
Page 1

On-Device Recommender Systems

Hongzhi Yin, Tong Chen, Liang Qu
The University of Queensland, Australia

A Tutorial on The New-Generation Recommendation Paradigm

Bin Cui
Peking University, China

The Web Conference 2024, Singapore

Page 2

Chapter 1: Welcome and Introduction

Chapter 2: Definition and Taxonomy of ODRSs

Chapter 3: Deployment and Inference of ODRSs

Chapter 6: Limitations and New Trends

Chapter 7: Open Discussions and More

*ODRS is a shorthand for On-Device Recommender System.

Chapter 4: Training and Updating of ODRSs

Chapter 5: Security and Privacy of ODRSs

Page 3

The Tutorial Team
Our tutorial is prepared by a team of four:

 Prof. Hongzhi Yin: Full Professor and ARC Future Fellow at
The University of Queensland

Dr. Tong Chen: Senior Lecturer and ARC DECRA Fellow at
The University of Queensland

Mr. Liang Qu: Senior PhD at The University of Queensland,
starting Postdoc in Deakin University soon

Prof. Bin Cui: IEEE Fellow, Boya Distinguished Professor
and Vice Dean in School of CS at Peking University

Page 4

Overview of Recommender Systems
Role of Recommender Systems (RSs):
• Counteracting information overload
• Providing tailored user experience
• Targeted marketing and advertising

https://flipboard.comRSs are becoming ubiquitous – let’s do
an App check on your phone:

And (not so) surprisingly, they are all equipped with RS algorithms!

Page 5

How Do Current RSs Work?
Most existing recommendation architectures are cloud-based.

Player Role
Cloud-based RS Computing (training&inference) + interaction data storage
Personal device Data collection + result display

cloud-based recommender

`

`

user data

recommendation results
personal device

Page 6

Where Things Go Wrong on The Cloud
Question: Is this the optimal recommendation paradigm? What can go wrong?

Is my data safe?

 What happens if there’s no Internet?

What costs us to run those data centers?

Some stats [OAIC 2013, ACCC 2013, Jones 2018]:
• In Australia, 892 reported data breaches in 2023, with 35% affecting

>100 users and 64% coming from retail, health, and financing services!
• Optus (a major Aussie mobile service provider) only has 70% 3G

geographic coverage – the number drops to 60% in remote areas
where all the point of interests and great campsites are found.

• Information and communications technology (ICT) is predicted to use
21% of the global electricity, where data centers accounts for 1/3.

Page 7

Downsides of Cloud-based RSs
With the rise of privacy awareness, need for service timeliness, and
promotion for green AI, cloud-based RSs are showing their downsides:

Privacy has always been a challenge for RSs [Ge et al 2022].
New privacy legislations like GDPR (EU), CCPA (US), and PIPL (CHN)
further bottlenecks the user of customer information [Noia et al. 2022].

Current RSs heavily rely on wireless communication [Chen et. al. 2021].
Think of the online shopping experience during “Black Friday” sales in the
US, or the “double-11” discount campaign – is the timeliness still there?

Could-based RSs lead to huge computation resource cost & energy
footprints [Wang et. al. 2020].Is this affordable for business at all scales? Is
this sustainable in a long-term view? Are we wasting the increasing
computing power on edge devices?

Page 8

A Remedy: On-Device RSs
An emerging research direction: on-device recommender systems,
a.k.a. DeviceRSs, or ODRSs [Yin et al. 2024].

Role of devices: data collection & display & computing!

deploy locally
lightweight

recommender

Role of the cloud:
• Job assignment,
• Parameter transporting,
• Version control
• …

Tasks are lighter, no full model
training or data handling
(More on it later)

Page 9

Promises of ODRSs

Feature 1: No need to transmit data elsewhere for analysis

Feature 2: A recommender is onboard to generate results

Feature 3: Most computations are done on small devices

Private

Instant

Resource
-efficient

As a new recommendation paradigm, ODRSs offer great promises.

Not a fairy tale in academia – plenty of R&D outcomes already:
• Kuaishou – Short Video RS on Mobile Devices [Gong et al. 2022]
• Google – TensorFlow Lite Recommendation [TFL 2024]
• Taobao – The EdgeRec System [Gong et al. 2020]
• Brave Browser – News RS uses Federated Learning [Minto et al. 2021]

Page 10

ODRSs: What’s Important?
In this tutorial, we will cover three technical pillars of ODRSs.

I. Deployment and Inference:
“Primitive” solution to ODRSs – Given a complex recommendation model, how
do we adapt it to resource-constraint on-device environments?

II. Training and Updating:
“Ground-up” solution to ODRSs – Can we design models and learning
algorithms specific to on-device settings from scratch?

III. Security and Privacy:
“Safeguard” for ODRSs – What countermeasures can we take to protect
ODRSs from adversaries in the open cyber space?

Now, let’s unfold the core of this new recommendation paradigm!

Page 11

ODRSs: What’s Important? (Cont.)

I. Deployment
and Inference

II. Training
and Updating

III. Security
and Privacy

A visual illustration:

Page 12

Chapter 1: Welcome and Introduction

Chapter 2: Definition and Taxonomy of ODRSs

Chapter 3: Deployment and Inference of ODRSs

Chapter 6: Limitations and New Trends

Chapter 7: Open Discussions and More

Chapter 4: Training and Updating of ODRSs

Chapter 5: Security and Privacy of ODRSs

Page 13

Definition
Definition 1 – Traditional, Basic Recommendation:
In: Dataset recording interactions between users 𝑢 ∈ 𝑈 and items 𝑣 ∈ 𝑉.
Out: A pairwise similarity function 𝑓(𝑢	, 𝑣), which is trained to capture the
affinity between each (𝑢, 𝑣) pair.

𝑓(𝑢	, 𝑣) can be parameterized in multiple ways, such as:
• Matrix Factorization [Koren et al. 2009]
• Factorization Machines [Rendle 2011]
• Neural Collaborative Filtering, e.g., NeuMF [He et al. 2017a]
• Neural Factorization Machines, e.g., NFM [He et al. 2017b]
• Graph Neural Networks, e.g., LightGCN [He et al. 2020]
• And many more…

Page 14

Definition (Cont.)
For 𝑓 𝑢, 𝑣 , both the model choice and optimization objective are dependent on
the actual task:

1. Top-k recommendation
 Bayesian Personalized Ranking (BPR) [Rendle et al. 2009] loss:

ℒ𝑟𝑒𝑐 =,
∀(#,%!,%")

− log 𝜎(𝑓 𝑢, 𝑣' − 𝑓(𝑢, 𝑣())

2. Click-through rate prediction
 Negative log-likehood loss [Zhou et al. 2018]:
ℒ𝑟𝑒𝑐 =,

∀(#,%,))
−(𝑦 log 𝑓 𝑢, 𝑣 + 1 − 𝑦 log(1 − 𝑓 𝑢, 𝑣))

3. Rating prediction
 Squared error loss [Chen et al. 2020]:

ℒ𝑟𝑒𝑐 =,
∀(#,%,))

(𝑦 − 𝑓(𝑢, 𝑣))*

our
focus
today

less so

Page 15

Definition (Cont.)
Definition 2 (Informal) – Recommendation under On-Device Settings
Naturally, 𝑓(𝑢	, 𝑣) needs to meet additional on-device requirements.

Deployment and inference – no on-device training needed
[Parameter size] Can 𝑓(𝑢	, 𝑣) fit in small memory?
[Inference time] Can 𝑓(𝑢	, 𝑣) evaluate quickly on-device?

Training and updating – real-time on-device training needed
[Training efficiency] Will training 𝑓(𝑢	, 𝑣) consume much energy?
[Communication overhead] Does 𝑓(𝑢	, 𝑣) frequently exchange info elsewhere?

Security and privacy – passive and active protection
[Model privacy] Is the sharable info (e.g., weights) in 𝑓(𝑢	, 𝑣) sensitive?
[Attack resistance] Is 𝑓(𝑢	, 𝑣) robustness to adversarial attacks?

Page 16

Taxonomy: Deployment and Inference
Our taxonomy w.r.t. the deployment and inference of ODRSs.

The corresponding references to different methods can be found in our
comprehensive survey [Yin et al. 2024].

Page 17

Taxonomy: Training and Updating
Our taxonomy w.r.t. the training and updating of ODRSs.

The corresponding references to different methods can be found in our
comprehensive survey [Yin et al. 2024].

Page 18

Taxonomy: Security and Privacy
Our taxonomy w.r.t. the security and privacy of ODRSs.

The corresponding references to different methods can be found in our
comprehensive survey [Yin et al. 2024].

Page 19

Chapter 1: Welcome and Introduction

Chapter 2: Definition and Taxonomy of ODRSs

Chapter 3: Deployment and Inference of ODRSs

Chapter 6: Limitations and New Trends

Chapter 7: Open Discussions and More

*ODRS is a shorthand for On-Device Recommender Systems.

Chapter 4: Training and Updating of ODRSs

Chapter 5: Security and Privacy of ODRSs

Page 20

Deployment and Inference: An Overview
Let’s have a quick recap on this figure:

Question: What is the key element?
The key is to build a lightly parameterized recommender.

Almost all existing studies [Zhang et al. 2016, Joglekar et al. 2020, Liang et al.
2023, Liang et al. 2024] are around embeddings.
• What are embeddings?
• Why do they matter?
• How lightweight embeddings are achieved in ODRSs?

Page 21

Embeddings: What
In RSs, embeddings are ℝ𝑑 vector representations of entities.

++

++ +

iPad [0.12, 0.53,…, 0.64]

MacBook
MacBook Pro
[0.19, 0.73,…, 0.54]

Amy Bob

[0.05, 0.22,…, 0.12]

Entities in ID-based recommendation:
“IDs” of users and items – just users and items

Entities in feature-based recommendation:
Features describing users and items, plus their IDs

User-item affinity can be easily reflected via
distance metrics (cosine, dot, Euclidean, etc.)

Embeddings are the main parameter source
of recommender 𝑓(𝑢	, 𝑣)!

Page 22

Embeddings: Why

Toy Example: #Param of a sequential recommender 𝑓(𝑢	, 𝑣) [Wang et al. 2020]

*10,000 items with 𝑑 = 128

Real Example: Industries are dealing with billion-scale item sets! Examples
include Pinterest [Eksombatchai et al. 2018] and Alibaba [Wang et al. 2018].

10 million (+
+,,

 billion) items with 𝑑 = 128: 128,000,000 digits

5 GB in a 32-bit system

𝑁	×	𝑑 with embedding dimension 𝑑
Only considering 𝑁	items, digits needed for embeddings:

*Item Emb. Other Model Param.
1,280,000 approx. 70,000

Imagine a shopping mobile App 5-10 GB in size, and in memory!

95% of the #param

Page 23

Binary Code-based Methods
Early Approach – Binary Codes:
Turn real-valued vectors into binary codes [Zhou et al. 2012, Zhang et al. 2016]

Let 𝐞 ∈ ℝ𝑑 denote a user/item embedding, and let 𝐛 ∈ {−1,+1}𝑑 denote the
corresponding binary code

𝐛 = 	𝑠𝑖𝑔𝑛(𝐞)

𝑏i = 	𝑠𝑖𝑔𝑛 𝑒i = F+1, 𝑖𝑓	𝑒𝑖 ≥ 0
−1, 𝑖𝑓	𝑒𝑖 < 0

Continuous space Hamming space

Result: A 𝑑-length code can represent 2𝑑 − 1 users/items (theoretically);
 𝑑 = 32 is good for 4 billion.
Fast similarity evaluation via logical operators; compact Boolean storage!

Page 24

Binary Codes: DCF

Paper: Zhang et al., "Discrete collaborative filtering", SIGIR 2016

Discrete Collaborative Filtering (DCF) [Zhang et al. 2016]

after
balancing

after
decorrelation

Improvements compared with earlier variants:
Less squashing, and binary codes are more mutually discriminative

Page 25

Binary Codes: HashGNN

Paper: Tan et al., "Learning to hash with graph neural networks for recommender systems”, WWW 2020

Deep Hashing with GNNs (HashGNN) [Tan et al. 2020]

Two joint losses are minimized for higher-quality binary codes

Reconstruct observed interactions

BPR loss with negative samples

Gating between
real-valued (𝐳)
and binary (𝐡)
representations:

Straight-through estimator (STE) [Bengio et al. 2013] is used for back propagation.

Page 26

Cons of Binary Codes

Distinctiveness of
individual binary codes

Example:

Informative similarity
score produced by 𝑓(𝑢	, 𝑣) ≠

[1, 1, 1, 1]

[-1, 1, 1, 1]

[1,-1, 1, 1]

[1, 1,-1, 1]

[1, 1, 1,-1]

logical similarity 𝑓 𝑢	, 𝑣1 = 0.75

𝑓 𝑢	, 𝑣2 = 0.75

𝑓 𝑢	, 𝑣3 = 0.75

𝑓 𝑢	, 𝑣4 = 0.75

Same scores,
undistinguishable
for ranking!

Result: Binary codes have strong performance compromise.

Page 27

Embedding Sparsification Methods
𝑁

𝑑

zero-
masking

Dense embedding
matrix 𝐄 ∈ ℝ-×/

Sparsified embedding
matrix 𝐄′ ∈ ℝ-×/, 𝐄0 0 ≤ 𝑡

sparsity
threshold

Result: Sparsified matrices can be efficiently stored [Sedaghati et al.
2015, Virtanen et al. 2020] – only 𝑡 matters; consistent length 𝑑 does not
affect subsequent computations.

Trainable algorithms
(more on this later)

So, can we shift back to real-valued embeddings, but make them lighter?

Page 28

Embedding Sparsification: PEP

Paper: Liu et al., "Learnable embedding sizes for recommender systems”, ICLR 2021

Plug-in Embedding Pruning (PEP) [Liu et al. 2021]
Directly selecting 𝑡 entries to keep while minimizing ℒ123 is NP-hard
Can we learn it? What if we don’t want to use reinforce learning?

Reparameterization:

A large 𝑔(𝑠)	drops out the corresponding entry in 𝐕 due to the effect of ReLU

𝑠: learnable
𝑔(U): sigmoid

After 𝑠	achieves the sparsity, stop pruning and retrain the sparsified RS

Page 29

Embedding Sparsification: SSEDS

Paper: Qu et al., "Single-shot embedding dimension search in recommender system", SIGIR 2022

Single-Shot Embedding Dimension Search (SSEDS) [Qu et al. 2022]

Can we do this quicker than PEP, e.g., in one shot?

Speed up with continuous relaxation of 𝜶:

Given a sparsity target, prune the least
important (small 𝑔4,5 magnitude) entries from
the embedding table until target is met

To decide the binary mask 𝜶, it comes down
to the importance of each dimension in 𝑑:

Page 30

Cons of Embedding Sparsification
A quick memory test with 𝑁 = 	100,000, 𝑑 = 128:

0 0 0
0 0 0
0 0
0 0 0

𝑁

𝑑 75% of 𝑑 pruned directly use /
6
= 32

≈102MB
(Numpy dense)

≈ 51MB
(Scipy sparse)

≈ 26MB
(Numpy dense)> >

Sparsification needs extra parameters [Lyu et al. 2022] to index 0s

Not as good as 𝑁× /
6
 dense!

Will this be a solution?

Page 31

Variable Size Embedding Methods
Variable Size Embeddings can address the sparsification dilemma

Should we simply shrink 𝑑 to 𝑑′ ≪ 𝑑 uniformly? So 𝑁×𝑑′ ≪ 𝑁×𝑑.

Intuition: Still taking item as an example – each has different importance to
the recommendation task, hence does not require equal embedding dimensions.

Relaxation: We allow each item 𝑣’s embedding size 𝑑𝑣 to vary, as long as we
result in 𝑁×𝑑′ total parameters!

size
search

Dense embedding
matrix 𝐄 ∈ ℝ-×/

Variable size
embeddings,
∑%7+- 𝑑𝑣 	≤ 𝑡

AutoML algorithms
(more on this later)

Page 32

Variable Size Embeddings: AutoEmb

Paper: Zhao et al., "Autoemb: Automated embedding dimensionality search in streaming recommendations", ICDM 2021

Optimal Embedding Table Learning (AutoEmb) [Zhao et al. 2021]

In AutoML: Try different candidate
neural nets, pick best one per task

In AutoEmb: Try different candidate
𝑑𝑣 ∈ {2,8,32,64}, pick best one per 𝑣

Two optimization pathways:
• Reinforcement learning
 (RL, hard pick [Joglekar et al. 2020])
• Differentiable search
 (DARTS [Liu et al. 2018])

ℒ can be performance-oriented or incorporate size/diversity constraints.

Page 33

Possible Directions for Improvement
Note 1: Real-world practicality of variable size embeddings

Note 2: Performance bottleneck of variable size embeddings

Category-wise heterogeneity

iPhone 12 Pro (2020): 6 GB RAM
iPhone 8 (2017): 2 GB RAM
Age-wise heterogeneity

No one-size-fits-all solutions!

Coarse-grained search candidates, e.g., 𝑑𝑣 ∈ {2,8,32,64}, too discrete!

Using (near) continuous search interval, e.g.,
𝑑𝑣 ∈ [1,128] ∩ ℕ is desirable but costly!

[Yan et al. 2021]

Page 34

Variable Size Embeddings: RULE

Papers: Zheng et al., "Personalized Elastic Embedding Learning for On-Device Recommendation", TKDE 2024
Chen et al., "Learning elastic embeddings for customizing on-device recommenders", KDD 2021

Improvement on Note 1: Recommendation with Universally Learned
Elastic Embeddings (RULE) [Chen et al. 2021]

Memory-bounded evolutionary search [Real et al. 2019] is proposed for:
• Performance (of size combinations) estimator output �̀�
• Diversity (of retained entries) regularizer ℒ𝑟𝑒𝑔
A plus version: Personalized Elastic Embedding (PEE) [Zheng et al. 2024].

Page 35

Variable Size Embeddings: CIESS

Paper: Qu et al., "Continuous input embedding size search for recommender systems", SIGIR 2023

Improvement on Note 2: Continuous Input Embedding Size Search (CIESS)
[Qu et al. 2023]

Treating all possible 𝑑𝑣 in [1, 𝑑]	range as discrete candidates in RL is not ideal

CIESS uses twin delayed deep
deterministic policy gradient (TD3)
[Fujimoto et al. 2018] as the RL optimizer.

with a noisy start

A more careful candidate exploration
strategy - using random walk

Page 36

Compositional Embedding Methods
Compositional Embedding Methods cure the sparsification dilemma, too

Is shrinking 𝑑 the only way out? When 𝑁×𝑑 becomes 𝑁′×𝑑 (𝑁 ≪ 𝑁′), how to
make sure each item gets a unique embedding?

Intuition: For each 𝑣, If we pick two (or more) embeddings and compose into
one, then the 𝑁′×𝑑 matric can optimally represent -#

* items!

We can slice 𝑁′×𝑑 into 𝑠 smaller chunks (a.k.a. codebooks), as long as (-
#

8
)8≥ 𝑁

Can be concatenate, add,
element-wise product, etc.

Predefined/Learnable
assignment (more on
that later)

Page 37

Compositional Embeddings: QRT

Paper: Shi et al., "Compositional embeddings using complementary partitions for memory-efficient recommendation systems", KDD 2020

Quotient-Remainder Trick (QRT) [Shi et al. 2020]

Inspired by dual-hashing, QRT uses the collision-free quotient-remainder
formulation to hash each item ID into 𝑘 codebook indexes 𝑃1, 𝑃2, … 	𝑃𝑘.

Two variants: linear (left) and path-based (right) compositions

Faster
computation

More
Parameter
Reduction

Page 38

Compositional Embeddings: ODRec

Paper: Xia et al., "On-device next-item recommendation with self-supervised knowledge distillation", SIGIR 2022

Ultra-Compact On-Device Recommendation (ODRec) [Xia et al. 2022]
Recall matrix factorization – can we decompose the embedding matrix into a
sequence of matrix (tensor) products? ODRec uses semi-tensor product (STP)!

Toy example – how STP shrinks a 12×8 embedding table into STP form with
2×2-, 1×2x2-, and 1x3-shaped tensors. Further enhancements in ODRec:
• Knowledge distillation from a full teacher model
• Contrastive learning in the on-device model

Page 39

Compositional Embeddings: LEGCF

Paper: Liang et al., "Lightweight Embeddings for Graph Collaborative Filtering", SIGIR 2024

Lightweight Embeddings for Graph Collaborative Filtering (LEGCF)
[Liang et al. 2024]
Why predefine compositional assignment 𝐒 when we can learn one?

where 𝐒 ∈ ℝ9𝟎-×-
is a trainable sparse assignment matrix

The codebook 𝐄𝑚𝑒𝑡𝑎 ∈ ℝ-
#×/

 is trained via gradient descent. To avoid co-
adaptation [Hinton et al. 2012] between 𝐒 and 𝐄𝑚𝑒𝑡𝑎, 𝐒 is updated in closed form:

Page 40

Variable Size vs Composition
Both are sound solutions to the sparsification dilemma.

Variable Size Embeddings (VSE) vs. Compositional Embeddings (CE):

Desiderata VSE CE
Better memory efficiency than embedding sparsification + +
Flexible embedding dimension based on importance + –
No additional assignment storage + –
No need to modify downstream similarity functions – +
New user/items – ?

So, when to use which? It really depends.

Page 41

Sustainable Deployment: Stay Up-to-date

Papers: Yao et al., "Device-cloud collaborative learning for recommendation", KDD 2021
Xia et al., "Efficient on-device session-based recommendation", TOIS 2023

In many cases, deployment of ODRSs are not just one-off.
To keep on-device models up-to-date, patch learning is a solid choice.

Model-over-Models Distillation
(MoMoDistill) [Yao et al. 2021]

Communication-Efficient On-
Device Model Update (ODUpdate)
[Xia et al. 2023]

Page 42

Chapter 1: Welcome and Introduction

Chapter 2: Definition and Taxonomy of ODRSs

Chapter 3: Deployment and Inference of ODRSs

Chapter 6: Limitations and New Trends

Chapter 7: Open Discussions and More

Chapter 4: Training and Updating of ODRSs

Chapter 5: Security and Privacy of ODRSs

Page 43

Training and Updating for ODRSs
Motivation:
 Privacy concerns
 Real-time changes in user interests
Challenge: Limited user-item interaction data on devices complicates achieving
high performance through local training alone.
Solutions: Shift parts or all of the model training and updating to the device side.

Federated RSs: Enhances training through device-to-server communications.
Decentralized RSs: Facilitates device-to-device collaborative training.
Finetuning RSs: Utilizes local data to refine pre-trained models from the
server.

Page 44

Federated Recommendation Methods
Key Idea: Maintains privacy by avoiding direct data sharing, focusing solely on
parameter/gradients exchange.

Client selection: The server selects devices based on a client selection
strategy.
Local Training: Selected clients train models using their local datasets.
Model Upload: Devices upload trained model parameters or gradients back to
the server.
Global Aggregation: Server aggregates received parameters to update the
global model.

Page 45

Client Selection
Purpose: To select a subset of clients for participation in each training round.
Challenge: Client data is often non-iid, making the selection process crucial for
model performance.
Selection Strategies:

Random Selection:
Clients are chosen randomly for each training round.

Full Selection:
All clients participate in every training round.

Clustering-based Selection:
Group clients into clusters based on similarity to enhance the efficiency
and effectiveness of the training process.

Cross-client FedRSs Cross-platform FedRSs

Page 46

Clustering-based Selection
FedFast [Muhammad et al. 2020]: Uses k-means for clustering by metadata
or embeddings, selects one client per group.
PerFedRS [Luo et al. 2022]: Clusters users by uploaded embeddings and
selects clients proportionally within clusters.
SemiDFEGL [Qu et al. 2023]: Considers both client and item embeddings
during clustering and employs fuzzy c-means to allow items to overlap across
different groups.

Papers: Qu et al., “Semi-Decentralized Federated Ego Graph Learning for Recommendation”. WWW2023
Luo et al.. “Personalized Federated Recommendation via Joint Representation Learning, User Clustering, and Model Adaptation”. CIKM 2022
Muhammad et al. “FedFast: Going Beyond Average for Faster Training of Federated Recommender Systems”. KDD 2020.

Illustration of the proposed personalized federated recommendation framework [Luo et al. 2022]

Page 47 Image: Vasileios Perifanis et al., “Federated Neural Collaborative Filtering”. Know.-Based Syst. 2022,

Local Training and Model Upload

NCF-Based Methods:
The input to an NCF consists mainly of user embeddings and item embeddings
GMF side: uses the Hadamard product to calculate the dimension-wise
interaction embeddings of users and item
MLP side: user and item embeddings are concatenated to serve as the input
layer for the MLP

Architecture of neural collaborative filtering (NCF) [Perifanis et al. 2022]

Page 48

Papers: Chai et al., “Secure federated matrix factorization”. IEEE Intelligent Systems, 2020.

Perifanis et al., “Federated Neural Collaborative Filtering”. Know.-Based Syst. 2022

Zhang et al., “Dual Personalization on Federated Recommendation”. IJCAI 2023

Local Training and Model Upload

Different frameworks for the federated recommendation [Zhang et al. 2023]

FedMF [Chai et al. 2020]: Adapts matrix factorization to federated settings, updating
user embeddings locally and aggregating item gradients globally to preserve privacy.
FedNCF [Perifanis et al. 2022]: Extends Neural Collaborative Filtering to federated
environments, updating user embeddings locally and aggregating item and score
function parameters globally.
PFedRec [Zhang et al. 2023]: Introduces dual personalization in federated
recommendations, personalizing item embeddings and score functions on devices for
enhanced user-specific recommendations.

Page 49 Paper: Wu et al. ”A federated graph neural network framework for privacy-preserving personalization”. Nat Commun. 2022.

Local Training and Model Upload

Local data are limited
to ego graphs

How can we leverage high-order graph structural information to
improve model performance while maintaining privacy?

• Why do Federated GNN-based Recommender Systems undergo performance
degradation?

• Local data are limited to user-centric ego graphs
• Higher-order graph structural information cannot be directly utilized, leading to

decreased model performance.

Page 50 Paper: Wu et al. ”A federated graph neural network framework for privacy-preserving personalization”. Nat Commun. 2022.

Local Training and Model Upload
FedGNN [Wu et al. 2022] uses an additional third-party server to construct the global
graph.

• Users uploaded their encrypted interaction data to the third-party server.
• The third-party server constructs a global model, and shares encrypted

anonymized neighbor information with clients for local training
• The encryption process introduces significant computational and

communication overhead

Architecture of FedGNN [Wu et al. 2022]

Page 51

Local Training and Model Upload
SemiDFEGL [Qu et al. 2023] : Fake common items are generated to connect the
isolated ego graphs of each client, thereby establishing higher-order local subgraphs.

• Each client trains locally to learn local ego-graph embedding
• Server uses ego-graph embedding and item embeddings to perform fuzzy c-

means. Items grouped with a user serve as fake common neighbors to connect
different users.

• Users in each group can use the generated common neighbors as a bridge to
transmit user embedding.

Paper: Qu et al., “Semi-Decentralized Federated Ego Graph Learning for Recommendation”. WWW. 2023.

Architecture of SemiDFEGL [Qu et al. 2021]

Page 52

Local Training and Model Upload
FeSoG [Liu et al. 2022] utilizes additional social information between users (i.e., user-
user connections) to alleviate data sparsity and cold-start issues in the user-item
bipartite graph.

Paper: Liu et al.,”Federated Social Recommendation with Graph Neural Network”. ACM Trans. Intell. Syst. Technol. 2022

Architecture of FeSoG [Liu et al. 2022]

Page 53

Global Aggregation
Key idea: After the model upload process, the server aggregates these parameters or
gradients to learn a global model.

• Gradient Descent:

• FedAvg:

• Average Aggregation:

Page 54

Decentralized Recommendation Methods
Motivation: FedRSs heavily rely on a central server for aggregating user models and
redistributing the combined model
DecRSs: DecRSs reduce reliance on central servers by optimizing models through
local training and direct communication among specific user groups.

How to choose neighbors? How do neighbors collaborate in learning?"

Page 55 Paper: Long et al. “Decentralized Collaborative Learning Framework for Next POI Recommendation”. TOIS. 2023

Decentralized Recommendation Methods
DCLR [Long et al. 2023] propose to incorporate knowledge from either geographically
or semantically similar users into each local model with attentive aggregation and
mutual information maximization
 Neighbor selection: geographical information and category preferences

Collaborative learning: FedAvg

Architecture of DCLR [Long et al. 2023]

Page 56 Paper: Long et al. “Model-Agnostic Decentralized Collaborative Learning for On-Device POI Recommendation.” SIGIR. 2023.

Decentralized Recommendation Methods
MAC [Long et al. 2023] proposes a model-agnostic decentralized collaborative
learning method for devices with heterogeneous models.
 Neighbor selection: geographical information and category preferences

Collaborative learning: knowledge distillation

Architecture of MAC [Long et al. 2023]

Page 57

On-device Recommender Finetuning
FedRSs and DecRSs require substantial device computation and can lead to
extensive training times, which may deter user participation.
Devices fine-tune the global model using local data to better match individual user
preferences.

Reduced Training Demand: Lessens the computational load on individual
devices compared to full model training in FedRSs and DecRSs.
Increased User Engagement: Shortens training time, potentially increasing
participation from less active users.

Page 58 Paper: Yan et al,. “On-Device Learning for Model Personalization with Large-Scale Cloud-Coordinated Domain Adaption”. KDD. 2022.

Whole Model Finetuning
MPDA [Yan et al. 2022] enhances model personalization by leveraging large-scale
cloud-coordinated domain adaptation, where external samples from the cloud are used
to augment the user's local data for more effective on-device training.

Architecture of MPDA [Yan et al. 2022]

Page 59 Paper: Yao et al., “Device-cloud collaborative learning for recommendation”. KDD. 2021.

Patch Learning-based Finetuning
DCCL [Yao et al. 2021] introduces a novel approach for on-device
personalization by adding parameter-efficient patches to a cloud model.
Proposes a novel distillation technique that enhances the centralized cloud
model by aggregating insights from numerous personalized device models.

Architecture of DCCL [Yao et al. 2021]

Page 60

Chapter 1: Welcome and Introduction

Chapter 2: Definition and Taxonomy of ODRSs

Chapter 3: Deployment and Inference of ODRSs

Chapter 6: Limitations and New Trends

Chapter 7: Open Discussions and More

Chapter 4: Training and Updating of ODRSs

Chapter 5: Security and Privacy of ODRSs

Page 61

Papers: Wu et al., “Fedgnn: Federated graph neural network for privacy-preserving recommendation”. 2021

 Chai et al. “Secure federated matrix factorization.” IEEE Intelligent Systems. 2020

User Privacy Risks
Behavioral Data Leakage

FedGNN [Wu et al. 2021] indicates that a central server with inquisitive
intentions can easily identify rated items by analyzing non-zero gradients in
recommendation with explicit feedback.
FedMF [Chai et al. 2020] indicates that by scrutinizing gradients sent by clients
over two consecutive rounds, the central server can even infer the rating scores
of items

Page 62

Papers: Lin et al., “Fedrec: Federated recommendation with explicit feedback”. IEEE Intelligent Systems, 2020

 Liu et al. “Federated Social Recommendation with Graph Neural Network.” ACM Trans. Intell. Syst. Technol. 2022

 Liang et al. “Fedrec++: Lossless federated recommendation with explicit feedback” AAAI. 2021

Data Obfuscation
Synthetic ratings [Lin et al. 2020]
Pseudo-labeling techniques [Liu et al. 2022]
FedRec++ [Liang et al. 2021]: Denoising client

Architecture of Fedrec++ [Liang et al. 2021]

Page 63

Model Obfuscation
Model obfuscation refers to the method that adds noise to the model
gradients or model parameters.

Local Differential Privacy [Wu et al. 2022]: Adds noise to data before it is
sent to the server, such as

Gradient Clipping: Limits the magnitude of the gradients to a
maximum value 𝛿
Noise Addition: Adds Laplacian noise to the clipped gradients with
parameters

Balancing between privacy protection and model accuracy.

Paper: Wu et al. ”A federated graph neural network framework for privacy-preserving personalization”. Nat Commun. 2022.

Page 64

Papers: Perifanis et al., “FedPOIRec: Privacy-preserving federated poi recommendation with social influence”. Information Sciences 2023

 Cui et al. “Exploiting data sparsity in secure cross-platform social recommendation”. NeurIPS 2021

Encryption-based Protection
• Encrypt parameters before uploading them to the central server

• Homomorphic Encryption [Perifanis et al. 2023]
• enables computational operations on encrypted data without the

need for decryption
• encryption algorithms typically increase the computational burden

• Secure Multiparty Computation [Ying et al. 2020]
• multiple clients/platforms to jointly compute a function over their

inputs while keeping those inputs private
• Computational and communication overhead can be significant

Page 65

Poisoning Attacks and Countermeasures
Poisoning attacks involve deliberately inserting misleading or malicious data into a system to
manipulate outcomes or degrade performance.
Data Poisoning in ODRSs: Attackers inject fake interactions or manipulate existing data to
promote or demote products
Model Poisoning in ODRSs: Direct manipulation of the model’s parameters by uploading
poisoned updates under federated learning scenarios.

Page 66 Paper: Zhang et al. “PipAttack: Poisoning Federated Recommender Systems for Manipulating Item Promotion”. WSDM 2022

Model Poisoning Attacks
PipAttack [Zhang et al. 2023] achieves item promotion by aligning the embeddings
of target items with popular items, requiring below conditions:

• The adversary can access the global model at any iteration
• The adversary can access and alter all malicious users’ local models and

their gradients.
• The adversary knows the whole item set (not interactions) which is

commonly available on any e-commerce platform, as well as side information
that reflects each item’s popularity.

Architecture of PipAttack [Zhang et al. 2022]

Page 67
Paper: Yuan et al. “Manipulating federated recommender systems: Poisoning with synthetic users and its countermeasures”. SIGIR 2023.

Model Poisoning Attacks
PSMU [Yuan et al. 2023] constructs malicious users with random interactions,
and promote target items by improving their prediction scores higher than the
recommended items and alternative items.

HiCS [Yuan et al. 2023] utilizes two stages of gradient clipping and
sparsification updating to dilute the effects of poisoned gradients.

E.g.,

target item recommended item

＞

alternative productstarget item

＞

Page 68 Paper: Yuan et al. “Manipulating Visually-aware Federated Recommender Systems and Its Countermeasures”. TOIS. 2023

Hybrid Poisoning Attacks
PSMU(V) [Yuan et al. 2024] combines
data poisoning attacks and model
poisoning attacks in visually-aware
FedRSs
They promote target items by
contaminating both their visual signals
(e.g., item posters) and item embeddings,
highlighting the potential threats of
incorporating third-party images in
FedRSs.

Page 69

Chapter 1: Welcome and Introduction

Chapter 2: Definition and Taxonomy of ODRSs

Chapter 3: Deployment and Inference of ODRSs

Chapter 6: Limitations and New Trends

Chapter 7: Open Discussions and More

Chapter 4: Training and Updating of ODRSs

Chapter 5: Security and Privacy of ODRSs

Page 70

Heterogeneity in ODRSs
Most ODRSs assume that each device/user is homogeneous, but this assumption is
difficult to satisfy in real life due to the inherent heterogeneity among devices/users.

• System heterogeneity: storage, computation, and communication capabilities
• Data heterogeneity: data distribution, and user preferences
• Privacy heterogeneity: different privacy budget

System heterogeneity Data heterogeneity Privacy heterogeneity

Page 71 Paper: Yuan et al., “HeteFedRec: Federated Recommender Systems with Model Heterogeneity”. ICDE 2024.

Heterogeneity in ODRSs
HeteFedRec [Yuan et al. 2024] is a novel framework for federated recommender
systems that supports heterogeneous model sizes
It introduces a heterogeneous model aggregation strategy with dual-task learning
and dimensional decorrelation regularization to enable efficient knowledge sharing
among different-sized models.

Architecture of HeteFedRec [Yuan et al. 2024]

Page 72 Paper: Qu et al. "Towards Personalized Privacy: User-Governed Data Contribution for Federated Recommendation." WWW 2024.

Heterogeneity in ODRSs
CDCGNNFed [Qu et al. 2024] a novel framework for federated recommender systems
that supports heterogeneous privacy budgets

Users voluntarily choose to upload all, some, or no data to the server.
Graph mending: The server employs a graph mending strategy to predict missing
links.
Train user-centric ego graphs locally, and high-order graphs based on user-
shared data in the server in a collaborative manner via contrastive learning.

Architecture of CDCGNNFed [Qu et al. 2024]

Page 73

Image: Nicolò, et al. "Federated Unlearning: A Survey on Methods, Design Guidelines, and Evaluation Metrics." arXiv 2024

Yuan et al. “Federated unlearning for on-device recommendation. WSDM, 023

”.

Evolving User Dynamics in ODRSs
Unlike traditional systems, ODRSs often experience changes in the user base, with
new users joining and existing users leaving

Cold Start Problem in ODRSs: it also needs to efficiently deploy models to
newly added devices
Unlearning for ODRSs: selectively forgetting data from users who are no
longer active in the system [Yuan et al. 2023].

Page 74 Yuan et al., 2023. “Hide Your Model: A Parameter Transmission-free Federated Recommender System”. ICDE 2024.

Model Copyright Protection in ODRSs
In ODRSs, recommender models are exposed to all users, increasing the risk of
IP theft.
PTF-FedRec [Yuan et al. 2024] is a parameter transmission-free federated
recommendation framework

Achieves federated collaborative learning via sharing prediction scores over of
a subset of items.
Balance the protection of both clients’ data privacy and the service provider’s
model privacy

Architecture of PTF-FedRec [Yuan et al. 2024]

Page 75

Foundation Models in ODRSs
Current research primarily focuses on models that operate within cloud environments

Cloud-based systems often suffer from delays in processing user requests,
impacting user experience.
The substantial computational requirements of these models make them difficult
to deploy directly on user devices.

Model Lightweighting: Research into methods for reducing the size and complexity
of foundation models to facilitate deployment on user devices.
Privacy Considerations: Local processing of data on devices could enhance user
privacy by minimizing data transmission to the cloud.

Foundation
Models ODRSs

Page 76

Chapter 1: Welcome and Introduction

Chapter 2: Definition and Taxonomy of ODRSs

Chapter 3: Deployment and Inference of ODRSs

Chapter 6: Limitations and New Trends

Chapter 7: Open Discussions and More

Chapter 4: Training and Updating of ODRSs

Chapter 5: Security and Privacy of ODRSs

Page 77

Get More Information

https://arxiv.org/abs/2401.11441

https://arxiv.org/abs/2401.11441

Page 78

Special Issue CFP

Science China Information Science
https://www.sciengine.com/SCIS/newsDetails?slug=newsDetails&abbreviated=scp&specialId=73c5ff8ad2924f86bb41d1df936da116

https://www.sciengine.com/SCIS/newsDetails?slug=newsDetails&abbreviated=scp&specialId=73c5ff8ad2924f86bb41d1df936da116
https://www.sciengine.com/SCIS/newsDetails?slug=newsDetails&abbreviated=scp&specialId=73c5ff8ad2924f86bb41d1df936da116

Page 79

Thanks
Q&A

Thanks
Q&A

Page 80

References
(OAIC 2023) https://www.oaic.gov.au/__data/assets/pdf_file/0021/156531/Notifiable-data-breaches-report-July-to-
December-2023.pdf
(ACCC 2023) https://www.accc.gov.au/by-industry/telecommunications-and-internet/mobile-services-regulation/mobile-
infrastructure-report/mobile-infrastructure-report-2023
(Jones 2018) Jones, Nicola. "How to stop data centres from gobbling up the world’s electricity." Nature 561, no. 7722
(2018): 163-166.
(Noia et al. 2022) Noia, Tommaso Di, Nava Tintarev, Panagiota Fatourou, and Markus Schedl. "Recommender systems
under European AI regulations." Communications of the ACM 65, no. 4 (2022): 69-73.
(Ge et al. 2022) Ge, Yingqiang, Shuchang Liu, Zuohui Fu, Juntao Tan, Zelong Li, Shuyuan Xu, Yunqi Li, Yikun Xian, and
Yongfeng Zhang. "A survey on trustworthy recommender systems." ACM Transactions on Recommender
Systems (2022).
(Chen et al. 2021) Chen, Tong, Hongzhi Yin, Yujia Zheng, Zi Huang, Yang Wang, and Meng Wang. "Learning elastic
embeddings for customizing on-device recommenders." In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, pp. 138-147. 2021.
(Wang et al. 2020) Wang, Qinyong, Hongzhi Yin, Tong Chen, Zi Huang, Hao Wang, Yanchang Zhao, and Nguyen Quoc
Viet Hung. "Next point-of-interest recommendation on resource-constrained mobile devices." In Proceedings of the Web
conference 2020, pp. 906-916. 2020.
(Yin et al. 2024) Yin, Hongzhi, Liang Qu, Tong Chen, Wei Yuan, Ruiqi Zheng, Jing Long, Xin Xia, Yuhui Shi, and
Chengqi Zhang. "On-Device Recommender Systems: A Comprehensive Survey." arXiv preprint
arXiv:2401.11441 (2024).
(Gong et al. 2022) Gong, Xudong, Qinlin Feng, Yuan Zhang, Jiangling Qin, Weijie Ding, Biao Li, Peng Jiang, and Kun
Gai. "Real-time short video recommendation on mobile devices." In Proceedings of the 31st ACM international
conference on information & knowledge management, pp. 3103-3112. 2022.
(TFL 2024) TensorFlow Lite Recommendation. https://www.tensorflow.org/lite/examples/recommendation/overview
(Gong et al. 2020) Gong, Yu, Ziwen Jiang, Yufei Feng, Binbin Hu, Kaiqi Zhao, Qingwen Liu, and Wenwu Ou. "EdgeRec:
recommender system on edge in Mobile Taobao." In Proceedings of the 29th ACM International Conference on
Information & Knowledge Management, pp. 2477-2484. 2020.

https://www.oaic.gov.au/__data/assets/pdf_file/0021/156531/Notifiable-data-breaches-report-July-to-December-2023.pdf
https://www.oaic.gov.au/__data/assets/pdf_file/0021/156531/Notifiable-data-breaches-report-July-to-December-2023.pdf
https://www.accc.gov.au/by-industry/telecommunications-and-internet/mobile-services-regulation/mobile-infrastructure-report/mobile-infrastructure-report-2023
https://www.accc.gov.au/by-industry/telecommunications-and-internet/mobile-services-regulation/mobile-infrastructure-report/mobile-infrastructure-report-2023
https://www.tensorflow.org/lite/examples/recommendation/overview

Page 81

References
(Minto et al. 2021) Using Federated Learning to Improve Brave’s On-Device Recommendations While Protecting Your
Privacy. https://brave.com/blog/federated-learning/
(Koren et al. 2009) Koren, Yehuda, Robert Bell, and Chris Volinsky. "Matrix factorization techniques for recommender
systems." Computer42, no. 8 (2009): 30-37.
(Rendle 2011) Rendle, Steffen. "Factorization machines." In 2010 ICDM, pp. 995-1000. IEEE, 2010.
(He et al. 2017a) He, Xiangnan, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. "Neural collaborative
filtering." In Proceedings of the 26th international conference on world wide web, pp. 173-182. 2017.
(He et al. 2017b) He, Xiangnan, and Tat-Seng Chua. "Neural factorization machines for sparse predictive analytics."
In Proceedings of the 40th International ACM SIGIR, pp. 355-364. 2017.
(He et al. 2020) He, Xiangnan, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. "Lightgcn:
Simplifying and powering graph convolution network for recommendation." In Proceedings of the 43rd International ACM
SIGIR, pp. 639-648. 2020.
(Joglekar et al. 2020) Joglekar, Manas R., Cong Li, Mei Chen, Taibai Xu, Xiaoming Wang, Jay K. Adams, Pranav Khaitan,
Jiahui Liu, and Quoc V. Le. "Neural input search for large scale recommendation models." In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2387-2397. 2020.
(Zhang et al. 2016) Zhang, Hanwang, Fumin Shen, Wei Liu, Xiangnan He, Huanbo Luan, and Tat-Seng Chua. "Discrete
collaborative filtering." In Proceedings of the 39th International ACM SIGIR conference on Research and Development in
Information Retrieval, pp. 325-334. 2016.
(Liang et al. 2023) Liang, Xurong, Tong Chen, Quoc Viet Hung Nguyen, Jianxin Li, and Hongzhi Yin. "Learning compact
compositional embeddings via regularized pruning for recommendation." In 2023 IEEE ICDM, pp. 378-387. IEEE, 2023.
(Liang et al. 2024) Liang, Xurong, Tong Chen, Lizhen Cui, Yang Wang, Meng Wang, and Hongzhi Yin. "Lightweight
Embeddings for Graph Collaborative Filtering." SIGIR 2024.
(Wang et al. 2020) Wang, Qinyong, Hongzhi Yin, Tong Chen, Zi Huang, Hao Wang, Yanchang Zhao, and Nguyen Quoc
Viet Hung. "Next point-of-interest recommendation on resource-constrained mobile devices." In Proceedings of the Web
conference 2020, pp. 906-916. 2020.
(Wang et al. 2018) J. Wang et al., Billion-scale commodity embedding for e-commerce recommendation in alibaba. KDD,
2018.

https://brave.com/blog/federated-learning/

Page 82

References
(Eksombatchai et al. 2018) Eksombatchai, Chantat, Pranav Jindal, Jerry Zitao Liu, Yuchen Liu, Rahul Sharma, Charles
Sugnet, Mark Ulrich, and Jure Leskovec. "Pixie: A system for recommending 3+ billion items to 200+ million users in real-
time." In Proceedings of the 2018 world wide web conference, pp. 1775-1784. 2018.
(Zhou et al. 2012) Zhou, Ke, and Hongyuan Zha. "Learning binary codes for collaborative filtering." In Proceedings of the
18th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 498-506. 2012.
(Tan et al. 2020) Tan, Qiaoyu, Ninghao Liu, Xing Zhao, Hongxia Yang, Jingren Zhou, and Xia Hu. "Learning to hash with
graph neural networks for recommender systems." In Proceedings of The Web Conference 2020, pp. 1988-1998. 2020.
(Yoshua et al. 2013) Bengio, Yoshua, Nicholas Léonard, and Aaron Courville. "Estimating or propagating gradients
through stochastic neurons for conditional computation." arXiv preprint arXiv:1308.3432 (2013).
(Sedaghati et al. 2015) Sedaghati, Naser, Te Mu, Louis-Noel Pouchet, Srinivasan Parthasarathy, and P. Sadayappan.
"Automatic selection of sparse matrix representation on GPUs." In Proceedings of the 29th ACM on International
Conference on Supercomputing, pp. 99-108. 2015.
(Virtanen et al. 2020) Virtanen, Pauli, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski et al. "SciPy 1.0: fundamental algorithms for scientific computing in Python." Nature methods 17, no. 3
(2020): 261-272.
(Liu et al. 2021) Liu, Siyi, Chen Gao, Yihong Chen, Depeng Jin, and Yong Li. "Learnable embedding sizes for
recommender systems." ICLR 2021.
(Lyu et al. 2022) Lyu, Fuyuan, Xing Tang, Hong Zhu, Huifeng Guo, Yingxue Zhang, Ruiming Tang, and Xue Liu.
"Optembed: Learning optimal embedding table for click-through rate prediction." In Proceedings of the 31st ACM
International Conference on Information & Knowledge Management, pp. 1399-1409. 2022.
(Qu et al. 2022) Qu, Liang, Yonghong Ye, Ningzhi Tang, Lixin Zhang, Yuhui Shi, and Hongzhi Yin. "Single-shot embedding
dimension search in recommender system." In Proceedings of the 45th International ACM SIGIR conference on research
and development in Information Retrieval, pp. 513-522. 2022.
(Zhao et al. 2021) Zhao, Xiangyu, Haochen Liu, Wenqi Fan, Hui Liu, Jiliang Tang, Chong Wang, Ming Chen, Xudong
Zheng, Xiaobing Liu, and Xiwang Yang. "Autoemb: Automated embedding dimensionality search in streaming
recommendations." In 2021 IEEE International Conference on Data Mining (ICDM), pp. 896-905. IEEE, 2021.

Page 83

References
(Liu et al. 2018) Liu, Hanxiao, Karen Simonyan, and Yiming Yang. "DARTS: Differentiable Architecture Search."
In International Conference on Learning Representations. 2018.
(Yan et al. 2021) Yan, Bencheng, Pengjie Wang, Kai Zhang, Wei Lin, Kuang-Chih Lee, Jian Xu, and Bo Zheng. "Learning
effective and efficient embedding via an adaptively-masked twins-based layer." In Proceedings of the 30th ACM
International Conference on Information & Knowledge Management, pp. 3568-3572. 2021.
(Real et al. 2019) Real, Esteban, Alok Aggarwal, Yanping Huang, and Quoc V. Le. "Regularized evolution for image
classifier architecture search." In Proceedings of the aaai conference on artificial intelligence, vol. 33, no. 01, pp. 4780-
4789. 2019.
(Zheng et al. 2024) Zheng, Ruiqi, Liang Qu, Tong Chen, Kai Zheng, Yuhui Shi, and Hongzhi Yin. "Personalized Elastic
Embedding Learning for On-Device Recommendation." IEEE Transactions on Knowledge and Data Engineering (2024).
(Qu et al. 2023) Qu, Yunke, Tong Chen, Xiangyu Zhao, Lizhen Cui, Kai Zheng, and Hongzhi Yin. "Continuous input
embedding size search for recommender systems." In Proceedings of the 46th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 708-717. 2023.
(Fujimoto et al. 2018) Fujimoto, Scott, Herke Hoof, and David Meger. "Addressing function approximation error in actor-
critic methods." In International conference on machine learning, pp. 1587-1596. PMLR, 2018.
(Shi et al. 2020) Shi, Hao-Jun Michael, Dheevatsa Mudigere, Maxim Naumov, and Jiyan Yang. "Compositional
embeddings using complementary partitions for memory-efficient recommendation systems." In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 165-175. 2020.
(Xia et al. 2022) Xia, Xin, Hongzhi Yin, Junliang Yu, Qinyong Wang, Guandong Xu, and Quoc Viet Hung Nguyen. "On-
device next-item recommendation with self-supervised knowledge distillation." In Proceedings of the 45th International
ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 546-555. 2022.
(Hinton et al. 2012) Hinton, Geoffrey E., Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R. Salakhutdinov.
"Improving neural networks by preventing co-adaptation of feature detectors." arXiv preprint arXiv:1207.0580 (2012).

Page 84

References
(Yao et al. 2021) Yao, Jiangchao, Feng Wang, Kunyang Jia, Bo Han, Jingren Zhou, and Hongxia Yang. "Device-cloud
collaborative learning for recommendation." In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pp. 3865-3874. 2021.
(Rendle et al. 2009) Rendle, Steffen, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. "BPR: Bayesian
personalized ranking from implicit feedback." In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial
Intelligence, pp. 452-461. 2009.
(Zhou et al. 2018) Zhou, Guorui, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin, Han
Li, and Kun Gai. "Deep interest network for click-through rate prediction." In Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery & data mining, pp. 1059-1068. 2018.
(Chen et al. 2020) Chen, Tong, Hongzhi Yin, Quoc Viet Hung Nguyen, Wen-Chih Peng, Xue Li, and Xiaofang Zhou.
"Sequence-aware factorization machines for temporal predictive analytics." In 2020 IEEE 36th international conference on
data engineering (ICDE), pp. 1405-1416. IEEE, 2020.
(Xia et al. 2023) Xia, Xin, Junliang Yu, Qinyong Wang, Chaoqun Yang, Nguyen Quoc Viet Hung, and Hongzhi Yin.
"Efficient on-device session-based recommendation." ACM Transactions on Information Systems 41, no. 4 (2023): 1-24.

