ± 0.48	70.87 ± 0.59
BERT	37.86±5.31	32.78 ± 5.01	46.39 ± 1.05	37.07 ± 0.68	54.00±0.20	47.57 ± 0.50	50.14±0.68	42.96 ± 1.02
BERT*	27.22±1.22	23.34 ± 1.11	45.31 ± 0.96	36.28 ± 0.71	49.60±0.27	43.36 ± 0.27	40.19 ± 0.74	33.69 ± 0.72
RoBERTa	62.10±2.77	57.21 ± 2.51	72.95 ± 1.75	62.25 ± 1.33	76.35 ± 0.65	70.49 ± 0.59	70.67 ± 0.87	63.50 ± 1.11
RoBERTa*	67.42±4.35	62.72 ± 3.02	74.47 ± 1.00	63.35 ± 1.09	77.08±1.02	$71.44 {\pm} 0.87$	74.61 ± 1.08	67.78±0.95
P-Tuning v2	71.00±2.03	66.76±1.95	<u>76.86</u> ±0.59	<u>66.89</u> ±1.14	<u>79.65</u> ±0.38	74.33 ± 0.37	72.08±0.51	65.44±0.63
G2P2-p	79.16±1.23	74.99 ± 1.35	79.59 ± 0.31	68.26 ± 0.43	80.86±0.40	74.44 ± 0.29	81.26±0.36	$74.82 {\pm} 0.45$
G2P2	80.08*±1.33	75.91 *±1.39	81.03 *±0.43	69.86 *±0.67	82.46*±0.29	76.36*±0.25	82.77 *±0.32	$76.48^{*} \pm 0.52$
(improv.)	(+2.12%)	(+1.78%)	(+5.43%)	(+4.44%)	(+3.53%)	(+2.7%)	(+6.53%)	(+7.92%)

Section 4: Applications, Challenges, and Directions

- Section 4.1: Text Classification
- Section 4.2: Question Answering
- Section 4.3: Citation Recommendation
- Section 4.4: Challenges and Future Directions

- Text-Attributed Graph, such as hyperlinked Wikipedia page, provides highorder knowledge to answer the question.
- We present LinkBERT [1] in this section.

The linked document reveals that the National Cherry Blossom Festival celebrates Japanese cherry trees.

Document -----

[Tidal Basin, Washington D.C.] The Tidal Basin is a man-made reservoir located between the Potomac River and the Washington Channel in Washington, D.C. It is part of West Potomac Park, is near the National Mall and is a focal point of the National Cherry Blossom Festival held each spring. The Jefferson Memorial, the Martin Luther King Jr. Memorial, the Franklin Delano Roosevelt Memorial, and the George Mason Memorial are situated adjacent to the Tidal Basin.

Linked document

(e.g. hyperlink, reference)

[The National Cherry Blossom Festival] ... It is a spring celebration commemorating the March 27, 1912, gift of Japanese cherry trees from Mayor of Tokyo City Yukio Ozaki to the city of Washington, D.C. Mayor Ozaki gifted the trees to enhance the growing friendship between the United States and Japan. ... Of the initial gift of 12 varieties of 3,020 trees, the Yoshino Cherry (70% of total) and Kwanzan Cherry (13% of total) now dominate. ...

[1] Yasunaga, M., Leskovec, J., & Liang, P. (2022, May). LinkBERT: Pretraining Language Models with Document Links. In Proceedings of the 60th Annual Meeting of the Association for 159 Computational Linguistics (Volume 1: Long Papers) (pp. 8003-8016).

• 1. Linked documents.

 $H = BERT([CLS]d_1[SEP]d_3[SEP])$, where $d_3 \in \mathcal{N}(d_1)$

- 2. Random documents.
- $H = BERT([CLS]d_1[SEP]d_5[SEP])$, where $d_5 \notin \mathcal{N}(d_1)$

- 1. Linked documents.
 - $H = BERT([CLS]d_1[SEP]d_3[SEP])$, where $d_3 \in \mathcal{N}(d_1)$
- 2. Random documents.
 - $H = BERT([CLS]d_1[SEP]d_5[SEP])$, where $d_5 \notin \mathcal{N}(d_1)$
- 3. Contiguous documents.
 - $H = BERT([CLS]d_1[SEP]d'_1[SEP])$, where $d'_1 \subset d_1$

- 1. Linked documents.
 - $H = BERT([CLS]d_1[SEP]d_3[SEP])$, where $d_3 \in \mathcal{N}(d_1)$
- 2. Random documents.
 - $H = BERT([CLS]d_1[SEP]d_5[SEP])$, where $d_5 \notin \mathcal{N}(d_1)$
- 3. Contiguous documents.
 - $H = BERT([CLS]d_1[SEP]d'_1[SEP])$, where $d'_1 \subset d_1$
- 4. Pre-training MLM loss.

- 1. Linked documents.
 - $H = BERT([CLS]d_1[SEP]d_3[SEP])$, where $d_3 \in \mathcal{N}(d_1)$
- 2. Random documents.
 - $H = BERT([CLS]d_1[SEP]d_5[SEP])$, where $d_5 \notin \mathcal{N}(d_1)$
- 3. Contiguous documents.
 - $H = BERT([CLS]d_1[SEP]d'_1[SEP])$, where $d'_1 \subset d_1$
- 4. Pre-training MLM loss.

 $\widehat{p}_{MLM} = \operatorname{softmax}(Wh_{w_j}) \quad \mathcal{L}_{MLM} = \operatorname{CrosEntropy}(\widehat{p}_{MLM}, p_{MLM})$

• 5. Pre-training relation prediction loss. $\hat{p}_r = \operatorname{softmax}(W'h_{CLS})$ $\mathcal{L}_{DRP} = \operatorname{CrossEntropy}(\hat{p}_r, p_r)$

prediction (DRP) • Contiguous • Random • Linked Japanese cherry • Linked Japanese cherry • Cusj The Tidal Basin ... [SEP] ... [MASK] [MASK] trees [SEP] Segment A Segment B 164

- Experiments
- 1. Datasets

Dataset	Train	Dev
SQuAD	86,588	10,507
NewsQA	74,160	4,212
TriviaQA	61,688	7,785
SearchQA ⁺	117,384	16,980
HotpotQA	72,928	5,904
Natural Questions	104,071	12,836

- LinkBERT, pre-trained on Wikipedia hyperlink graph.
- BioLinkBERT, pre-trained on PubMed citation graph.

• Experiments

- 2. Extractive question answering
- Given a document (or set of documents) and a question as input, the task is to identify an answer span from the document.

• Experiments

- 2. Extractive question answering
- Given a document (or set of documents) and a question as input, the task is to identify an answer span from the document.

	HotpotQA	TriviaQA	SearchQA	NaturalQ	NewsQA	SQuAD	Avg.
BERT _{tiny}	49.8	43.4	50.2	58.9	41.3	56.6	50.0
LinkBERT _{tiny}	54.6	50.0	58.6	60.3	42.8	58.0	54.1
BERT _{base}	76.0	70.3	74.2	76.5	65.7	88.7	75.2
LinkBERT _{base}	78.2	73.9	76.8	78.3	69.3	90.1	77.8
BERT _{large}	78.1	73.7	78.3	79.0	70.9	91.1	78.5
LinkBERT _{large}	80.8	78.2	80.5	81.0	72.6	92.7	81.0

- Experiments
- 2. Biomedical domain

	PubMed-	BioLink-	BioLink-
	BERT _{base}	BERT _{base}	BERT _{large}
Question answering PubMedQA (Jin et al., 2019) BioASQ (Nentidis et al., 2019)	55.84 87.56	70.20 91.43	72.18 94.82

Section 4: Applications, Challenges, and Directions

- Section 4.1: Text Classification
- Section 4.2: Question Answering
- Section 4.3: Citation Recommendation
- Section 4.4: Challenges and Future Directions

- Academic papers with citations constitute a Text-Attributed Graph.
- We can model both modalities for citation recommendation.
- We present GNCTM [1] in this section.

• 1. GNN encoding.

 $\boldsymbol{\mu}_{i} = \text{GNN}_{\mu}(d_{i}, d_{j} | j \in \mathcal{N}(i)) \qquad \boldsymbol{\Sigma}_{i} = \text{GNN}_{\Sigma}(d_{i}, d_{j} | j \in \mathcal{N}(i))$

• 1. GNN encoding.

 $\boldsymbol{\mu}_{i} = \text{GNN}_{\mu}(d_{i}, d_{j} | j \in \mathcal{N}(i)) \qquad \boldsymbol{\Sigma}_{i} = \text{GNN}_{\Sigma}(d_{i}, d_{j} | j \in \mathcal{N}(i))$

- 2. Reparameterization.
 - $\boldsymbol{\theta}_i = \boldsymbol{\mu}_i + \boldsymbol{\Sigma}_i^{1/2} \boldsymbol{\epsilon}$, where $\boldsymbol{\epsilon} \sim \text{Gaussian}(\boldsymbol{0}, \boldsymbol{I})$

 $\vartheta_i = \theta_i + \xi$, where $\xi \sim \text{Gaussian}(0, \lambda I) \longrightarrow$ The purpose is to further distinguish similar documents

• 1. GNN encoding.

 $\boldsymbol{\mu}_{i} = \text{GNN}_{\mu}(d_{i}, d_{j} | j \in \mathcal{N}(i)) \qquad \boldsymbol{\Sigma}_{i} = \text{GNN}_{\Sigma}(d_{i}, d_{j} | j \in \mathcal{N}(i))$

- 2. Reparameterization. $\theta_i = \mu_i + \Sigma_i^{1/2} \epsilon$, where $\epsilon \sim \text{Gaussian}(0, I)$
 - $\boldsymbol{\vartheta}_i = \boldsymbol{\theta}_i + \boldsymbol{\xi}$, where $\boldsymbol{\xi} \sim \text{Gaussian}(\boldsymbol{0}, \lambda \boldsymbol{I})$
- 3. Text decoder.

 $\widehat{\boldsymbol{d}}_i = f_{MLP}(\boldsymbol{\vartheta}_i)$ $\mathcal{L}_{text} = \text{CrossEntropy}(\widehat{\boldsymbol{d}}_i, \boldsymbol{d}_i)$

• 1. GNN encoding.

 $\boldsymbol{\mu}_{i} = \text{GNN}_{\mu}(d_{i}, d_{j} | j \in \mathcal{N}(i)) \qquad \boldsymbol{\Sigma}_{i} = \text{GNN}_{\Sigma}(d_{i}, d_{j} | j \in \mathcal{N}(i))$

• 2. Reparameterization.

 $\boldsymbol{\theta}_i = \boldsymbol{\mu}_i + \boldsymbol{\Sigma}_i^{1/2} \boldsymbol{\epsilon}$, where $\boldsymbol{\epsilon} \sim \text{Gaussian}(\boldsymbol{0}, \boldsymbol{I})$

- $\boldsymbol{\vartheta}_i = \boldsymbol{\theta}_i + \boldsymbol{\xi}$, where $\boldsymbol{\xi} \sim \text{Gaussian}(\boldsymbol{0}, \lambda \boldsymbol{I})$
- 3. Text decoder.

 $\widehat{\boldsymbol{d}}_{i} = f_{MLP}(\boldsymbol{\vartheta}_{i})$ $\mathcal{L}_{text} = \text{CrossEntropy}(\widehat{\boldsymbol{d}}_{i}, \boldsymbol{d}_{i})$

• 4. Citation decoder.

 $\hat{y}_{i,i'} = f'_{MLP}(\boldsymbol{\vartheta}_i || \boldsymbol{\vartheta}_{i'}) \quad \mathcal{L}_{graph} = \text{CrossEntropy}(\hat{y}_{i,i'}, y_{i,i'})$

- Experiments
- 1. Datasets

Datasets	Documents	Vocabulary size	Citations
Citeulike-a	16,980	8,000	44,709
Cora	13,147	17,509	57,018
MAG-50	126,666	8,000	2,452,340

• Experiments

• 2. Citation recommendation

	HR@K (K=)	1	2	3	4	5	6	7	8	9	10
Nodels w/o high-order graph	RTM	0.158	0.268	0.345	0.414	0.471	0.522	0.572	0.615	0.642	0.673
	ProdLDA+MF	0.326	0.491	0.586	0.642	0.674	0.705	0.718	0.743	0.751	0.764
	NMF	0.419	0.576	0.657	0.702	0.734	0.767	0.788	0.808	0.820	0.833
Nodels w/o text decoding	NCF	0.493	0.624	0.687	0.724	0.745	0.757	0.777	0.792	0.801	0.808
	RDL	0.601	0.704	0.741	0.759	0.777	0.789	0.785	0.778	0.780	0.792
	VGAE	0.428	0.606	0.716	0.787	0.831	0.865	0.891	0.913	0.925	0.938
	NGCF	0.549	0.719	0.794	0.834	0.859	0.881	0.885	0.897	0.905	0.913
	LightGCN	0.646	0.776	0.829	0.867	0.879	0.891	0.901	0.905	0.910	0.912
Models w/o	NRTM	0.613	0.776	0.854	0.897	0.919	0.940	0.951	0.957	0.968	0.966
high-order encoding	AdjEnc	0.721	0.844	0.889	0.917	0.932	0.944	0.952	0.957	0.965	0.966
	GNCTM	0.742	0.873	0.909	0.936	0.952	0.964	0.973	0.978	0.981	0.986

Section 4: Applications, Challenges, and Directions

- Section 4.1: Text Classification
- Section 4.2: Question Answering
- Section 4.3: Citation Recommendation
- Section 4.4: Challenges and Future Directions

Challenges and Future Directions

• Explainability

- We are curious about why a model makes certain predictions and how to explain its behaviors.
- GNNExplainer [1] pioneers this research by explaining which graph substructures are informative for predictions, but lacks textual semantics.
- A future research is to design a model that jointly incorporates both GNNs and PLMs/TMs, and provides explanations on text-attributed graph, e.g., which text spans are important for predictions.

Challenges and Future Directions

Hierarchical Pre-training

- Existing text-attributed graph pretraining treats all the documents equally. However, in many cases documents present a hierarchical instead of a flat structure.
- For example, survey papers summarize a broad area and regular papers deal with specific problems.
- Modeling such document hierarchy can better preserve textual semantics.

Section 4: Applications, Challenges, and Directions

- Section 4.1: Text Classification
- Section 4.2: Question Answering
- Section 4.3: Citation Recommendation
- Section 4.4: Challenges and Future Directions
SMU Classification: Restricted

Q & A