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Overview of Recommender Systems
Role of Recommender Systems (RSs):
• Counteracting information overload
• Providing tailored user experience
• Targeted marketing and advertising

 

https://flipboard.comRSs are becoming ubiquitous – let’s do 
an App check on your phone:

And (not so) surprisingly, they are all equipped with RS algorithms!
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How Do Current RSs Work?
Most existing recommendation architectures are cloud-based.

 

Player Role
Cloud-based RS Computing (training&inference) + interaction data storage
Personal device Data collection + result display

cloud-based recommender

`

`

user data

recommendation results
personal device
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Where Things Go Wrong on The Cloud
Question: Is this the optimal recommendation paradigm? What can go wrong?

Is my data safe? 

 What happens if there’s no Internet?

 

What costs us to run those data centers?

 

Some stats [OAIC 2013, ACCC 2013, Jones 2018]:
• In Australia, 892 reported data breaches in 2023, with 35% affecting 

>100 users and 64% coming from retail, health, and financing services!
• Optus (a major Aussie mobile service provider) only has 70% 3G 

geographic coverage – the number drops to 60% in remote areas 
where all the point of interests and great campsites are found.

• Information and communications technology (ICT) is predicted to use 
21% of the global electricity, where data centers accounts for 1/3. 
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Downsides of Cloud-based RSs
With the rise of privacy awareness, need for service timeliness, and 
promotion for green AI, cloud-based RSs are showing their downsides:

Privacy has always been a challenge for RSs [Ge et al 2022]. 
New privacy legislations like GDPR (EU), CCPA (US), and PIPL (CHN) 
further bottlenecks the user of customer information [Noia et al. 2022].

Current RSs heavily rely on wireless communication [Chen et. al. 2021]. 
Think of the online shopping experience during “Black Friday” sales in the 
US, or the “double-11” discount campaign – is the timeliness still there?

Could-based RSs lead to huge computation resource cost & energy 
footprints [Wang et. al. 2020].Is this affordable for business at all scales? Is 
this sustainable in a long-term view? Are we wasting the increasing 
computing power on edge devices? 
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A Remedy: On-Device RSs
An emerging research direction: on-device recommender systems, 
a.k.a. DeviceRSs, or ODRSs [Yin et al. 2024].

Role of devices: data collection & display & computing!

deploy locally
lightweight 

recommender

Role of the cloud: 
• Job assignment, 
• Parameter transporting, 
• Version control
• …

Tasks are lighter, no full model 
training or data handling 
(More on it later)



Page 9

Promises of ODRSs

Feature 1: No need to transmit data elsewhere for analysis   

Feature 2: A recommender is onboard to generate results

Feature 3: Most computations are done on small devices   

Private

Instant

Resource
-efficient

As a new recommendation paradigm, ODRSs offer great promises.

Not a fairy tale in academia – plenty of R&D outcomes already:
• Kuaishou – Short Video RS on Mobile Devices [Gong et al. 2022]
• Google – TensorFlow Lite Recommendation [TFL 2024] 
• Taobao – The EdgeRec System [Gong et al. 2020]
• Brave Browser – News RS uses Federated Learning [Minto et al. 2021] 
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ODRSs: What’s Important?
In this tutorial, we will cover three technical pillars of ODRSs.

I. Deployment and Inference: 
“Primitive” solution to ODRSs – Given a complex recommendation model, how 
do we adapt it to resource-constraint on-device environments?

II. Training and Updating: 
“Ground-up” solution to ODRSs – Can we design models and learning 
algorithms specific to on-device settings from scratch?

III. Security and Privacy: 
“Safeguard” for ODRSs – What countermeasures can we take to protect 
ODRSs from adversaries in the open cyber space?

Now, let’s unfold the core of this new recommendation paradigm!
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ODRSs: What’s Important? (Cont.)

I. Deployment 
and Inference

II. Training 
and Updating

III. Security 
and Privacy

A visual illustration:
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Definition
Definition 1 – Traditional, Basic Recommendation:
In:    Dataset recording interactions between users 𝑢 ∈ 𝑈 and items 𝑣 ∈ 𝑉.
Out: A pairwise similarity function 𝑓(𝑢	, 𝑣), which is trained to capture the 
affinity between each (𝑢, 𝑣) pair.

𝑓(𝑢	, 𝑣) can be parameterized in multiple ways, such as: 
• Matrix Factorization [Koren et al. 2009]
• Factorization Machines [Rendle 2011]
• Neural Collaborative Filtering, e.g., NeuMF [He et al. 2017a]
• Neural Factorization Machines, e.g., NFM [He et al. 2017b]
• Graph Neural Networks, e.g., LightGCN [He et al. 2020] 
• And many more…
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Definition (Cont.)
For 𝑓 𝑢, 𝑣 , both the model choice and optimization objective are dependent on 
the actual task:

1. Top-k recommendation 
     Bayesian Personalized Ranking (BPR) [Rendle et al. 2009] loss: 

ℒ𝑟𝑒𝑐 =,
∀(#,%!,%")

− log 𝜎(𝑓 𝑢, 𝑣' − 𝑓(𝑢, 𝑣())

2. Click-through rate prediction
     Negative log-likehood loss [Zhou et al. 2018]:
ℒ𝑟𝑒𝑐 =,

∀(#,%,))
−(𝑦 log 𝑓 𝑢, 𝑣 + 1 − 𝑦 log(1 − 𝑓 𝑢, 𝑣 ))

3. Rating prediction
     Squared error loss [Chen et al. 2020]:

ℒ𝑟𝑒𝑐 =,
∀(#,%,))

(𝑦 − 𝑓(𝑢, 𝑣))*

our
focus
today

less so
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Definition (Cont.)
Definition 2 (Informal) – Recommendation under On-Device Settings
Naturally, 𝑓(𝑢	, 𝑣) needs to meet additional on-device requirements.

Deployment and inference – no on-device training needed
[Parameter size] Can 𝑓(𝑢	, 𝑣) fit in small memory? 
[Inference time] Can 𝑓(𝑢	, 𝑣) evaluate quickly on-device? 

Training and updating – real-time on-device training needed
[Training efficiency] Will training 𝑓(𝑢	, 𝑣) consume much energy? 
[Communication overhead] Does 𝑓(𝑢	, 𝑣) frequently exchange info elsewhere?
 
Security and privacy – passive and active protection
[Model privacy] Is the sharable info (e.g., weights) in 𝑓(𝑢	, 𝑣) sensitive? 
[Attack resistance] Is 𝑓(𝑢	, 𝑣) robustness to adversarial attacks? 
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Taxonomy: Deployment and Inference
Our taxonomy w.r.t. the deployment and inference of ODRSs.

The corresponding references to different methods can be found in our 
comprehensive survey [Yin et al. 2024].



Page 17

Taxonomy: Training and Updating
Our taxonomy w.r.t. the training and updating of ODRSs.

The corresponding references to different methods can be found in our 
comprehensive survey [Yin et al. 2024].
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Taxonomy: Security and Privacy
Our taxonomy w.r.t. the security and privacy of ODRSs.

The corresponding references to different methods can be found in our 
comprehensive survey [Yin et al. 2024].
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Deployment and Inference: An Overview
Let’s have a quick recap on this figure:

Question: What is the key element?
The key is to build a lightly parameterized recommender.

Almost all existing studies [Zhang et al. 2016, Joglekar et al. 2020, Liang et al. 
2023, Liang et al. 2024] are around embeddings.
• What are embeddings?
• Why do they matter?
• How lightweight embeddings are achieved in ODRSs?
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Embeddings: What
In RSs, embeddings are ℝ𝑑 vector representations of entities. 

++

++ +

iPad [0.12, 0.53,…, 0.64]

MacBook
MacBook Pro 
[0.19, 0.73,…, 0.54]

Amy Bob

[0.05, 0.22,…, 0.12]

Entities in ID-based recommendation: 
“IDs” of users and items – just users and items

Entities in feature-based recommendation:
Features describing users and items, plus their IDs

User-item affinity can be easily reflected via 
distance metrics (cosine, dot, Euclidean, etc.)

Embeddings are the main parameter source 
of recommender 𝑓(𝑢	, 𝑣)! 
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Embeddings: Why

Toy Example: #Param of a sequential recommender 𝑓(𝑢	, 𝑣) [Wang et al. 2020]

*10,000 items with 𝑑 = 128

Real Example: Industries are dealing with billion-scale item sets! Examples 
include Pinterest [Eksombatchai et al. 2018] and Alibaba [Wang et al. 2018].

10 million ( +
+,,

 billion) items with 𝑑 = 128: 128,000,000 digits

5 GB in a 32-bit system

𝑁	×	𝑑     with embedding dimension 𝑑 
Only considering 𝑁	items, digits needed for embeddings:

*Item Emb. Other Model Param.
1,280,000 approx. 70,000

Imagine a shopping mobile App 5-10 GB in size, and in memory! 

95% of the #param
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Binary Code-based Methods
Early Approach – Binary Codes: 
Turn real-valued vectors into binary codes [Zhou et al. 2012, Zhang et al. 2016]

Let 𝐞 ∈ ℝ𝑑 denote a user/item embedding, and let 𝐛 ∈ {−1,+1}𝑑 denote the 
corresponding binary code

𝐛 = 	𝑠𝑖𝑔𝑛(𝐞)

𝑏i = 	𝑠𝑖𝑔𝑛 𝑒i = F+1, 𝑖𝑓	𝑒𝑖 ≥ 0
−1, 𝑖𝑓	𝑒𝑖 < 0

Continuous space Hamming space

Result: A 𝑑-length code can represent 2𝑑 − 1 users/items (theoretically);
 𝑑 = 32 is good for 4 billion. 
Fast similarity evaluation via logical operators; compact Boolean storage!
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Binary Codes: DCF

Paper: Zhang et al., "Discrete collaborative filtering", SIGIR 2016

Discrete Collaborative Filtering (DCF) [Zhang et al. 2016]

after 
balancing

after 
decorrelation

Improvements compared with earlier variants:
Less squashing, and binary codes are more mutually discriminative
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Binary Codes: HashGNN

Paper: Tan et al., "Learning to hash with graph neural networks for recommender systems”, WWW 2020

Deep Hashing with GNNs (HashGNN) [Tan et al. 2020]

Two joint losses are minimized for higher-quality binary codes

Reconstruct observed interactions

BPR loss with negative samples

Gating between 
real-valued (𝐳) 
and binary (𝐡) 
representations:

Straight-through estimator (STE) [Bengio et al. 2013] is used for back propagation. 
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Cons of Binary Codes

Distinctiveness of 
individual binary codes

Example:
 

Informative similarity 
score produced by 𝑓(𝑢	, 𝑣) ≠

[1, 1, 1, 1]

[-1, 1, 1, 1]

[1,-1, 1, 1]

[1, 1,-1, 1]

[1, 1, 1,-1]

logical similarity 𝑓 𝑢	, 𝑣1 = 0.75

𝑓 𝑢	, 𝑣2 = 0.75

𝑓 𝑢	, 𝑣3 = 0.75

𝑓 𝑢	, 𝑣4 = 0.75

Same scores, 
undistinguishable 
for ranking!

Result: Binary codes have strong performance compromise.
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Embedding Sparsification Methods
𝑁

𝑑

zero-
masking

Dense embedding 
matrix 𝐄 ∈ ℝ-×/ 

Sparsified embedding 
matrix 𝐄′ ∈ ℝ-×/, 𝐄0 0 ≤ 𝑡

sparsity 
threshold

Result: Sparsified matrices can be efficiently stored [Sedaghati et al. 
2015, Virtanen et al. 2020] – only 𝑡 matters; consistent length 𝑑 does not 
affect subsequent computations.

Trainable algorithms
(more on this later)

So, can we shift back to real-valued embeddings, but make them lighter?
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Embedding Sparsification: PEP

Paper: Liu et al., "Learnable embedding sizes for recommender systems”, ICLR 2021

Plug-in Embedding Pruning (PEP) [Liu et al. 2021]
Directly selecting 𝑡 entries to keep while minimizing ℒ123 is NP-hard
Can we learn it? What if we don’t want to use reinforce learning?

Reparameterization:

A large 𝑔(𝑠)	drops out the corresponding entry in 𝐕 due to the effect of ReLU

𝑠: learnable
𝑔(U): sigmoid

After 𝑠	achieves the sparsity, stop pruning and retrain the sparsified RS 
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Embedding Sparsification: SSEDS

Paper: Qu et al., "Single-shot embedding dimension search in recommender system", SIGIR 2022

Single-Shot Embedding Dimension Search (SSEDS) [Qu et al. 2022]

Can we do this quicker than PEP, e.g., in one shot? 

Speed up with continuous relaxation of 𝜶:

Given a sparsity target, prune the least 
important (small 𝑔4,5 magnitude) entries from 
the embedding table until target is met

To decide the binary mask 𝜶, it comes down 
to the importance of each dimension in 𝑑:
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Cons of Embedding Sparsification
A quick memory test with 𝑁 = 	100,000, 𝑑 = 128:

0 0 0
0 0 0
0 0
0 0 0

𝑁

𝑑 75% of 𝑑 pruned directly use /
6
= 32

≈102MB
(Numpy dense)

≈ 51MB
(Scipy sparse)

≈ 26MB
(Numpy dense)> >

Sparsification needs extra parameters [Lyu et al. 2022] to index 0s 

Not as good as 𝑁× /
6
 dense!

Will this be a solution?
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Variable Size Embedding Methods
Variable Size Embeddings can address the sparsification dilemma

Should we simply shrink 𝑑 to 𝑑′ ≪ 𝑑 uniformly? So 𝑁×𝑑′ ≪ 𝑁×𝑑.

Intuition: Still taking item as an example – each has different importance to 
the recommendation task, hence does not require equal embedding dimensions. 

Relaxation: We allow each item 𝑣’s embedding size 𝑑𝑣 to vary, as long as we 
result in 𝑁×𝑑′ total parameters!

size 
search

Dense embedding 
matrix 𝐄 ∈ ℝ-×/ 

Variable size 
embeddings, 
∑%7+- 𝑑𝑣 	≤ 𝑡

AutoML algorithms
(more on this later)



Page 32

Variable Size Embeddings: AutoEmb

Paper: Zhao et al., "Autoemb: Automated embedding dimensionality search in streaming recommendations", ICDM 2021

Optimal Embedding Table Learning (AutoEmb) [Zhao et al. 2021]

In AutoML: Try different candidate 
neural nets, pick best one per task

In AutoEmb: Try different candidate 
𝑑𝑣 ∈ {2,8,32,64}, pick best one per 𝑣

Two optimization pathways:
• Reinforcement learning
    (RL, hard pick [Joglekar et al. 2020])
• Differentiable search 
    (DARTS [Liu et al. 2018])

ℒ can be performance-oriented or incorporate size/diversity constraints.
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Possible Directions for Improvement
Note 1: Real-world practicality of variable size embeddings

Note 2: Performance bottleneck of variable size embeddings

Category-wise heterogeneity

iPhone 12 Pro (2020): 6 GB RAM
iPhone 8 (2017): 2 GB RAM
Age-wise heterogeneity

No one-size-fits-all solutions!

Coarse-grained search candidates, e.g., 𝑑𝑣 ∈ {2,8,32,64}, too discrete!

Using (near) continuous search interval, e.g., 
𝑑𝑣 ∈ [1,128] ∩ ℕ is desirable but costly!

[Yan et al. 2021]
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Variable Size Embeddings: RULE

Papers: Zheng et al., "Personalized Elastic Embedding Learning for On-Device Recommendation", TKDE 2024
Chen et al., "Learning elastic embeddings for customizing on-device recommenders", KDD 2021

Improvement on Note 1: Recommendation with Universally Learned 
Elastic Embeddings (RULE) [Chen et al. 2021]

Memory-bounded evolutionary search [Real et al. 2019] is proposed for:
• Performance (of size combinations) estimator output �̀�
• Diversity (of retained entries) regularizer ℒ𝑟𝑒𝑔
A plus version: Personalized Elastic Embedding (PEE) [Zheng et al. 2024].
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Variable Size Embeddings: CIESS

Paper: Qu et al., "Continuous input embedding size search for recommender systems", SIGIR 2023

Improvement on Note 2: Continuous Input Embedding Size Search (CIESS) 
[Qu et al. 2023]

Treating all possible 𝑑𝑣 in [1, 𝑑]	range as discrete candidates in RL is not ideal

CIESS uses twin delayed deep 
deterministic policy gradient (TD3) 
[Fujimoto et al. 2018] as the RL optimizer.

with a noisy start

A more careful candidate exploration 
strategy - using random walk
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Compositional Embedding Methods
Compositional Embedding Methods cure the sparsification dilemma, too

Is shrinking 𝑑 the only way out? When 𝑁×𝑑 becomes 𝑁′×𝑑 (𝑁 ≪ 𝑁′), how to 
make sure each item gets a unique embedding?

Intuition: For each 𝑣, If we pick two (or more) embeddings and compose into 
one, then the 𝑁′×𝑑 matric can optimally represent -#

*  items! 

We can slice 𝑁′×𝑑 into 𝑠 smaller chunks (a.k.a. codebooks), as long as (-
#

8
)8≥ 𝑁

Can be concatenate, add, 
element-wise product, etc.

Predefined/Learnable 
assignment (more on 
that later)
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Compositional Embeddings: QRT 

Paper: Shi et al., "Compositional embeddings using complementary partitions for memory-efficient recommendation systems", KDD 2020

Quotient-Remainder Trick (QRT) [Shi et al. 2020]

Inspired by dual-hashing, QRT uses the collision-free quotient-remainder 
formulation to hash each item ID into 𝑘 codebook indexes 𝑃1, 𝑃2, … 	𝑃𝑘.  

Two variants: linear (left) and path-based (right) compositions

Faster 
computation

More 
Parameter 
Reduction 
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Compositional Embeddings: ODRec 

Paper: Xia et al., "On-device next-item recommendation with self-supervised knowledge distillation", SIGIR 2022

Ultra-Compact On-Device Recommendation (ODRec) [Xia et al. 2022]
Recall matrix factorization – can we decompose the embedding matrix into a 
sequence of matrix (tensor) products? ODRec uses semi-tensor product (STP)! 

Toy example – how STP shrinks a 12×8 embedding table into STP form with 
2×2-, 1×2x2-, and 1x3-shaped tensors. Further enhancements in ODRec:
• Knowledge distillation from a full teacher model
• Contrastive learning in the on-device model   
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Compositional Embeddings: LEGCF 

Paper: Liang et al., "Lightweight Embeddings for Graph Collaborative Filtering", SIGIR 2024

Lightweight Embeddings for Graph Collaborative Filtering (LEGCF) 
[Liang et al. 2024]
Why predefine compositional assignment 𝐒 when we can learn one?

where 𝐒 ∈ ℝ9𝟎-×-
# is a trainable sparse assignment matrix

The codebook 𝐄𝑚𝑒𝑡𝑎 ∈ ℝ-
#×/

 is trained via gradient descent. To avoid co-
adaptation [Hinton et al. 2012] between 𝐒 and 𝐄𝑚𝑒𝑡𝑎, 𝐒 is updated in closed form: 
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Variable Size vs Composition
Both are sound solutions to the sparsification dilemma. 

Variable Size Embeddings (VSE) vs. Compositional Embeddings (CE):

Desiderata VSE CE
Better memory efficiency than embedding sparsification + +
Flexible embedding dimension based on importance + –
No additional assignment storage + –
No need to modify downstream similarity functions – +
New user/items – ?

So, when to use which? It really depends.
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Sustainable Deployment: Stay Up-to-date

Papers: Yao et al., "Device-cloud collaborative learning for recommendation", KDD 2021
Xia et al., "Efficient on-device session-based recommendation", TOIS 2023

In many cases, deployment of ODRSs are not just one-off.
To keep on-device models up-to-date, patch learning is a solid choice.

Model-over-Models Distillation 
(MoMoDistill) [Yao et al. 2021]

Communication-Efficient On-
Device Model Update (ODUpdate)
[Xia et al. 2023]
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Training and Updating for ODRSs
Motivation: 
 Privacy concerns
 Real-time changes in user interests
Challenge: Limited user-item interaction data on devices complicates achieving 
high performance through local training alone.
Solutions: Shift parts or all of the model training and updating to the device side.

Federated RSs: Enhances training through device-to-server communications.
Decentralized RSs: Facilitates device-to-device collaborative training.
Finetuning RSs: Utilizes local data to refine pre-trained models from the 
server.
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Federated Recommendation Methods
Key Idea: Maintains privacy by avoiding direct data sharing, focusing solely on 
parameter/gradients exchange.

Client selection: The server selects devices based on a client selection 
strategy.
Local Training: Selected clients train models using their local datasets.
Model Upload: Devices upload trained model parameters or gradients back to 
the server.
Global Aggregation: Server aggregates received parameters to update the 
global model.
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Client Selection
Purpose: To select a subset of clients for participation in each training round.
Challenge: Client data is often non-iid, making the selection process crucial for 
model performance.
Selection Strategies:

Random Selection: 
Clients are chosen randomly for each training round.

Full Selection:
All clients participate in every training round.

Clustering-based Selection:
Group clients into clusters based on similarity to enhance the efficiency 
and effectiveness of the training process.

Cross-client FedRSs Cross-platform FedRSs
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Clustering-based Selection
FedFast [Muhammad et al. 2020]: Uses k-means for clustering by metadata 
or embeddings, selects one client per group.
PerFedRS [Luo et al. 2022]: Clusters users by uploaded embeddings and 
selects clients proportionally within clusters.
SemiDFEGL [Qu et al. 2023]: Considers both client and item embeddings 
during clustering and employs fuzzy c-means to allow items to overlap across 
different groups.

Papers: Qu et al., “Semi-Decentralized Federated Ego Graph Learning for Recommendation”. WWW2023
Luo et al.. “Personalized Federated Recommendation via Joint Representation Learning, User Clustering, and Model Adaptation”. CIKM 2022
Muhammad et al. “FedFast: Going Beyond Average for Faster Training of Federated Recommender Systems”. KDD 2020.

Illustration of the proposed personalized federated recommendation framework [Luo et al. 2022] 
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Local Training and Model Upload

NCF-Based Methods:
The input to an NCF consists mainly of user embeddings and item embeddings
GMF side: uses the Hadamard product to calculate the dimension-wise 
interaction embeddings of users and item
MLP side: user and item embeddings are concatenated to serve as the input 
layer for the MLP
 

Architecture of neural collaborative filtering (NCF) [Perifanis et al. 2022]
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Papers: Chai et al., “Secure federated matrix factorization”. IEEE Intelligent Systems, 2020.

Perifanis et al., “Federated Neural Collaborative Filtering”. Know.-Based Syst. 2022

Zhang et al., “Dual Personalization on Federated Recommendation”. IJCAI 2023

Local Training and Model Upload

Different frameworks for the federated recommendation [Zhang et al. 2023]

FedMF [Chai et al. 2020]: Adapts matrix factorization to federated settings, updating 
user embeddings locally and aggregating item gradients globally to preserve privacy.
FedNCF [Perifanis et al. 2022]: Extends Neural Collaborative Filtering to federated 
environments, updating user embeddings locally and aggregating item and score 
function parameters globally.
PFedRec [Zhang et al. 2023]: Introduces dual personalization in federated 
recommendations, personalizing item embeddings and score functions on devices for 
enhanced user-specific recommendations.
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Local Training and Model Upload

Local data are limited 
to ego graphs

How can we leverage high-order graph structural information to 
improve model performance while maintaining privacy?

• Why do Federated GNN-based Recommender Systems undergo performance 
degradation?

• Local data are limited to user-centric ego graphs
• Higher-order graph structural information cannot be directly utilized, leading to 

decreased model performance.
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Local Training and Model Upload
FedGNN [Wu et al. 2022] uses an additional third-party server to construct the global 
graph.

• Users uploaded their encrypted interaction data to the third-party server.
• The third-party server constructs a global model, and shares encrypted 

anonymized neighbor information with clients for local training
• The encryption process introduces significant computational and 

communication overhead

Architecture of FedGNN [Wu et al. 2022]
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Local Training and Model Upload
SemiDFEGL [Qu et al. 2023] : Fake common items are generated to connect the 
isolated ego graphs of each client, thereby establishing higher-order local subgraphs.

• Each client trains locally to learn local ego-graph embedding
• Server uses ego-graph embedding and item embeddings to perform fuzzy c-

means. Items grouped with a user serve as fake common neighbors to connect 
different users.

• Users in each group can use the generated common neighbors as a bridge to 
transmit user embedding.

Paper: Qu et al., “Semi-Decentralized Federated Ego Graph Learning for Recommendation”. WWW. 2023.

Architecture of SemiDFEGL [Qu et al. 2021]
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Local Training and Model Upload
FeSoG [Liu et al. 2022] utilizes additional social information between users (i.e., user-
user connections) to alleviate data sparsity and cold-start issues in the user-item 
bipartite graph.

Paper: Liu et al.,”Federated Social Recommendation with Graph Neural Network”. ACM Trans. Intell. Syst. Technol. 2022

Architecture of FeSoG [Liu et al. 2022]
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Global Aggregation
Key idea: After the model upload process, the server aggregates these parameters or 
gradients to learn a global model.

• Gradient Descent:

• FedAvg: 

• Average Aggregation:
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Decentralized Recommendation Methods
Motivation: FedRSs heavily rely on a central server for aggregating user models and 
redistributing the combined model
DecRSs: DecRSs reduce reliance on central servers by optimizing models through 
local training and direct communication among specific user groups.

How to choose neighbors? How do neighbors collaborate in learning?"
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Decentralized Recommendation Methods
DCLR [Long et al. 2023] propose to incorporate knowledge from either geographically 
or semantically similar users into each local model with attentive aggregation and 
mutual information maximization
 Neighbor selection: geographical information and category preferences

Collaborative learning: FedAvg
 

Architecture of DCLR [Long et al. 2023]



Page 56 Paper: Long et al. “Model-Agnostic Decentralized Collaborative Learning for On-Device POI Recommendation.” SIGIR. 2023.

Decentralized Recommendation Methods
MAC [Long et al. 2023] proposes a model-agnostic decentralized collaborative 
learning method for devices with heterogeneous models.
 Neighbor selection: geographical information and category preferences

Collaborative learning: knowledge distillation
 

Architecture of MAC [Long et al. 2023]
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On-device Recommender Finetuning
FedRSs and DecRSs require substantial device computation and can lead to 
extensive training times, which may deter user participation.
Devices fine-tune the global model using local data to better match individual user 
preferences.

Reduced Training Demand: Lessens the computational load on individual 
devices compared to full model training in FedRSs and DecRSs.
Increased User Engagement: Shortens training time, potentially increasing 
participation from less active users.



Page 58 Paper: Yan et al,. “On-Device Learning for Model Personalization with Large-Scale Cloud-Coordinated Domain Adaption”. KDD. 2022.

Whole Model Finetuning
MPDA [Yan et al. 2022] enhances model personalization by leveraging large-scale 
cloud-coordinated domain adaptation, where external samples from the cloud are used 
to augment the user's local data for more effective on-device training.

Architecture of MPDA [Yan et al. 2022]
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Patch Learning-based Finetuning
DCCL [Yao et al. 2021] introduces a novel approach for on-device 
personalization by adding parameter-efficient patches to a cloud model.
Proposes a novel distillation technique that enhances the centralized cloud 
model by aggregating insights from numerous personalized device models.

Architecture of DCCL [Yao et al. 2021]
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Papers: Wu et al., “Fedgnn: Federated graph neural network for privacy-preserving recommendation”. 2021

             Chai et al. “Secure federated matrix factorization.” IEEE Intelligent Systems. 2020

User Privacy Risks
Behavioral Data Leakage

FedGNN [Wu et al. 2021] indicates that a central server with inquisitive 
intentions can easily identify rated items by analyzing non-zero gradients in
recommendation with explicit feedback.
FedMF [Chai et al. 2020] indicates that by scrutinizing gradients sent by clients 
over two consecutive rounds, the central server can even infer the rating scores 
of items
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Papers: Lin et al., “Fedrec: Federated recommendation with explicit feedback”. IEEE Intelligent Systems, 2020

             Liu et al. “Federated Social Recommendation with Graph Neural Network.” ACM Trans. Intell. Syst. Technol. 2022

             Liang et al. “Fedrec++: Lossless federated recommendation with explicit feedback” AAAI. 2021

Data Obfuscation
Synthetic ratings [Lin et al. 2020]
Pseudo-labeling techniques [Liu et al. 2022]
FedRec++ [Liang et al. 2021]: Denoising client 

Architecture of Fedrec++ [Liang et al. 2021]
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Model Obfuscation
Model obfuscation refers to the method that adds noise to the model 
gradients or model parameters.

Local Differential Privacy [Wu et al. 2022]: Adds noise to data before it is 
sent to the server, such as 

Gradient Clipping: Limits the magnitude of the gradients to a 
maximum value 𝛿
Noise Addition: Adds Laplacian noise to the clipped gradients with 
parameters 

Balancing between privacy protection and model accuracy.

Paper: Wu et al. ”A federated graph neural network framework for privacy-preserving personalization”. Nat Commun. 2022. 
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Papers: Perifanis et al., “FedPOIRec: Privacy-preserving federated poi recommendation with social influence”. Information Sciences 2023

             Cui et al. “Exploiting data sparsity in secure cross-platform social recommendation”. NeurIPS 2021 

Encryption-based Protection
• Encrypt parameters before uploading them to the central server

• Homomorphic Encryption [Perifanis et al. 2023]
• enables computational operations on encrypted data without the 

need for decryption
• encryption algorithms typically increase the computational burden

• Secure Multiparty Computation [Ying et al. 2020]
• multiple clients/platforms to jointly compute a function over their 

inputs while keeping those inputs private
• Computational and communication overhead can be significant



Page 65

Poisoning Attacks and Countermeasures
Poisoning attacks involve deliberately inserting misleading or malicious data into a system to 
manipulate outcomes or degrade performance.
Data Poisoning in ODRSs: Attackers inject fake interactions or manipulate existing data to 
promote or demote products
Model Poisoning in ODRSs: Direct manipulation of the model’s parameters by uploading 
poisoned updates under federated learning scenarios.
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Model Poisoning Attacks
PipAttack [Zhang et al. 2023] achieves item promotion by aligning the embeddings 
of target items with popular items, requiring below conditions:

• The adversary can access the global model at any iteration
• The adversary can access and alter all malicious users’ local models and 

their gradients.
• The adversary knows the whole item set (not interactions) which is 

commonly available on any e-commerce platform, as well as side information 
that reflects each item’s popularity.

Architecture of PipAttack [Zhang et al. 2022]
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Paper: Yuan et al. “Manipulating federated recommender systems: Poisoning with synthetic users and its countermeasures”. SIGIR 2023.

Model Poisoning Attacks
PSMU [Yuan et al. 2023] constructs malicious users with random interactions,
and promote target items by improving their prediction scores higher than the
recommended items and alternative items.

HiCS [Yuan et al. 2023] utilizes two stages of gradient clipping and
sparsification updating to dilute the effects of poisoned gradients.

E.g.,

target item recommended item

＞

alternative productstarget item

＞



Page 68 Paper: Yuan et al. “Manipulating Visually-aware Federated Recommender Systems and Its Countermeasures”. TOIS. 2023

Hybrid Poisoning Attacks
PSMU(V) [Yuan et al. 2024] combines 
data poisoning attacks and model 
poisoning attacks in visually-aware 
FedRSs
They promote target items by 
contaminating both their visual signals 
(e.g., item posters) and item embeddings, 
highlighting the potential threats of 
incorporating third-party images in 
FedRSs.
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Heterogeneity in ODRSs
Most ODRSs assume that each device/user is homogeneous, but this assumption is 
difficult to satisfy in real life due to the inherent heterogeneity among devices/users.

• System heterogeneity: storage, computation, and communication capabilities
• Data heterogeneity: data distribution, and user preferences
• Privacy heterogeneity: different privacy budget

System heterogeneity Data heterogeneity Privacy heterogeneity
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Heterogeneity in ODRSs
HeteFedRec [Yuan et al. 2024] is a novel framework for federated recommender 
systems that supports heterogeneous model sizes
It introduces a heterogeneous model aggregation strategy with dual-task learning 
and dimensional decorrelation regularization to enable efficient knowledge sharing 
among different-sized models.

Architecture of HeteFedRec [Yuan et al. 2024]
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Heterogeneity in ODRSs
CDCGNNFed [Qu et al. 2024] a novel framework for federated recommender systems 
that supports heterogeneous privacy budgets

Users voluntarily choose to upload all, some, or no data to the server.
Graph mending: The server employs a graph mending strategy to predict missing 
links.
Train user-centric ego graphs locally, and high-order graphs based on user-
shared data in the server in a collaborative manner via contrastive learning.

Architecture of CDCGNNFed [Qu et al. 2024]
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Image: Nicolò, et al. "Federated Unlearning: A Survey on Methods, Design Guidelines, and Evaluation Metrics." arXiv 2024

Yuan et al. “Federated unlearning for on-device recommendation. WSDM, 023

”.

Evolving User Dynamics in ODRSs
Unlike traditional systems, ODRSs often experience changes in the user base, with 
new users joining and existing users leaving

Cold Start Problem in ODRSs: it also needs to efficiently deploy models to 
newly added devices
Unlearning for ODRSs: selectively forgetting data from users who are no 
longer active in the system [Yuan et al. 2023].
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Model Copyright Protection in ODRSs
In ODRSs, recommender models are exposed to all users, increasing the risk of 
IP theft. 
PTF-FedRec [Yuan et al. 2024] is a parameter transmission-free federated 
recommendation framework

Achieves federated collaborative learning via sharing prediction scores over of 
a subset of items.
Balance the protection of both clients’ data privacy and the service provider’s 
model privacy

Architecture of PTF-FedRec [Yuan et al. 2024]
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Foundation Models in ODRSs
Current research primarily focuses on models that operate within cloud environments

Cloud-based systems often suffer from delays in processing user requests, 
impacting user experience.
The substantial computational requirements of these models make them difficult 
to deploy directly on user devices.

Model Lightweighting: Research into methods for reducing the size and complexity 
of foundation models to facilitate deployment on user devices.
Privacy Considerations: Local processing of data on devices could enhance user 
privacy by minimizing data transmission to the cloud.

Foundation 
Models ODRSs
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Get More Information

https://arxiv.org/abs/2401.11441

https://arxiv.org/abs/2401.11441
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Special Issue CFP

Science China Information Science
https://www.sciengine.com/SCIS/newsDetails?slug=newsDetails&abbreviated=scp&specialId=73c5ff8ad2924f86bb41d1df936da116

https://www.sciengine.com/SCIS/newsDetails?slug=newsDetails&abbreviated=scp&specialId=73c5ff8ad2924f86bb41d1df936da116
https://www.sciengine.com/SCIS/newsDetails?slug=newsDetails&abbreviated=scp&specialId=73c5ff8ad2924f86bb41d1df936da116
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