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Interconnected World

▶ networks model objects and their relations

▶ many different network types

– social (WhatsApp, LinkedIn, etc..)

– informational (co-authorship, email, etc..)

– technological (IP-level, transportation, etc..)

– purchase (E-commerce, crypto, etc..)

– . . .

▶ networks are ubiquitous in WWW-based applications
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Figure 2: Discovered strong edges of 5 ego-networks of KDD innovation award winners. The �rst 5 �gures contain
only strong edges: the colored edges and vertices show 5 topics that were used as input: cluster, classif, pattern,
network, distribut. The last topic consisted of 2 connected components which we used as two separated communities.
The last �gure shows strong and weak edges. Some of the vertices do no belong to any of the communities. Some
edges are strong despite not belonging to any of the communities because we keep edges that do not induce violations.
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▶ 4.76 billion social media users,
ca. 60% of the world’s population

▶ 73.3% of all global spending on advertising
for digital platforms in 2022

▶ 53.9% of users are concerned about misinformation

▶ insights can lead to huge monetary and societal impacts
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▶ study complex dynamic phenomena

– evolution, information diffusion, opinion formation,
– structural prediction, patterns

▶ develop novel applications and mining primitives

▶ design efficient algorithms
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Network Mining: Traditional View

▶ networks represented as pure graph-theory objects

– no additional vertex / edge information

▶ emphasis on static networks
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Temporal Networks: A new lens for network mining

▶ ability to collect and store large volumes of network data

▶ available data have time granularity

▶ lots of additional information associated to vertices/edges

▶ capturing activity and interaction occurring over systems

▶ giving rise to new concepts, new problems, and new computational
challenges and opportunities
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Modeling Activity in Networks

1. network nodes perform actions (e.g., posting messages)
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Many Novel and Interesting Concepts
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Temporal Network Mining — Objectives

▶ identify new phenomena to be captured

▶ formulate suitable problems capturing the inherent complexity

▶ develop algorithmic approaches

▶ analyze real-world data and gain novel insights
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Terminology

▶ we use term “temporal networks”, but terminology is not standardized

▶ term “X Y” can be encountered in the literature, where

X :
– temporal
– dynamic
– (time-)evolving
– time-varying
– time-dependent
– evolutionary

Y :
– networks
– graphs

▶ some combinations have distinct meaning, but not always
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Examples of Temporal Networks

▶ online communication networks

– phone, email, text messages, etc.

▶ economic networks

– credit card transactions

– trade networks of countries

– bitcoin transcations

▶ bibliographic networks

– collaboration and citation networks

(Holme, 2015)
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Examples of Temporal Networks

▶ human proximity networks

– recorded by various sensors and devices,
– e.g., bluetooth, wifi, etc.

– patient-referral networks, i.e., how patients are
– transferred between wards of a hospital system

– sexual contact networks

▶ travel and transportation networks

– airline connections, bus transport, bike-sharing systems
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Examples of Temporal Networks

▶ brain networks

– temporal correlations of the oxygen levels of brain
– regions as measured by fMRI scanning

▶ biological networks

– genes involved in different interactions that change
– over time

▶ animal proximity networks

– obtained via RFID devices

– lifestock or wildlife
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Representation of Temporal Networks

1. Sequence of interactions

▶ a temporal network is represented as G = (V ,E )

– with (static) set of nodes V , and

– set of edges E = {(u, v , t)}, with u, v ∈ V and t ∈ T where T is the time domain

– T is usually N or R≥0

– if interactions have duration, then E = {(u, v , t, λ)} with λ in N or R≥0

▶ this is a lossless representation

▶ also known as sequence of contacts, or sequence of (temporal) edges or temporal edge stream

▶ usually, edges given in chronological order



56

Representation of Temporal Networks

1. Sequence of interactions

▶ a temporal network is represented as G = (V ,E )

– with (static) set of nodes V , and

– set of edges E = {(u, v , t)}, with u, v ∈ V and t ∈ T where T is the time domain

– T is usually N or R≥0

– if interactions have duration, then E = {(u, v , t, λ)} with λ in N or R≥0

▶ this is a lossless representation

▶ also known as sequence of contacts, or sequence of (temporal) edges or temporal edge stream

▶ usually, edges given in chronological order



57

Representation of Temporal Networks

1. Sequence of interactions

▶ a temporal network is represented as G = (V ,E )

– with (static) set of nodes V , and

– set of edges E = {(u, v , t)}, with u, v ∈ V and t ∈ T where T is the time domain

– T is usually N or R≥0

– if interactions have duration, then E = {(u, v , t, λ)} with λ in N or R≥0

▶ this is a lossless representation

▶ also known as sequence of contacts, or sequence of (temporal) edges or temporal edge stream

▶ usually, edges given in chronological order



58

Representation of Temporal Networks

1. Sequence of interactions

▶ a temporal network is represented as G = (V ,E )

– with (static) set of nodes V , and

– set of edges E = {(u, v , t)}, with u, v ∈ V and t ∈ T where T is the time domain

– T is usually N or R≥0

– if interactions have duration, then E = {(u, v , t, λ)} with λ in N or R≥0

▶ this is a lossless representation

▶ also known as sequence of contacts, or sequence of (temporal) edges or temporal edge stream

▶ usually, edges given in chronological order



59

Representation of Temporal Networks

1. Sequence of interactions

▶ a temporal network is represented as G = (V ,E )

– with (static) set of nodes V , and

– set of edges E = {(u, v , t)}, with u, v ∈ V and t ∈ T where T is the time domain

– T is usually N or R≥0

– if interactions have duration, then E = {(u, v , t, λ)} with λ in N or R≥0

▶ this is a lossless representation

▶ also known as sequence of contacts, or sequence of (temporal) edges or temporal edge stream

▶ usually, edges given in chronological order



60

Representation of Temporal Networks

1. Sequence of interactions

▶ a temporal network is represented as G = (V ,E )

– with (static) set of nodes V , and

– set of edges E = {(u, v , t)}, with u, v ∈ V and t ∈ T where T is the time domain

– T is usually N or R≥0

– if interactions have duration, then E = {(u, v , t, λ)} with λ in N or R≥0

▶ this is a lossless representation

▶ also known as sequence of contacts, or sequence of (temporal) edges or temporal edge stream

▶ usually, edges given in chronological order



61

Representation of Temporal Networks

1. Sequence of interactions

▶ a temporal network is represented as G = (V ,E )

– with (static) set of nodes V , and

– set of edges E = {(u, v , t)}, with u, v ∈ V and t ∈ T where T is the time domain

– T is usually N or R≥0

– if interactions have duration, then E = {(u, v , t, λ)} with λ in N or R≥0

▶ this is a lossless representation

▶ also known as sequence of contacts, or sequence of (temporal) edges or temporal edge stream

▶ usually, edges given in chronological order



62

Representation of Temporal Networks

1. Sequence of interactions

▶ visual representation of a temporal network as a sequence of interactions
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time
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Representation of Temporal Networks

2. Sequence of static graphs

▶ sequence G1, . . . ,GT

– where Gt = (Vt ,Et), with t = 1, . . . ,T with T ∈ N
– typically assume that nodes are fixed, i.e., Vt = V

– Et are the edges that occur in time interval t

▶ not equivalent representation with sequence of interactions

– representation depends on quantization parameter, e.g., seconds, minutes, hours, days, etc.
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Representation of Temporal Networks

2. Sequence of static graphs

▶ visual representation of a temporal network as a sequence of static graphs
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Time Granularity
▶ choosing the right time resolution is important

▶ quantization: binning of time stamps into time intervals of fixed size,
e.g, seconds, minutes, hours, days

– coarse resolution may lead to information loss, dense time steps

– fine resolution captures more information but may lead to sparse (or even empty) time steps

time point in contact network with time resolution of 24h, 1h, and
5 minutes (Lehmann, 2019)

mean degrees for different time
resolutions (Clauset and Eagle,
2012)



71

Time Granularity
▶ choosing the right time resolution is important

▶ quantization: binning of time stamps into time intervals of fixed size,
e.g, seconds, minutes, hours, days

– coarse resolution may lead to information loss, dense time steps

– fine resolution captures more information but may lead to sparse (or even empty) time steps

time point in contact network with time resolution of 24h, 1h, and
5 minutes (Lehmann, 2019)

mean degrees for different time
resolutions (Clauset and Eagle,
2012)



72

Time Granularity
▶ choosing the right time resolution is important

▶ quantization: binning of time stamps into time intervals of fixed size,
e.g, seconds, minutes, hours, days

– coarse resolution may lead to information loss, dense time steps

– fine resolution captures more information but may lead to sparse (or even empty) time steps

time point in contact network with time resolution of 24h, 1h, and
5 minutes (Lehmann, 2019)

mean degrees for different time
resolutions (Clauset and Eagle,
2012)



73

Time Granularity
▶ choosing the right time resolution is important

▶ quantization: binning of time stamps into time intervals of fixed size,
e.g, seconds, minutes, hours, days

– coarse resolution may lead to information loss, dense time steps

– fine resolution captures more information but may lead to sparse (or even empty) time steps

time point in contact network with time resolution of 24h, 1h, and
5 minutes (Lehmann, 2019)

mean degrees for different time
resolutions (Clauset and Eagle,
2012)



74

Time Granularity
▶ choosing the right time resolution is important

▶ quantization: binning of time stamps into time intervals of fixed size,
e.g, seconds, minutes, hours, days

– coarse resolution may lead to information loss, dense time steps

– fine resolution captures more information but may lead to sparse (or even empty) time steps

time point in contact network with time resolution of 24h, 1h, and
5 minutes (Lehmann, 2019)

mean degrees for different time
resolutions (Clauset and Eagle,
2012)



75

Representation of Temporal Networks

3. Time series of contacts

– a time-series for each pair of nodes in the network

– equivalent representation with sequence of interactions

4. Tensor representation

– tensor representing node× node× time information

– can apply powerful tensor-algebra techniques

– a complication is that time is directed, while tensor algebra
assumes that indices can be relabeled (breaking the time ordering)

– equivalent representation with sequence of interactions
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Representation of Temporal Networks

(Casteigts et al., 2012)

5. Time-varying graphs defined as G = (V ,E ,T , p, λ),
where

– V : set of nodes

– E ⊆ V × V : set of edges

– T : a time domain

– p : E × T → {0, 1} : a presence function

– λ : E × T → R : a latency function

▶ equivalent representation with sequence of interactions
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Representation of Temporal Networks

(Latapy et al., 2018)

6. Stream graphs and link streams

▶ a formalization for modeling interactions over time

▶ a stream graph is defined as G = (T ,V ,W ,E ), where

– T : a time domain

– V : a set of nodes

– W ⊆ T × V : a set of temporal nodes

– E ⊆ T × V × V : a set of links

– s.t., (t, u, v) ∈ E implies (t, u) ∈ W and (t, v) ∈ W

▶ stream graph: nodes are temporal too

▶ link stream equivalent representation with sequence of interactions
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Representation of Temporal Networks

(Holme, 2015)

7. Time window graph or underlying graph or projected graph

▶ static graph GI = (VI ,EI ) for given time interval (or window) I = [a, b]

– with EI = {(u, v) | (u, v , t) ∈ E and t ∈ I} be the set of edges with time stamp t ∈ I

– and with VI = {u, v | (u, v) ∈ EI}

▶ time window can be complete time span of G

▶ possible to add weights to the static edges, reflecting different temporal aspects,
e.g, number of contacts, or sum of durations of contacts

▶ not equivalent representation with sequence of interactions

▶ usually results in loss of information
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Representation of Temporal Networks

7. time window graph or underlying graph or projected graph

time window graphs for intervals [1, 9], [4, 9], [6, 7]
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Temporal Graph Variants

▶ time-intervals instead of time stamps

▶ directed vs. undirected edges

▶ multi edges

▶ (time-variant) labeled or colored nodes and edges

▶ (time-variant) node and edge features

▶ temporal hypergraphs
(Cencetti et al., 2021)

Combinations possible: temporal multi-layer hypergraphs with node features
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Temporal Networks vs. Dynamic Graphs

▶ dynamic graphs is a standard model typically studied in theoretical computer science

– e.g., (Henzinger et al., 1999; Thorup, 2000; Hanauer et al., 2021)

▶ dynamic graphs are represented as a sequence of edge additions and/or edge deletions

▶ objective: efficient maintenance of graph properties

– e.g., connectivity, shortest paths, spanners, etc.

▶ emphasis on computational efficiency

– computation time per operation

– e.g., cost of maintaining a minimum spanning tree per edge additions/deletions
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Temporal Networks vs. Dynamic Graphs

▶ dynamic graphs resemble sequence of interactions model

▶ main difference lies on which graph properties we study

▶ for dynamic graphs we typically consider properties on graph snapshots

– i.e., minimum spanning tree on the current snapshot

▶ for temporal graphs we typically consider properties that span a time interval

– i.e., a temporal pattern

▶ disclaimer: we do not consider dynamic graphs
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Dynamic Networks in Network Generation

▶ in graph generation models, we consider dynamic networks

– e.g., Barabási-Albert, forest-fire, copying model, etc.

▶ similar to dynamic graphs: a sequence of node/edge additions
(typically no deletions)

▶ node/edge addition are governed by a probabilistic model, not
arbitrary, or worst case, as in algorithmic models

▶ emphasis again on network topology, i.e., how certain network
structures emerge

– e.g., scale-free distribution, small world, etc.

▶ disclaimer: we do not consider dynamic networks in this context
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Graph Streams

▶ data-stream model: (Muthukrishnan et al., 2005)

– data are presented as a sequence of data items (potentially infinite)

– assume a small number of passes, typically constant or just one pass

– assume small memory compared to data size, e.g., poly-logarithmic

– assume fast computation per data item processed, e.g., constant or poly-logarithmic

▶ a graph stream is a graph dataset in the data-stream model

e.g., sequence of interactions (temporal network), or edge additions/deletions (dynamic graph)

▶ a graph stream is not a representation model, but underlying computational model

▶ we can study questions of mining temporal networks in the graph-stream model
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Temporal Graph Learning

▶ rich and fast growing body of works on temporal graph learning

▶ tasks: dynamic link/node property prediction, graph classification, clustering, link prediction,
representation learning, ...

▶ methods: graph neural networks, recurrent neural network, graph transformers, ...

▶ several extensive surveys available, e.g.,
(Gupta and Bedathur, 2022; Longa et al., 2023; Kazemi et al., 2020)

▶ disclaimer: in this tutorial we do not consider temporal graph learning
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Theoretical Aspects of Temporal Graphs

▶ how is the complexity of classic combinatorial optimization problems changes when time is added?

▶ some old results: the max-flow min-cut theorem holds with unit capacities for temporal paths
(Berman, 1996)

▶ a number of recent works

– graph coloring (Mertzios et al., 2018)

– maximal matching (Mertzios et al., 2019)

– cliques (Viard et al., 2015, 2016; Himmel et al., 2017; Mertzios et al., 2024)

– network design (Akrida et al., 2017; Enright et al., 2021)

– path problems (Casteigts et al., 2021; Klobas et al., 2022, 2023)

– vertex cover (Hamm et al., 2022; Akrida et al., 2020)

– ...

▶ discussing complexity, FPT algorithms, enumeration, etc.
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Agenda

Part I : Introduction and Motivation

▶ models of temporal networks

▶ algorithmic approaches

Part II : Mining Temporal Networks A:

▶ connectivity, temporal properties

▶ centrality, cores

Part III : Mining Temporal Networks B:

▶ communities, patterns and events

▶ diffusion and random networks

Part IV : Tools and Code Libraries

Part V : Challenges, Open Problems, and Trends
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Part II

Mining Temporal Networks A
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Time-respecting Walks and Paths

▶ a fundamental concept in analysis of temporal networks

▶ a time-respecting (or temporal) walk is a sequence of temporal edges, such that

– consecutive edges share a common node, and

– time stamps of temporal edges are increasing

– (non-strict version: time stamps non-decreasing)

▶ a temporal paths is a temporal walk that visits each vertex at most once

a b c d
1 3 2

a b c d
1 2 3
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Time-respecting Paths — Example

a

b

c

d

e

1 2 3 4 5 6 7

time

(c , e, 2), (e, d , 5), (d , b, 6) is a time-respecting path from c to b

(c , b, 3), (b, a, 1) is not a time-respecting path

▶ non-symmetric: from e to b but not from b to e

▶ non-transitive: from b to d and from d to e but not from b to e
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Applications

▶ information (or disease) can only propagate over time-respecting walks

▶ communication networks: capture possible flow of information

▶ financial networks: trace the sequence of financial exchanges to identify
patterns, detect fraudulent activity, or assess market dynamics

▶ epidemiology: understanding the spread of diseases

▶ social network analysis: centrality measures for ranking users
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Temporal Reachability

Reachability is defined as in static graphs, but using time-respecting walks

”There exists temporal (s, z)-walk in G“ not always useful—the existence depends on time interval

a b

cd

zs

4

42

3

1

2

5

4

▶ temporal walks and paths problems, and reachability are always related to a time interval I

▶ if no time-interval given, we take the complete span of G

▶ finding all from s reachable nodes in linear time (later)
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A Reachability Problem

Temporal Exploration Problem

▶ Given: Temporal graph G = (V ,E ), vertex s ∈ V

▶ Question: Can we reach all other nodes with a single temporal walk starting from s?

Problem is NP-complete (corresponding problem in static graphs in linear time!)

a b

cd

1

1

1, 2 2
1

3

If transition time non-zero ⇒ each edge at most
once in a strict temporal walk

Proof idea:

▶ reduction from Hamilton path problem

(Michail and Spirakis, 2016)
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Connectivity and Connected Components

▶ static connected components are based on reachability

– each node in connected component C can reach each all other nodes in C

▶ equivalence relation that partitions the graph

– reflexivity, symmetry, transitivity

▶ temporal connected components are based on temporal reachability

– a subset of the nodes C ⊆ V

– there is a temporal walk between each pair u, v ∈ C
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Connectivity and Connected Components

Temporal Connectivity Problem

▶ Given: A temporal graph and integer k

▶ Question: Is there a subset of the vertices V ′ ⊆ V of size k such that all vertices in V ′ can
reach each other by a temporal path?

▶ two versions: open variant allows paths using nodes outsides of V ′, closed variant not

▶ both cases are NP-complete (Bhadra and Ferreira, 2003)
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Connectivity and Connected Components
Temporal Connectivity Problem

▶ Given: A temporal graph and integer k

▶ Question: Is there a subset of the vertices V ′ ⊆ V of size k such that all vertices in V ′ can
reach each other by a temporal path?

▶ two versions: open variant allows paths using nodes outsides of V ′, closed variant not

▶ both cases are NP-complete (Bhadra and Ferreira, 2003)
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a and d are openly connected

Connected components can be overlapping
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Time Window Reachability and Connectivity

▶ compute reachability or connected components in time window graph GI = (VI ,EI )

– given time window I = [a, b], GI = (VI ,EI ) is static graph induced by edges appearing in I

▶ time window reachability for u ∈ V in time interval I = [a, b] (Wen et al., 2020)

– the set of nodes that u can reach in GI = (VI ,EI ) with static walk

▶ time window connected components in time interval I = [a, b] (Xie et al., 2023)

– the set of static connected components in GI = (VI ,EI )
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Time-Respecting Paths
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(b) Static Graph

▶ some paths in the static graph are not meaningful in the temporal graph

▶ e.g., a – b – g – j is not time-respecting path

▶ what is an optimal path from a to k?

(Wu et al., 2014)
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Minimum Temporal Paths

▶ earliest-arrival path : a path from x to y with earliest arrival time

▶ latest-departure path : a path from x to y with latest departure time

▶ fastest path : path from x to y with minimum elapsed time

▶ shortest path : a path from x to y minimum sum of traversal times

▶ minimum hop path: a path from x to y with minimum number of hops
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(Wu et al., 2014)
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Optimal Path Computation

Observation

Let P(s,z) be an optimal temporal path and P a subpath of P(s,z), then, in general, P is not optimal

a b

cd
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6

Example:

▶ fastest path (s, d , b, z) with duration 4

▶ subpath (s, d , b) has duration 3 but path (s, a, b) has duration 2

▶ similar examples for other variants

▶ greedy Dijkstra does not work in general



162

Optimal Path Computation

Observation

Let P(s,z) be an optimal temporal path and P a subpath of P(s,z), then, in general, P is not optimal

a b

cd

zs

2

42

3

1

2

5

6

Example:

▶ fastest path (s, d , b, z) with duration 4

▶ subpath (s, d , b) has duration 3 but path (s, a, b) has duration 2

▶ similar examples for other variants

▶ greedy Dijkstra does not work in general



163

Optimal Path Computation

Observation

Let P(s,z) be an optimal temporal path and P a subpath of P(s,z), then, in general, P is not optimal

a b

cd

zs

2

42

3

1

2

5

6

Example:

▶ fastest path (s, d , b, z) with duration 4

▶ subpath (s, d , b) has duration 3 but path (s, a, b) has duration 2

▶ similar examples for other variants

▶ greedy Dijkstra does not work in general



164

Optimal Path Computation

Observation

Let P(s,z) be an optimal temporal path and P a subpath of P(s,z), then, in general, P is not optimal

a b

cd

zs

2

42

3

1

2

5

6

Example:

▶ fastest path (s, d , b, z) with duration 4

▶ subpath (s, d , b) has duration 3 but path (s, a, b) has duration 2

▶ similar examples for other variants

▶ greedy Dijkstra does not work in general



165

Earliest-arrival Path

(Wu et al., 2014)

Subpath Optimality

If there exists an earliest arrival (s, z)-path, then there exist an earliest arrival (s, z)-path P such that
each prefix path of P is an earliest arrival path

▶ source vertex x , starting time ts

▶ array A of size |V | to record arrival times to each node

▶ A[x ] = ts and A[v ] = ∞, for nodes other than source

▶ process edges (u, v , t, λ) in temporal order

– if t ≥ A[u] (u is already reached from x)

– current edge might be earliest path from x to v

– update A[v ] = min (A[v ], t + λ)

Linear time algorithm
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Latest-departure Path

(Wu et al., 2014)

▶ temporal graph G = (V ,E )

▶ sink vertex x , ending time ts

▶ same process as for earliest-arrival path, but

▶ process edges in reversed temporal order

▶ add new interaction to the path if it does not violate temporal order
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Latest-departure Path

(Wu et al., 2014)
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▶ sink vertex x , ending time ts
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Dominating Path

(Wu et al., 2014)

▶ source vertex x and sink v

▶ for a path P1 arriving at v let (a, s), where

– a : time of arrival at v

– s : time of departure from x

▶ consider another path P2 arriving at v with (a′, s ′)

▶ if (s ′ > s and a′ ≤ a) or (s ′ = s and a′ < a)

– then path P2 dominates path P1

– because a′ − s ′ < a− s

▶ we can replace P1 with P2 and improve duration



179

Dominating Path

(Wu et al., 2014)

▶ source vertex x and sink v

▶ for a path P1 arriving at v let (a, s), where

– a : time of arrival at v

– s : time of departure from x

▶ consider another path P2 arriving at v with (a′, s ′)

▶ if (s ′ > s and a′ ≤ a) or (s ′ = s and a′ < a)

– then path P2 dominates path P1

– because a′ − s ′ < a− s

▶ we can replace P1 with P2 and improve duration



180

Dominating Path

(Wu et al., 2014)

▶ source vertex x and sink v

▶ for a path P1 arriving at v let (a, s), where

– a : time of arrival at v

– s : time of departure from x

▶ consider another path P2 arriving at v with (a′, s ′)

▶ if (s ′ > s and a′ ≤ a) or (s ′ = s and a′ < a)

– then path P2 dominates path P1

– because a′ − s ′ < a− s

▶ we can replace P1 with P2 and improve duration



181

Finding Optimal Path

Fastest Path (Wu et al., 2014)

▶ streaming algorithm can be adapted using dominating paths

– keep a list of non-dominated labels at each node

– when new edge arrives extend non-dominated path

Shortest and Minimum Hop Path

▶ similar to algorithm for fastest path

– but keep track of non-dominated path wrt to the

– transition times, or

– number of interactions, instead of the duration

Linear time algorithms in case of equal transition times
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Restless Walks and Paths

▶ function β : V → R determines the maximum waiting time at each node

– motivation, e.g., spreading of disease

▶ finding restless temporal paths is NP-hard (Casteigts et al., 2021)

▶ finding restless temporal walks possible in O(|V |+ |E | log |E |) (Himmel et al., 2019)

▶ extended for colored restless path and reachability (Thejaswi et al., 2020)
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Static Expansion of a Temporal Network

▶ transformation of a temporal network to a directed static network

– temporal paths in temporal network correspond to static paths in the directed static network

▶ how to create such a transformation?

1. create a copy of each node for each time instance

2. create a directed edge from the (t − 1)-th copy of u to
the t-th copy of u, for all nodes u, and all time instances t

3. create directed edges for the temporal edges
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Static Expansion Graphs
▶ Ve = {(v , t) | v ∈ V , t ∈ T}, where T is the set of all possible timestamps

▶ edges Ee : interactions between the temporal nodes Vt

a

b

c

d

t1 42 3 65 118 127 9 10 13

temporal graph with transition time 1
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t1 42 3 65 118 12
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(b,2)

(c,2)

(b,3)

…...

(b,13)

(c,13)

(d,13)

7 9 10 13

Problem: Size in number of time-steps Θ(|T | · |V |+ |E |)
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Static Expansion Graphs
▶ Ve = {(v , t) | v ∈ V , t ∈ T (v)}, where T (v) is the set of times with activity at v

▶ edges Ee : interactions between the temporal nodes Vt

a
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d
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temporal graph with transition time 1
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Size in number of edges O(|E |)
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(b,12)

(c,13)

(d,13)(d,5)

.....

.....

Size in number of edges O(|E |)
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Directed Line Graph

Temporal graph

a

b

c

d

e

f

g

1 3

2

3

3

4 5 2

5

Directed line graph

n2ac

n1ab n3bc n3cd

n3ce

n4de n5ef

n5eg

n2fg

▶ temporal walk in G of length ℓ+ 1 ⇔ walk of length ℓ in D(G )

▶ counting walks by matrix powers of adjacency matrix

▶ size in O(|E |2)
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Static Representations

▶ static expansion graph and directed line graph are directed acyclic graphs
if edges have non-zero transition times

▶ standard graph algorithms (bfs, dfs, Dijkstra, Bellman-Ford) can be adopted for finding

– optimal temporal paths and temporal walks

▶ upstream, downstream reachability sets
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Transportation Temporal Networks

(Kujala et al., 2018)
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Pareto-optimal Journeys

(Kujala et al., 2018)
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Pareto-optimal Journeys

Weighted Temporal Graph

▶ Additional edge costs
(u, v , t, λ, c) with c ∈ R

Bicriteria optimal paths

▶ solution: pair (duration, costs)

▶ non-stop: fast but expensive (2h, 200)

▶ via Munich: slow but cheap (4h, 100)

Bonn

Munich

Rome

(10 am, 2h, 200)

(10 am, 1h, 50)

(1 pm, 1h, 50)

Enumeration of temporal paths that are efficient wrt. duration and cost in polynomial delay and space
(Mutzel and Oettershagen, 2019)
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Temporal Graph Properties

▶ many static graph properties need to be adapted for temporal graphs to be meaningful

▶ local and global properties, often several variants with different focus

▶ diameter

– shortest latency of time-respecting paths over connected pairs (Chaintreau et al., 2007)

– restricted on connected pairs, as real data have many disconnected pairs

– the minimum integer d for which the duration between
– each pair of nodes u, v ∈ V is at most d (over all possible starting times) (Michail, 2016)
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Temporal Network Efficiency

▶ network efficiency : the harmonic mean of durations (latency) over all pairs (Tang et al., 2009)

E (t1, t2) =
1

n(n − 1)

∑
u,v∈V

1

d(t1,t2)(u, v)

▶ application: robustness of network (Scellato et al., 2011)

drop in efficiency: at time t = 150, 20% of nodes are removed (sliding time window )
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Burstiness

(Goh and Barabási, 2008)

▶ defined for sequence of inter-event times τ (of single node or pair of nodes, or global)

▶ measures deviation from memoryless random Poisson process

▶ defined as

B(τ) =
στ −mτ

στ +mτ
∈ [−1, 1],

where στ and mτ denote the standard deviation and mean of the inter-contact times τ

▶ (a) B(τ) = 0 ⇒ a Poisson distribution
(b) B(τ) = 1 ⇒ a maximally bursty sequence
(c) B(τ) = −1 ⇒ a periodic sequence
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Topological Overlap

▶ quantifies the persistency of edges through time (Tang et al., 2010b)

▶ the topological overlap is defined as

Tto(G ) =
1

n

∑
u∈V

1

T

T−1∑
t=1

∑
v∈N(u) ϕ

t
uvϕ

t+1
uv√∑

v∈N(u) ϕ
t
uv

∑
v∈N(u) ϕ

t+1
uv

∈ [0, 1],

where ϕt
uv = 1 iff. there exists a temporal edges between u and v at time t and zero otherwise

▶ value close to zero: many edges change between consecutive time steps

▶ value close to one: means there are often only a few changes.
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Temporal Clustering Coefficient

▶ the temporal clustering coefficient of node u in time interval I is defined as (Tang et al., 2009)

CC (u, I ) =

∑
t∈I πt(u)

|I |
(|N(u)|

2

) ,

where πt(u) = number of edges between neighbors of u at time t

▶ adaption of static clustering coefficient

▶ quantifies how close a nodes neighbors are to being a clique during time interval I
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Temporal Clustering Coefficient

▶ human contact network at MIT campus using bluetooth scanning every 5 minutes

▶ global temporal clustering coefficient for each day

▶ higher during middle of the week and no clustering on holidays

(Tang et al., 2009)
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Centrality Measures – Finding Important Nodes
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Centrality Measures

Task

▶ assign to each node v ∈ V a centrality value c(v)

▶ the higher c(v) the more important is v

▶ many centrality measures on static graphs:
e.g., degree, closeness, betweenness, Katz centrality, PageRank, ...

Many important applications:

▶ identify key players, super spreaders, important persons, ...

▶ ranking web pages

▶ H-index used for ranking academics
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Temporal Centrality Measures

▶ many common centrality measures are walk or path based

▶ classification in medial and radial (Borgatti and Everett, 2006)

radial: captures node influence over its neighbors

▶ count incoming or outgoing walks or paths

medial: captures node role as intermediary

▶ count walks or paths passing node

u

u

Common approach for temporal networks:

▶ replace path or walks with time-respecting paths or walks
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Temporal Centrality Measures

▶ many common centrality measures are walk or path based

▶ classification in medial and radial (Borgatti and Everett, 2006)

radial: captures node influence over its neighbors

▶ count incoming or outgoing walks or paths

medial: captures node role as intermediary

▶ count walks or paths passing node

u

u

Common approach for temporal networks:

▶ replace path or walks with time-respecting paths or walks
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Temporal Centrality

Name Type Use-case

temporal degree radial - identify nodes with high degree

temporal closeness radial paths identify nodes that can reach other nodes fast (or can be reached fast)

temporal pagerank radial walks adapts static pagerank to capture concept drift

temporal katz radial walks identify nodes with many incoming temporal walks

temporal H-index radial walks identification of super-spreaders

temporal betweenness medial paths identify nodes passed by many optimal temporal paths

temporal walk centrality medial walks identify nodes that can obtain and distribute information

▶ choosing the right centrality measure depends on use-case

▶ many further temporal centrality variants, e.g., temporal eigenvector, temporal gravity, etc.
(Hu et al., 2015; Rocha and Masuda, 2014; Tang et al., 2010a; Tsalouchidou et al., 2020; Bi
et al., 2021; Elmezain et al., 2021; Zaoli et al., 2019; Tao et al., 2022; Taylor et al., 2021;
Rozenshtein and Gionis, 2016) ...
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From Static to Temporal Closeness

Static harmonic closeness:

Cc(u) =
∑

v∈V\{u}

1

ds(u, v)

▶ ds(u, v) is shortest path distance

▶ high centrality means short paths to many other nodes

▶ temporal: replace ds(u, v) with temporal distance

▶ several different variants
(Wu et al., 2014; Crescenzi et al., 2020; Tang et al., 2010a; Santoro et al., 2011; Gao et al., 2015)



226

Temporal Closeness

Harmonic temporal closeness for u ∈ V :

c(u) =
∑

v∈V\{u}

1

d(u, v)

d(u, v) is the minimum duration distance (i.e., arrival time - starting time).

Use case

▶ find nodes that spread information fast

Computation:

▶ call minimum duration streaming algorithm
(Wu et al., 2014) for each node

▶ lack of scalability
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(Oettershagen and Mutzel, 2022)
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Temporal Closeness – Top-k Computation

Top-k closeness problem: find all nodes with one of the k topmost closeness values

Top-k closeness computation

▶ for each vertex u ∈ V
▶ run min. duration algorithm to compute d(u, v) for all v ∈ V

▶ if upper bound of c(u) is smaller than k-th largest value: stop computation early

(Oettershagen and Mutzel, 2022)
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Temporal Closeness – Index

Problem: rank all nodes according to temporal closeness.

Indexing approach

▶ index to speed up minimum duration computation

▶ two phases: (i) indexing and (ii) query phase

(Oettershagen and Mutzel, 2023)
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Temporal Closeness – Index

▶ Construction:
▶ construct k subgraphs {S1, . . . , Sk} = S
▶ find mapping f : V → S that assigns to each Sj ∈ S all vertices v ∈ V s.t. all edges reachable from v

are in f (v) = Sj

▶ minimize size maxS∈S{|S |}

a

c

b

d

e f

3

1

2
2

9

3

1
6

7

(a) G

a

c

b

d

e f

3

1

2
2

9

3

(b) S1

a

c

b

d

e f

9 1
6

7

(c) S2

Optimal assignment is NP-hard
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Temporal Closeness – Index

Approximation ratio of greedy:
size(Greedy)

size(Opt)
≤ k

δ
,

with 1 ≤ δ ≤ k depending on the topology of the graph

Time complexity: O(nmk)

▶ n = |V | rounds, m = |E |
▶ each round determine Sj such that greedy choice is minimal in O(m) for j ∈ {1, . . . , k}

Shared memory parallelization: O( nmk
P ) using P processors (CREW)
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Temporal Closeness – Index

OOT—Out of time after 7 days. number of subgraphs k = 2048.

Data set |V | |E | Baseline Top-100 SubStream

Infectious 10 972 415 912 12.06 s 2.25 s 1.51 s
AskUbuntu 159 316 964 437 229.73 s 132.53 s 102.46 s
Prosper 89 269 3 394 978 1 665.20 s 260.87 s 109.33 s
Arxiv 28 093 4 596 803 630.60 s 398.50 s 286.86 s
Youtube 3 223 585 9 375 374 145.98 h 81.21 h 59.72 h
StackOverflow 2 464 606 17 823 525 OOT 107.66 h 86.49 h

▶ Baseline: Streaming algorithm (Wu et al., 2014)

▶ Top-100: Top-k algorithm with k = 100

▶ SubStream: Index based computation
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Temporal Centrality

Name Type Use-case
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Static H-Index

▶ the H-index was originally proposed by J. E. Hirsch 2005
→ measuring the productivity and impact of scientists

▶ the maximum value of h such that the author has published at least h papers that have each been
cited at least h times

paper ID citations counted in H-index

1 25 Yes
2 18 Yes
3 12 Yes
4 9 Yes
5 7 Yes

6 5 No
7 3 No

Recently used for quantifying spreading influence (Lü et al., 2016)
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Static H-Index

▶ H : M → N0 returns for a multiset of integers S ⊆ {{s | s ∈ N0}} the maximum integer i such that
there are at least i elements s in S with s ≥ i

n-th order H-index s
(n)
u of a node u in a static graph:

▶ let s
(0)
u = δ(u) the degree of node u, then

s(n)u = H
(
{{s(n−1)

v | v ∈ V and v is neighbor of u}}
)

▶ the value of s
(1)
u corresponds to the H-index of u

(Lü et al., 2016)
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n-th Order Temporal H-Index

▶ the multiset N (v , t) contains all pairs of nodes and times (w , tw ) such that there is a temporal
edge from v to w leaving at time t ′ ≥ t and arriving at time tw

Definition

The n-th order temporal H-index of a node v ∈ V is defined as h
(n)
v = h

(n)
v ,0 with

h
(n)
v ,t = H

({{
h
(n−1)
w ,tw

∣∣∣ (w , tw ) ∈ N (v , t)
}})

,

and h
(0)
v ,t = |N (v , t)|.

Computation:

▶ single-pass streaming algorithm for each node i-th order H-indices for 0 ≤ i ≤ n

▶ running time in O(|E |nδmax) and space in O(|V |nδmax)

(Oettershagen et al., 2023b)
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n-th Order Temporal H-Index

(a) Temporal network G.

Depth:
0

1

2

3

4

5

f ,0

d,2 e,2 h,2 g ,2

e,3 a,6g ,5 d,3 h,4 e,4 i,6 j,6 g ,5 c,5 d,5 h,5

(b) The reachability tree Γ(f ) for vertex f in the temporal network
shown in (a).

h
(1)
f ,0 = H({{h(0)d,2, h

(0)
e,2, h

(0)
h,2, h

(0)
g ,2}}) = H({{3, 2, 4, 3}}) = 3
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shown in (a).

h
(2)
f ,0 =

H({{h(1)d,2, h
(1)
e,2, h

(1)
h,2, h

(1)
g ,2}})

= H({{H({{h(0)g ,5, h
(0)
e,3, h

(0)
a,6}}),H({{h(0)d,3, h

(0)
h,4}}),H({{h(0)e,4, h

(0)
i,6 , h

(0)
j,6 , h

(0)
g ,5}}),H({{h(0)c,5, h

(0)
d,5, h

(0)
h,5}})}})

= H({{H({{0, 1, 1}}),H({{2, 3}}),H({{0, 1, 1, 0}}),H({{1, 1, 2}})}}) = H({{1, 2, 1, 1}}) = 1
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n-th Order Temporal H-Index
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n-th Order Temporal H-Index
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n-th Order Temporal H-Index
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n-th Order Temporal H-Index
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n-th Order Temporal H-Index

Use Case: Influential spreader identification

▶ computed for different infection probabilities β the mean node influence Ru over 1000 independent
SIR simulations leading to the SIR node rankings

▶ compared the SIR rankings with those obtained by the centrality measures using the Kendall τb
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Temporal Centrality

Name Type Use-case

temporal degree radial - identify nodes with high degree

temporal closeness radial paths identify nodes that can reach other nodes fast (or can be reached fast)

temporal pagerank radial walks adapts static pagerank to capture concept drift

temporal katz radial walks identify nodes with many incoming temporal walks

temporal H-index radial walks identification of super-spreaders

temporal betweenness medial paths identify nodes passed by many optimal temporal paths

temporal walk centrality medial walks identify nodes that can obtain and distribute information

▶ choosing the right centrality measure depends on use-case

▶ many further temporal centrality variants, e.g., temporal eigenvector, temporal gravity, etc.
(Hu et al., 2015; Rocha and Masuda, 2014; Tang et al., 2010a; Tsalouchidou et al., 2020; Bi
et al., 2021; Elmezain et al., 2021; Zaoli et al., 2019; Tao et al., 2022; Taylor et al., 2021;
Rozenshtein and Gionis, 2016) ...
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Betweenness Centrality

▶ node importance of u ∈ V in terms of number of optimal paths visiting u

B(u) =
∑

s ̸=u ̸=z∈V

σs,z(u)

σs,z

– σs,z number of shortest s, z-paths

– σs,z(u) number of shortest s, z-paths visiting u

▶ Brandes’ algorithm: iteratively calculates the shortest paths using dynamic programming,
efficiently updating centrality scores

▶ idea: replace shortest paths with optimal temporal paths (Kim and Anderson, 2012)

▶ computing betweenness values is at least as hard as counting optimal paths
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Temporal Betweenness

Overview over the complexity of computing temporal betweenness centrality

path type strict non-strict

min.-hop O(n3 · T 2) O(n3 · T 2)

earliest arrival #P-hard #P-hard

fastest #P-hard #P-hard

prefix-earliest arrival O(n ·m · logm) #P-hard

min.-hop earliest arrival O(n3 · T 2) O(n3 · T 2)

Prefix-earliest arrival: every prefix of the temporal path is an earliest arrival path

▶ computation using adapted Brandes’ algorithm (Buß et al., 2020)
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Temporal Betweenness

▶ more possible temporal walks and path types (Rymar et al., 2021)

– characterization of properties such that path are efficient countable

▶ approximation algorithms (Santoro and Sarpe, 2022; Cruciani, 2023)

– sampling-based approximations for different kinds of temporal path types

▶ comparison of different proxies for temporal betweenness (Becker et al., 2023)

– replacing global centrality with local pass-through-degree
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Temporal Centrality

Name Type Use-case

temporal degree radial - identify nodes with high degree

temporal closeness radial paths identify nodes that can reach other nodes fast (or can be reached fast)

temporal pagerank radial walks adapts static pagerank to capture concept drift

temporal katz radial walks identify nodes with many incoming temporal walks

temporal H-index radial walks identification of super-spreaders

temporal betweenness medial paths identify nodes passed by many optimal temporal paths

temporal walk centrality medial walks identify nodes that can obtain and distribute information

▶ choosing the right centrality measure depends on use-case

▶ many further temporal centrality variants, e.g., temporal eigenvector, temporal gravity, etc.
(Hu et al., 2015; Rocha and Masuda, 2014; Tang et al., 2010a; Tsalouchidou et al., 2020; Bi
et al., 2021; Elmezain et al., 2021; Zaoli et al., 2019; Tao et al., 2022; Taylor et al., 2021;
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Temporal Walk Centrality

▶ let Yin(u, t) and Yout(u, t) be the sets of incoming and outgoing temporal walks, resp.,
at node u and time t.

▶ for weighting functions τΦin and τΦout , define

Win(u, t) =
∑

ω∈Yin(u,t)

τΦin(ω) and Wout(u, t) =
∑

ω∈Yout(u,t)

τΦout (ω)

Temporal Walk Centrality

The temporal walk centrality of a vertex u ∈ V is

C (u) =
∑

t1,t2∈T (G),t1≤t2

(Win(u, t1) · Wout(u, t2) · Φm(t1, t2)) .

Captures a nodes ability to obtain and pass on information



258

Temporal Walk Centrality

▶ let Yin(u, t) and Yout(u, t) be the sets of incoming and outgoing temporal walks, resp.,
at node u and time t.

▶ for weighting functions τΦin and τΦout , define

Win(u, t) =
∑

ω∈Yin(u,t)

τΦin(ω) and Wout(u, t) =
∑

ω∈Yout(u,t)

τΦout (ω)

Temporal Walk Centrality

The temporal walk centrality of a vertex u ∈ V is

C (u) =
∑

t1,t2∈T (G),t1≤t2

(Win(u, t1) · Wout(u, t2) · Φm(t1, t2)) .

Captures a nodes ability to obtain and pass on information



259

Temporal Walk Centrality

▶ let Yin(u, t) and Yout(u, t) be the sets of incoming and outgoing temporal walks, resp.,
at node u and time t.

▶ for weighting functions τΦin and τΦout , define

Win(u, t) =
∑

ω∈Yin(u,t)

τΦin(ω) and Wout(u, t) =
∑

ω∈Yout(u,t)

τΦout (ω)

Temporal Walk Centrality

The temporal walk centrality of a vertex u ∈ V is

C (u) =
∑

t1,t2∈T (G),t1≤t2

(Win(u, t1) · Wout(u, t2) · Φm(t1, t2)) .

Captures a nodes ability to obtain and pass on information



260

Temporal Walk Centrality

▶ let Yin(u, t) and Yout(u, t) be the sets of incoming and outgoing temporal walks, resp.,
at node u and time t.

▶ for weighting functions τΦin and τΦout , define

Win(u, t) =
∑

ω∈Yin(u,t)

τΦin(ω) and Wout(u, t) =
∑

ω∈Yout(u,t)

τΦout (ω)

Temporal Walk Centrality

The temporal walk centrality of a vertex u ∈ V is

C (u) =
∑

t1,t2∈T (G),t1≤t2

(Win(u, t1) · Wout(u, t2) · Φm(t1, t2)) .

Captures a nodes ability to obtain and pass on information



261

Temporal Walk Centrality
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▶ temporal walk in G of length ℓ+ 1 ⇔ walk of length ℓ in D(G )

▶ walks can be computed by matrix powers: Neumann series and the identity
∑∞

ℓ=0 Aℓ = (I − A)−1

holds if the sum converges—guaranteed when largest absolute eigenvalue less than one

▶ computation in O(|E |2.373) using matrix inversion

▶ approximation with power iteration in O(k(|E |2))
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Temporal Walk Centrality
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Temporal Walk Centrality

Two-Pass Streaming Algorithm

▶ input: edge sequence in chronological order, ties broken arbitrarily

▶ forward pass for computing incoming walks for Win

▶ backward pass for computing outgoing walks for Wout

▶ running time O(|E | · τmax)

▶ τmax the largest cardinality of availability or arrival times at a node
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Temporal Walk Centrality
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(b) temporal between.
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(c) static walk between.

▶ enron email subgraph: of 38 nodes and 541 temporal edges.

▶ colors represent centrality value: darker → higher centrality.
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Temporal Centrality

▶ Temporal closeness

– many different variants

– intuitive, several approaches for improving computation times

▶ Temporal H-index

– non-intuitive definition

– able to capture the spreading capabilities well, efficient

▶ Temporal betweenness

– not scalable and many variants hard to compute

– intuitive, several approaches for improving computation times

▶ Temporal walk centrality

– no ranking of sinks or sources

– intuitive and efficient

▶ choosing the right centrality measure depends on data and use-case
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Temporal Centrality

▶ Temporal closeness

– many different variants

– intuitive, several approaches for improving computation times

▶ Temporal H-index

– non-intuitive definition

– able to capture the spreading capabilities well, efficient

▶ Temporal betweenness

– not scalable and many variants hard to compute

– intuitive, several approaches for improving computation times

▶ Temporal walk centrality

– no ranking of sinks or sources

– intuitive and efficient

▶ choosing the right centrality measure depends on data and use-case



271

Temporal Core Decompositions
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k-Core Decomposition

▶ k-core is a max. subgraph Gk of G , s.t. every node in Gk has at least k neighbors in Gk

▶ node u has core number c(u) = k if u belongs to a k-core but not the k + 1-core

(Seidman, 1983; Kong et al., 2019)
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Applications

▶ identifying communities and dense graphs in
social networks

▶ anomaly detection

▶ network visualization

▶ analyzing backbone structure of the internet

▶ network resilience and robustness

▶ study of spreading processes

▶ analyzing functional brain networks

(Malliaros et al., 2020; Kong et al., 2019)
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Applications
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Temporal k-Core Decompositions

Variant Ref. Running Time Description

Historical k-core (Yu et al., 2021) O(logm +mI ) static cores spanning fixed interval I

Time-range k-core (Yang et al., 2023) O(logm + |I | ·mI ) static cores in fixed interval

(k , h)-core (Wu et al., 2015) O(n +m) parallel temporal edges

Span-core (Galimberti et al., 2020) O(|T |2 ·m) cores spanning intervals

(k,∆)-core (Oettershagen et al., 2023a) O(m · δm) based on temporal edge degree

▶ more variants available (Lotito and Montresor, 2020; Hung and Tseng, 2021; Qin et al., 2022,
2020; Li et al., 2018; Oettershagen et al., 2023b) ...

▶ choosing the right one depends on available data and application
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Historical and Time-Range k-Cores

▶ definitions based on time window graph

– static, aggregated graph for time window I

▶ historical: find a static at least k-core in time window graph for given time interval I

▶ time-range: find all distinct at least k-cores in all possible time windows in time interval I

(Yu et al., 2021; Yang et al., 2023)
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Historical and Time-Range k-Cores

6-cores of Prof. Jiawei Han’s ego network on the DBLP snapshots

▶ straight-forward computation: restrict to interval (or subintervals)

▶ index-based solution to support the k-core query for every possible time window and integer k

(Yu et al., 2021; Yang et al., 2023)
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(k , h)-Cores

Definition

(k , h)-core is the largest subgraph H such that every v in H must have at least k neighbors in H,
where each such neighbor must be connected to v with at least h temporal edges

▶ can be interpreted as core decomposition for multi(-layer) graphs
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(a) Temporal graph G
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(b) Underlying multi graph

▶ nodes {a, b, c , d} induce a
(2, 2)-core

(Wu et al., 2015)
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Span-Cores

Definition

▶ the (k,∆)-core is a maximal set of vertices C such that C is a k-core over the complete span of
time interval ∆ (each edge of the core exists in each time step in ∆)

▶ a span-core is maximal if no other span-core dominates it in k or ∆

Applications:

▶ community search

▶ identify temporal patterns

▶ anomaly detection

▶ graph embedding and vertex classification

▶ containing or maximizing spreading

(Galimberti et al., 2020; Ciaperoni et al., 2020)
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Span-Cores

Application: Temporal pattern identification

▶ temporal activity of a high school day

▶ span-core decomposition detects time-evolving cohesive substructures

▶ these completely disappear in the reshuffled data set

(Galimberti et al., 2020)
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Span-Cores

Application: Temporal pattern identification
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(k ,∆)-cores

Definition

▶ ∆-degree of an edge is the minimum number of edges incident to one of its endpoints that have
a temporal distance of at most ∆

▶ the (k,∆)-core is the inclusion-maximal edge-induced subgraph C(k,∆) of G such that each
temporal edge e = ({u, v}, t) in C(k,∆) has at least a ∆-degree of d∆(e) ≥ k + 1.

▶ each edge in a (k,∆)-core is at both ends incident to at least k + 1 edges in the core with
temporal distance at most ∆ (Oettershagen et al., 2023a)
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(k ,∆)-cores

Application:

▶ analyzing malicious retweets in the Twitter network

▶ the most inner cores only contain misinformation for ∆ = 1 hour

0 20 40 60 80 100 120
k

101

103

105
# 

No
de

s/
 #

 E
dg

es
 Misinformation only

Nodes
Edges



296

Temporal k-Core Decompositions

▶ Historical and time range k-core

– based on time window graphs but efficient

▶ (k, h)-core

– considers only multilayer graph, also efficient

▶ Span-core

– needs dense sequence of static graphs, also not very scalable

– shown to be useful in wide range of applications

▶ (k,∆)-core

– can handle fine-grained data and efficient

▶ choosing the right one depends on available data and application
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Temporal k-Core Decompositions

▶ Historical and time range k-core

– based on time window graphs but efficient

▶ (k, h)-core

– considers only multilayer graph, also efficient

▶ Span-core

– needs dense sequence of static graphs, also not very scalable

– shown to be useful in wide range of applications

▶ (k,∆)-core

– can handle fine-grained data and efficient

▶ choosing the right one depends on available data and application



301

Agenda

Part I : Introduction and Motivation

▶ models of temporal networks

▶ algorithmic approaches

Part II : Mining Temporal Networks A:

▶ connectivity, temporal properties

▶ centrality, cores

Part III : Mining Temporal Networks B:

▶ communities, patterns and events

▶ diffusion and random networks

Part IV : Tools and Code Libraries

Part V : Challenges, Open Problems, and Trends
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Part IV

Mining Temporal Networks B
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Community Detection
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Temporal Communities

Identifying communities is a fundamental task in computer and network science.
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Temporal Communities

Question: How do we define a temporal community?



306
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Question: How do we define a temporal community?
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Communities in Static Networks

“community” = “umbrella term”

▶ extensive surveys (Fortunato and Hric, 2016; Su et al., 2024)

▶ possible definitions

– a community is a set of nodes, closer to each other than to the rest of the network

– a community is a “dense” subgraph

▶ typical problem settings

– a single community vs. network partitioning

– overlapping vs. non-overlapping communities

– local to some nodes vs. global
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Community Detection in Static Network

Usual workflow (data analysis)

1. pick a problem setting (e.g., partition in k communities vs
identify a single local community)

2. pick a proper metric to quantify the “density” of the
community S

– average degree : |E(S)|
2|S|

– density : 2|E(S)|
|S|(|S|−1)

– conductance : cut(S,S̄)

min{vol(S),vol(S̄)}
– modularity
– . . .

3. identify/design proper algorithms to solve the problem

4. analyze data and, if needed repeat from steps 1. or 2.
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Analyses and Applications

▶ social networks

– link prediction, targeted advertisement, content moderation, etc..

▶ financial networks

– fraud detection, money-laundry activities, etc..

▶ collaboration networks

– identifying trending topics, important group of nodes, etc..

▶ . . .
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So what is new about temporal communities?
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Temporal Evolution of Communities

Temporal networks allow us to study communities according to their temporal evolution!

Some representative behaviors,

Growing community C

𝐶 𝐶 𝐶

Time 𝑇
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Temporal Evolution of Communities

Temporal networks allow us to study communities according to their temporal evolution!

Some representative behaviors,

Growing community C

Shrinking community C

𝐶 𝐶 𝐶

Time 𝑇
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Temporal Evolution of Communities

Temporal networks allow us to study communities according to their temporal evolution!

Some representative behaviors,

Growing community C

Shrinking community C

Periodic community C

𝐶

𝑋

𝑋

𝑋

𝐶

𝑋

𝑋

𝐶

Time 𝑇
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Temporal Evolution of Communities

temporal networks allow us to study communities according to their temporal evolution!

Some representative behaviors,

Growing community C

Shrinking community C

Periodic community C

Bursty community C

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋

𝐶

𝑋

𝑋

Time 𝑇
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Temporal Evolution of Communities

Temporal networks allow us to study communities according to their temporal evolution!

Some representative behaviors,

Growing community C

Shrinking community C

Periodic community C

Bursty community C

Merging communities

. . .

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋

𝐶

𝑋

𝑋

Time 𝑇

Are there proposed taxonomies?
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Community Detection in Temporal Networks

Question How many taxonomies exist?
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Community Detection in Temporal Networks

▶ proposed taxonomies

– (Aynaud et al., 2013)

– (Aggarwal and Subbian, 2014)

– (Enugala et al., 2015)

– (Renaud and Naoki, 2016)

– (Hartmann et al., 2016)

– (Rossetti and Cazabet, 2018)

– (Dakiche et al., 2019)

– (Christopoulos and Tsichlas, 2022)

– ...

No need to panic: recall our steps for community identification!
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Temporal Community Detection

Proposed workflow (exploratory analysis), everything starts from data!

1. identify if temporal data is fine-grained or course-grained (!)

2. pick a problem setting (✓)

3. pick a proper metric to quantify the “temporal density” of the
community S , encoding the desired temporal properties (!)

4. identify/design proper algorithms to solve the problem

5. analyze data and, if needed repeat from steps 1. or 2.

Lets make it more concrete!
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BFF: Finding Lasting Communities (Semertzidis et al., 2016)

Data. Consider a temporal network G = {G1, . . . ,GT}

Setting. We want to find a single global dense community across all snapshots!

Implicit assumption. time is sufficiently course-grained so each snapshot has enough information

Metrics and temporal properties. Fix a time t, given S ⊆ V we define,

▶ davg (S ,Gt) =
1
|S|

∑
u∈S d(u,Gt [S ]) =

2|E(S,Gt)|
|S| , and

▶ dmin(S ,Gt) = minu∈S d(u,Gt [S ])

Combining such values across snapshots, let − ∈ {avg ,min}
▶ gmin(d−(S ,G )) = mint=1,...,T d−(S ,Gt)

▶ gavg (d−(S ,G )) = 1
T

∑
t d−(S ,Gt)

So we finally have a score for a community S ⊆ V , that is given +,− ∈ {avg ,min} we let

f+,−(S ,G ) = g+(d−(S ,G ))
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BFF: A Closer Look on the Metrics

Problem

Given G = (G1, . . . ,GT ), let +,− ∈ {avg ,min} and a target density f+,− find a subset of vertices
S∗ ⊆ V maximizing the objective f+,−(S ,G ) over all communities.

Inspecting the objective values

▶ fmin,min(S ,G ) = gmin(dmin(S ,G )) = mint=1,...,T minu∈S d(u,Gt [S ])),
minimum degree on every snapshot of all vertices v ∈ S∗ is high

▶ fmin,avg (S ,G ) = gmin(davg (S ,G )) = mint=1,...,T
2|E(S,Gt)|

|S| ,

average degree of each node in S is large on each snapshot

▶ favg ,min(S ,G ) = gavg (dmin(S ,G )) = 1
T

∑
t minu∈S d(u,Gt [S ])),

on average the minimum degree of each node in S is high (more flexible than fmin,min)

▶ favg ,avg (S ,G ) = gavg (davg (S ,G )) = 1
T

∑
t
2|E(S,Gt)|

|S| ,

on average the average degree of each node in S is high
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BFF: Algorithm

Computing the solution, FindBFF (Inspired by Charikar (2000))

1. iteratively and greedily peel V removing at each step v = argminv∈V score(v ,G [V ])

2. compute the density target density on the remaining network where V = V \ {v}
3. return the vertex-set S ⊆ V maximizing the target density over all O(n) iterations

How is score(v ,G [V ]) computed? Depends on the objective f

▶ for fmin,min(S ,G ) we set score(v ,G [Vi ]) = mint=1,...,T d(v ,Gt [V ])

▶ for favg ,avg (S ,G ) we set score(v ,G [Vi ]) =
1
T

∑
t d(v ,Gt [V ])

Resulting algorithms run in O(nT +
∑

t |Et |)
▶ FindBFF-MM (fmin,min), finds the optimal solution

▶ FindBFF-AA (favg ,avg ), finds a
1
2 -approximation

▶ BFF-AM (favg ,min) is NP-hard, FindBFF achieves an approximation at most O(n−1)

▶ BFF-MA (fmin,avg ), “complexity = ?”, FindBFF achieves an approximation at most O(n−1/2)
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On the Complexity of BFF-MA

On this line of research Charikar et al. (2018) proved

▶ fmin,avg (S ,G ) cannot be approximated within 2log
1−ε n unless NP ⊆ DTIME(npoly log(n))

▶ they give O((n logT )−1/2) and O(n−2/3) approximation algorithms

▶ suppose T is small the authors give and exact algorithm running in O(nTpoly(n,T )), and a
FPTAS that given an ε > 0 outputs a (1 + ε)-approximation in O(f (T )poly(n, ε−1)).
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FindBFF — A Use Case

Dataset consists of publications from DBLP in years from 2006 to 2015 (each year forms a snapshot
Gi ), the set of nodes V (|V | = 2625) represents authors.

BFF-MM BFF-MA BFF-AM BFF-AA

Wei Fan, Philip S. Yu,
Jiawei Han, Charu C. Aggarwal

Wei Fan, Jing Gao,
Philip S. Yu, Jiawei Han, Charu C. Aggarwal

Wei Fan, Jing Gao,
Philip S. Yu, Jiawei Han

Wei Fan, Jing Gao, Philip S. Yu, Jiawei Han, Charu C. Aggarwal,
Mohammad M. Masud, Latifur Khan, Bhavani M. Thuraisingham

Lu Qin, Jeffrey Xu Yu, Xuemin Lin Jeffrey Xu Yu, Xuemin Lin, Ying Zhang

Craig Macdonald, Iadh Ounis

Some observations

▶ Not all authors appearing in a dense subset coauthored many papers together, e.g., “Wei Fan”,
“Philip S. Yu”, and “Jiawei Han” coauthored only two papers together but many pairwise.

▶ Some solutions are not connected, e.g., BFF-MM.
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Pros and Cons

Strengths

▶ computes dense communities based on degree scores

▶ it is efficient for certain formulations

▶ works well for sufficiently temporal course-grained data

What is missing

▶ not optimizing for specific time-frames of the time-span

▶ cannot adapt well for fine-grained data

▶ theoretical gaps may prevent (close to) optimal solutions

Lets see another formulation!
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Communities as Episodes (Rozenshtein et al., 2019)

Data. Let G = (V ,E ) be an undirected temporal graph with E = {(ui , vi , ti ) : i = 1, . . . ,m}.

Setting. Find a multiple dense communities covering the timespan [t1, tm]

Metrics and temporal properties.
Given an interval I = [ts , te ] ⊆ [t1, tm] let G [I ] = (V [I ],E [I ]) be the induced subgraph in I

An episode is a pair (I = [ts , te ],H ⊆ G [I ]) where H is a subgraph of G [I ]

Given a static subgraph H = (VH ,EH) its density is d(H) = |EH |
|VH |

Problem

Given a temporal network G and an integer k find a set of k episodes (Ii ,Hi ), i = 1, . . . , k such that
Ii ∩ Ij = ∅, i ̸= j are disjoint while maximizing

k∑
i=1

d(Hi )
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Solving the Problem trough Segmentation

Computing the solution

▶ Note! in an optimal solution ∪i Ii covers [t1, tm].

▶ given interval I use result in (Goldberg, 1984) in O(nmst log n) to obtain
H∗ = argmaxH⊆G [I ] d(H), and mst is the max edges in an interval

▶ it suffices to find an optimal segmentation I1, . . . , Ik , (with dyn. prog. in O(kT 2))

Such algorithm has runtime O(kT 2nmst log n)

As this can be prohibitive an approximate approach is proposed

▶ approximate dyn. prog. approach controlled ε1 pruning candidates in segmentation

▶ avoiding recomputing densest subgraph, use evolving solution, controlled by ε2

Leading to 2(1 + ε1)(1 + ε2)-approximation algorithm running in O( k2

ε1ε2
TmT ,max log

2(n)) where
mT ,max is the maximum number of edges with the same time-stamp.
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Communities as Episodes — Analyzing Twitter Data

Tweets in Helsinki region, V are hashtags and (u, v , t) is added if a message contains both hashtags
u, v , data gathered from Nov 2013 containing 4758 tweets and 917 nodes. (Parameters, k = 4 and
ε1 = ε2 = 0.1)

▶ both episodes are related to events occurring in that period in Helsinki and globally, e.g., on the
left the Digiexpo and Halloween events, while on the right the MTV Europe music awards that
was on November 10.
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left the Digiexpo and Halloween events, while on the right the MTV Europe music awards that
was on November 10.
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Pros and Cons

Strengths

▶ it adapts in a flexible way to the timespan of the network

▶ in general it is efficient to compute

▶ identifies dense communities (w.r.t., average degree)

What is missing

▶ when aggregation is performed may lose some information

▶ not accounting for temporal behaviors, e.g., periodicity or burstiness

▶ may not be informative with small timespan (i.e, G has not few
dense structures)

Lets see another formulation!
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Discovering Buzzing Stories (Bonchi et al., 2019)

Data. Given a temporal network G = (V , {Et , ft}t=1,...,T ).

Setting. Find multiple dense and unexpected stories, i.e., communities.

Metrics and temporal properties.

Transform G → GA = (V , {Et , ϕt}t=1,...,T ) by mapping ft → ϕt where ϕt(·) captures how anomalous
or unexpected is e based on past data.

Given a discrete-time interval I = [ts , te ] and S ⊆ GA then “δ(S , I ) = density of S in I”

Given a set of subgraphs S then ∆(S, I ) =
∑

S∈S δ(S , I ).

Problem

Given the temporal (anomalous) graph GA, an interval I ⊆ [t1, tm] and two integers K ,N ≥ 1 find
S∗ = {S1, . . . ,SK} of disjoint subgraphs of GA such that

▶ |Si | ≤ N, that is the number of nodes in each subgraph is bounded by N

▶ ∆(S∗, I ) is maximized.



346

Discovering Buzzing Stories (Bonchi et al., 2019)
Data. Given a temporal network G = (V , {Et , ft}t=1,...,T ).
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– Et edges at time t and ft : Et 7→ R+ is a weighting function capturing the strength between
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Discovering Buzzing Stories (Bonchi et al., 2019)
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Discovering Buzzing Stories — Algorithm

The decision problem is NP-hard

Computing a solution

▶ develop an exact algorithm A running in O(|I |m log n) for K = 1 and N = ∞ based on a
“peeling” the minimum degree vertices.

Note! This needs to be accounting for time-points (updating the vertex degrees).

▶ algorithm for general case using A as subroutine by

– imposing further constraints on the size (i.e., bounding N) of the reported solutions

– iteratively remove identified communities to guarantee disjoint output.

The resulting algorithms runs in O(K |I |m log n) and comes without guarantees.
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Computing a solution
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Discovering Buzzing Stories – A Use Case

Dataset. Yahoo searches during 2013-2014

Assumption. If there is an anomaly people will search it on the web!

Processing.

▶ dataset spans 558 days, is build on user queries (appearing at least 50 times per day)

▶ map queries e.g., ”How to put pineapple on pizza” → ”(pineapple,pizza)” is generated

▶ ft accounts for frequency

Date |I | N Story Related Event

13/01/2014 1 10 “cristiano dor wins ronaldo fifa ballon” Cristiano Ronaldo won the Ballon d’Or in 2014

09/02/2014 3 10 “day figure russia julia skating medal ceremony” Yulia Lipnitskaya, a Russian prodigy won gold medal in Sochi

27/02/2014 2 30 “captains costa wreck concordia” Legal process for the Costa Concordia disaster
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Pros and Cons

Strengths

▶ tailored to a specific application

▶ interesting analyses

▶ efficient algorithm in practice

What is missing

▶ no guarantees

▶ a lot of preprocessing is needed and identifying ϕ(·) may be
non-trivial

▶ not much used in practice
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Significant Engagement Based Community (Zhang et al., 2022)

Dataset. Undirected temporal network G = (V ,E ),E = {(ui , vi , ti ) : i = 1, . . . ,m}

Setting. Find the community where a given user has highest engagement, local formulation!

Metrics and temporal properties.
Let H ⊆ G , the degree of v ∈ V [H] is du,H =

∑
e:E [H] 1[v ∈ e].

Given H ⊆ G the engagement of v ∈ V [H] is γ(u,H) =
du,H∑

v∈V [H] dv,H
.

Problem

Given a temporal graph G , a parameter k ≥ 1, and a vertex u ∈ V find H such that

▶ u ∈ V [H]

▶ the static network of H is a k-core (Guarantees cohesiveness)

▶ γ(u,H) ≥ γ(u,H ′) for any other H ′ ⊆ G (Guarantees max-engagement)
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A Case Study on DBLP (Zhang et al., 2022)

Computing a solution

Greedy peeling algorithms + local search running in O(m2(n +m))

Insights on DBLP data

As desired seed nodes are well centered in the identified communities
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Computing a solution
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Insights on DBLP data

As desired seed nodes are well centered in the identified communities
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Pros and Cons

Strengths

▶ local formulation

▶ proposed algorithm is polynomial

▶ output has desired properties

What is missing

▶ no guarantees

▶ may need additional assumptions to better model engagement

▶ engagement is not time-dependent
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You showed us only degree-based metrics!
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Local Motif Clustering (Fu et al., 2020)

Data. Undirected temporal network G = {G1, . . . ,GT}.

Setting. Find a good local “tight cluster → motifs” to a seed node at each time point 1, . . . ,T .

Metrics and temporal properties.

H: a small subgraph pattern (e.g., edge, triangle, star etc).

C ⊆ V : is cluster, and motif-conductance is Φ(C ,H) = ∂(C ,H)

min{vol(C ,H), vol(C̄ ,H)}
where,

▶ ∂(C ,H): # of subgraphs cut by the cluster (i.e., “cut = at least one node not in C”)

▶ vol(A,H): # of occurrences of H in A

Problem

Given G = {G1, . . . ,GT}, a static motif H, a seed node v ∈ V , an upper-bound on the motif
conductance ϕ, compute,

C t containing v ∈ V such that Φ(C t ,H) ≤ ϕ, for each t = 1, . . . ,T .
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Local Motif Clustering – Example

Example

Let us fix H to be a triangle

Notation. Blue edges denote insertions and green edges denote removals.

(a) t = 1

(b) t = 2 (c) t = 3
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Proposed Solution by Fu et al. (2020)

The problem is already for static graphs NP-hard

Computing a solution

▶ fix t = 1, . . . ,T , let k be # nodes in H

▶ define a multilinear page-rank vector xt , that accounts for the high-order motifs,

xt = αP t(xt ⊗ · · · ⊗ xt) + (1− α)u

where P t encodes transitions over motifs, u is the vector encoding user preferences.

▶ a good-approximate obtained through sweep cut on vector xt ,

– sort (from largest to smallest) the entries in xt

– pick the prefix 1, . . . , j with j = 1, . . . , n optimizing the induced cut

Idea! For varying t, graph is evolving avoid repeating such steps by 1. avoid considering distant edges
that cannot impact cluster 2. avoid scratch re computation of xt

Runtime O(
∑

t [f (mi , n
O(k)
i , kk)], P1 is assumed in input!
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Pros and Cons

Strengths

▶ local formulation

▶ uses high order information

▶ versatile according to the pattern

What is missing

▶ no guarantees

▶ problem is already hard on a single snapshot

▶ not very practical computing P i , i = 1, . . .
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Fairness-Aware Clique Preserving Clustering (Fu et al., 2023)
Fairness definition demographic fairness

Data. G = {G1, . . . ,GT}, where V has h different groups

Setting. Find q clusters at each time-point cutting few k-cliques and that are fair.

Problem

Given G parameters k and q, find a q-clustering C t
1 , . . . ,C

t
q for t = 1, . . . ,T such that

▶ minC t
i

∑T
t=1

∑q
j=1

∂(C t
i ,k)

vol(C t
i ,k)

(∂(C t
i , k): # of k-cliques cut by C t

i )

▶ |VS∩C t
i |

|C t
i |

= |Vs |
|V | for each time t = 1, . . . ,T and cluster s = 1, . . . , q

Computing a solution

The problem is NP-hard

At fixed t solution is based on spectral techniques: trace minimization problem + K -means.

Avoid re computation at each time t, accounting for edge additions and deletions.

Runtime is O(T (q4 + q2n) +
∑

t ka
k−2mt), a is arboricity at time t, no guarantees on the solution.
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Fairness-Aware Clique Preserving Clustering (Fu et al., 2023)
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Visualizing the Desired Behavior

Example

Let q = 2 and k = 3 (k-clique is a triangle). Green edges are insertions and yellow edges are
removals
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Visualizing the Desired Behavior

Example

Let q = 2 and k = 3 (k-clique is a triangle). Green edges are insertions and yellow edges are
removals
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Pros and Cons

Strengths

▶ fairness + evolving networks

▶ global dense clusters

▶ can have different applications

What is missing

▶ no guarantees

▶ problem is already hard on a single snapshot

▶ not very practical enumerating k-cliques
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Let us do a summary.
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Community Detection in Temporal Networks – Summary

▶ community detection in temporal networks is a very wide research area

▶ do not panic and follow a principled approach (start from data!)

– identify properties of the communities you are looking (global vs. local, etc..)

– search formulations with desired properties (much work has been done!)

– if nothing works you found a gap in literature (novel algorithms are needed!)

▶ use/develop proper algorithms to analyze temporal communities

Keep in mind. There is a gap between formulations and applications
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Temporal communities – Other Formulations

Some other existing formulations

▶ (Lin et al., 2022) find multiple maximal quasi-clique based communities, stable overall and with
interval-based edges

▶ (Qin et al., 2023) find single and dense community that is periodic over time

▶ (Preti et al., 2021) discovering a set of diverse and correlated communities in dynamic setting

▶ (Ma et al., 2020) finding dense subgraphs in temporal networks with time-varying edge weight

▶ (Banerjee and Pal, 2022) online algorithm for temporal clique identification

▶ (Chu et al., 2019) bursty and dense community identification

▶ . . .
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Temporal Motifs and Events
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Subgraph Motifs

Motifs are small subgraph patterns with a plethora of applications in various domains

▶ databases

▶ social networks

▶ biology

▶ e-commerce

But how?
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Short Primer on Subgraph Isomorphism

Given a simple static graph G = (V ,E ) and small target graph H = (VH ,EH) we say that,

▶ G ′ ⊆ G is a subgraph that is isomorphic to H if there exists a bijection f : VH 7→ VG ′ with

(x , y) ∈ EH =⇒ (f (x), f (y)) ∈ EG ′ (G ′ ∼ H)

Example

C B

A

D E

(a) G

z y

x

(b) H
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Short Primer on Subgraph Isomorphism

Given a simple static graph G = (V ,E ) and small target graph H = (VH ,EH) we say that,

▶ G ′ ⊆ G is a subgraph that is isomorphic to H if there exists a bijection f : VH 7→ VG ′ with

(x , y) ∈ EH =⇒ (f (x), f (y)) ∈ EG ′ (G ′ ∼ H)

Example

C B
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D E

(a) G

z y

x

(b) H

Is “V [C ,D,E ]” isomorphic to H?

C B

A

D E
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Short Primer on Subgraph Isomorphism

Given a simple static graph G = (V ,E ) and small target graph H = (VH ,EH) we say that,

▶ G ′ ⊆ G is a subgraph that is isomorphic to H if there exists a bijection f : VH 7→ VG ′ with

(x , y) ∈ EH =⇒ (f (x), f (y)) ∈ EG ′ (G ′ ∼ H)

Example

C B

A

D E

(a) G

z y

x

(b) H

Is “V [C ,D,E ]” isomorphic to H? Yes!

C B

A

D E
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Short Primer on Subgraph Isomorphism

Given a simple static graph G = (V ,E ) and small target graph H = (VH ,EH) we say that,

▶ G ′ ⊆ G is a subgraph that is isomorphic to H if there exists a bijection f : VH 7→ VG ′ with

(x , y) ∈ EH =⇒ (f (x), f (y)) ∈ EG ′ (G ′ ∼ H)

Example

C B

A

D E

(a) G

z y

x

(b) H

Is “V [A,C ,B]” isomorphic to H?

C B

A

D E
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Short Primer on Subgraph Isomorphism

Given a simple static graph G = (V ,E ) and small target graph H = (VH ,EH) we say that,

▶ G ′ ⊆ G is a subgraph that is isomorphic to H if there exists a bijection f : VH 7→ VG ′ with

(x , y) ∈ EH =⇒ (f (x), f (y)) ∈ EG ′ (G ′ ∼ H)
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Short Primer on Subgraph Isomorphism
Given a simple static graph G = (V ,E ) and small target graph H = (VH ,EH) we say that,

▶ G ′ ⊆ G is a subgraph that is isomorphic to H if there exists a bijection f : VH 7→ VG ′ with

(x , y) ∈ EH =⇒ (f (x), f (y)) ∈ EG ′ (G ′ ∼ H)

▶ the isomorphism is called induced if it also holds

(x , y) ∈ EH ⇐⇒ (f (x), f (y)) ∈ EG ′

Example

C B

A

D E

(a) G

z y

x

(b) H

Is “V [A,C ,B]” isomorphic to H?

C B

A

D E
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Short Primer on Subgraph Isomorphism
Given a simple static graph G = (V ,E ) and small target graph H = (VH ,EH) we say that,

▶ G ′ ⊆ G is a subgraph that is isomorphic to H if there exists a bijection f : VH 7→ VG ′ with

(x , y) ∈ EH =⇒ (f (x), f (y)) ∈ EG ′ (G ′ ∼ H)

▶ the isomorphism is called induced if it also holds

(x , y) ∈ EH ⇐⇒ (f (x), f (y)) ∈ EG ′

Example

C B

A

D E

(a) G

z y

x

(b) H

Is “V [A,C ,B]” isomorphic to H? No!

C B

A

D E

(f −1(A), f −1(B)) not in H!
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Short primer on Subgraph Isomorphism

Given a simple static graph G = (V ,E ) and small target graph H = (VH ,EH) we say that,

▶ G ′ ⊆ G is a subgraph that is isomorphic to H if there exists a bijection f : VH 7→ VG ′ with

(x , y) ∈ EH =⇒ (f (x), f (y)) ∈ EG ′ (G ′ ∼ H)

▶ the isomorphism is called induced if it also holds

(x , y) ∈ EH ⇐⇒ (f (x), f (y)) ∈ EG ′

Given a graph G , count of H meaning: # of distinct subgraphs G ′ ⊆ G with G ′ ∼ H.

If G ′ ∼ H we say G ′ is an occurrence of H

Problem

Given a graph G and a small subgraph pattern H

▶ obtain the count of H (counting problem)

▶ list all occurrences of H
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Subgraph Counts

The problem is NP-hard and extremely challenging

Many applications, in computer science, network science and more...

(a) Node embeddings

(b) Malware detection (c) Spreading processes

Some material

▶ (Ribeiro et al., 2021) survey on algorithms and applications

▶ (Seshadhri and Tirthapura, 2019) tutorial in WWW 2019 on subgraph counting

What about temporal motifs?
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Subgraph Counts

The problem is NP-hard and extremely challenging

Many applications, in computer science, network science and more...

(a) Node embeddings (b) Malware detection (c) Spreading processes

Some material

▶ (Ribeiro et al., 2021) survey on algorithms and applications

▶ (Seshadhri and Tirthapura, 2019) tutorial in WWW 2019 on subgraph counting
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Temporal Motifs

As for temporal communities many definitions exist

Temporal motifs = static subgraphs + temporal dynamics (+ additional information)

Where

▶ static subgraph may be (non)induced

▶ temporal dynamics time over the static subgraph, in many ways

▶ additional information is any available metadata on nodes or edges, e.g., f : {V ,E} → D

Let us see some of most used definitions
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Temporal Motifs

As for temporal communities many definitions exist

Temporal motifs = static subgraphs + temporal dynamics (+ additional information)

Where

▶ static subgraph may be (non)induced

▶ temporal dynamics time over the static subgraph, in many ways

▶ additional information is any available metadata on nodes or edges, e.g., f : {V ,E} → D

Let us see some of most used definitions
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Temporal Motifs by Kovanen et al. (2011)

Data. G = (V ,E ),E = {(u, v , t)} be a directed temporal network

Modeling temporal dynamics

Some definitions

– two edges (e1, e2 ∈ E ) are ∆t-adjacent they share at least one node and |te1 − te2 | ≤ ∆t.

– two edges (e1, e2 ∈ E ) are ∆t-connected if there is a sequence ∆t-adj. edges from e1 to e2
(no time ordering!)

Further, a connected temporal subgraph G ′ ⊆ G constitutes of pairwise ∆t-conn. edges

– a conn. temporal subgraph G ′ is valid if for each two events that are incident to a node no
other edges are skipped (temporally induced G ′)



404

Temporal Motifs by Kovanen et al. (2011)
Data. G = (V ,E ),E = {(u, v , t)} be a directed temporal network

Modeling temporal dynamics

Some definitions

– two edges (e1, e2 ∈ E ) are ∆t-adjacent they share at least one node and |te1 − te2 | ≤ ∆t.

Example. Fix ∆t = 10

(a) Temporal Network G (b) ∆t-adjacent edges (c) Not ∆t-adjacent
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Temporal Motifs by Kovanen et al. (2011)
Data. G = (V ,E ),E = {(u, v , t)} be a directed temporal network

Modeling temporal dynamics

Some definitions

– two edges (e1, e2 ∈ E ) are ∆t-adjacent they share at least one node and |te1 − te2 | ≤ ∆t.
– two edges (e1, e2 ∈ E ) are ∆t-connected if there is a sequence ∆t-adj. edges from e1 to e2

(no time ordering!)

Example. Fix ∆t = 10

(a) Temporal Network G (b) ∆t-connected edges

Further, a connected temporal subgraph G ′ ⊆ G constitutes of pairwise ∆t-conn. edges
– a conn. temporal subgraph G ′ is valid if for each two events that are incident to a node no

other edges are skipped (temporally induced G ′)
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Temporal Motifs by Kovanen et al. (2011)
Data. G = (V ,E ),E = {(u, v , t)} be a directed temporal network

Modeling temporal dynamics

Some definitions

– two edges (e1, e2 ∈ E ) are ∆t-adjacent they share at least one node and |te1 − te2 | ≤ ∆t.

– two edges (e1, e2 ∈ E ) are ∆t-connected if there is a sequence ∆t-adj. edges from e1 to e2
(no time ordering!)

Further, a connected temporal subgraph G ′ ⊆ G constitutes of pairwise ∆t-conn. edges

– a conn. temporal subgraph G ′ is valid if for each two events that are incident to a node no
other edges are skipped (temporally induced G ′)

Example. Fix ∆t = 10

(a) Temporal
Network G

(b) Valid (c) Not valid
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Temporal Motifs by (Kovanen et al., 2011)
Definition

Temporal motifs are non-isomorphic classes of subgraphs, where the isomorphism takes into account
edge ordering.

Example.

(a) Motif occurrence (b) Class 1? (c) Class 2?

Problem

Given G , ∆t and a bound k obtain the count of temporal motifs on k nodes.

Solving the counting problem for specific classes
▶ pre-process G and identify maximal components O(|E |)
▶ in each component find valid subgraphs of bounded size k , O(nk)
▶ map each valid subgraph G ′ with k-edges on its class (canonical labeling is used, exponential in

|G ′|).

A real use case?
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Temporal Motifs by (Kovanen et al., 2011)
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Temporal Motifs by (Kovanen et al., 2011)

Definition

Temporal motifs are non-isomorphic classes of subgraphs, where the isomorphism takes into account
edge ordering.

Problem

Given G , ∆t and a bound k obtain the count of temporal motifs on k nodes.

Solving the counting problem for specific classes

▶ pre-process G and identify maximal components O(|E |)
▶ in each component find valid subgraphs of bounded size k , O(nk)

▶ map each valid subgraph G ′ with k-edges on its class (canonical labeling is used, exponential in
|G ′|).

A real use case?
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Homophily in Phone Call Networks (Kovanen et al., 2013)
Data. Record of 6 months data of mobile phone calls (625million calls) and SMS (207 million). In total
> 6 million users.

Additional metadata. Sex, age and payment type, combined to obtain 24 different node colors

Insights. Temporal homophily occurs at gender level, i.e., temporal phone call patterns tend to be
different in males and females

Temporal motifs.

The score denotes how strong is data with respect to a random-model. F : female, M: male, F − F : all
nodes are of F class, F − ∗: there exist at least one node of M class in the motif.

Motif F − F F − ∗ M −M M − ∗

Repeated calls 1.11 1.11 1.13 1.10

Noncausal chain 1.08 1.02 1.01 1.04

Causal chain 1.08 1.01 0.98 1.02

Out-star 1.10 1.03 1.01 1.04
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Homophily in Phone Call Networks (Kovanen et al., 2013)
Data. Record of 6 months data of mobile phone calls (625million calls) and SMS (207 million). In total
> 6 million users.

Additional metadata. Sex, age and payment type, combined to obtain 24 different node colors

Insights. Temporal homophily occurs at gender level, i.e., temporal phone call patterns tend to be
different in males and females

Temporal motifs.

The score denotes how strong is data with respect to a random-model. F : female, M: male, F − F : all
nodes are of F class, F − ∗: there exist at least one node of M class in the motif.
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An Issue with Kovanen et al. (2011)’s Definition
Example. Fix ∆t = 10

(a) Temporal
Network G

(b) Not valid

(a) Temporal
Network G

(b) Not valid

Considering only valid subgraphs may be too strict!

Which can lead to information loss, as this can be important for many applications.

How to fix this?
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An Issue with Kovanen et al. (2011)’s Definition

Example. Fix ∆t = 10

(a) Temporal
Network G

(b) Not valid

Considering only valid subgraphs may be too strict!

Which can lead to information loss, as this can be important for many applications.

How to fix this?
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Temporal Motifs by Paranjape et al. (2017)

This model aims at providing a more general and flexible definition of temporal motifs.
Data. G = (V ,E ),E = {(u, v , t)} be a directed temporal network

A temporal motif is a pair M = (K , σ) (Liu et al., 2019) where

▶ K is a directed and (weakly)connected multigraph with k-nodes and ℓ-edges.

v2 v3v1

(a) K1

v2 v3v1

(b) K2

▶ σ is an ordering of the edges of K (modelling temporal dynamics of K )

Example. Fixing K = K1 then

v2 v3v1
σ2σ1

(a) σL = ⟨(v1, v2), (v2, v3)⟩

v2 v3v1
σ1σ2

(b) σR = ⟨(v2, v3), (v1, v2)⟩

Note. σL is time respecting while σR not!
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Temporal Motif Counting Problem (Paranjape et al., 2017)
Given G and a value δ ∈ R+, a time-ordered sequence S = ⟨(x ′1, y ′

1, t
′
1), . . . , (x

′
ℓ, y

′
ℓ, t

′
ℓ)⟩ of ℓ unique

edges from G is a δ-instance of M = ⟨(x1, y1), . . . , (xℓ, yℓ)⟩ if
1. there exists a bijection h from the vertices appearing in S to the vertices of M, with h(x ′i ) = xi

and h(y ′
i ) = yi , and i ∈ [ℓ];

2. the edges of S occur within δ time; i.e., t ′ℓ − t ′1 ≤ δ.

3

5

2

6

1

4

10, 15

13

20, 35

19

2, 22, 36

9
1

3, 24

(a) Temporal graph G (b) Temporal motif, ti gives
ordering in σ

Fix δ = 10

3

5

2

6

15
13

20
19

(a) ? ✗

3

5

2

6

10
13

35
19

(b) ? ✗

3

5

2

6

10
13

20
19

(c) ? ✓

3

5

2

6

15
13

35
19

(d) ? ✗
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Temporal Motif Counting Problem (Paranjape et al., 2017)
Given G and a value δ ∈ R+, a time-ordered sequence S = ⟨(x ′1, y ′

1, t
′
1), . . . , (x

′
ℓ, y

′
ℓ, t

′
ℓ)⟩ of ℓ unique

edges from G is a δ-instance of M = ⟨(x1, y1), . . . , (xℓ, yℓ)⟩ if
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(a) Temporal graph G (b) Temporal motif, ti gives
ordering in σ
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(d) ?
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(a) ? ✗
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35
19

(d) ? ✗
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Temporal Motif Counting Problem (Paranjape et al., 2017)
Given G and a value δ ∈ R+, a time-ordered sequence S = ⟨(x ′1, y ′

1, t
′
1), . . . , (x

′
ℓ, y

′
ℓ, t

′
ℓ)⟩ of ℓ unique

edges from G is a δ-instance of M = ⟨(x1, y1), . . . , (xℓ, yℓ)⟩ if
1. there exists a bijection h from the vertices appearing in S to the vertices of M, with h(x ′i ) = xi

and h(y ′
i ) = yi , and i ∈ [ℓ];

2. the edges of S occur within δ time; i.e., t ′ℓ − t ′1 ≤ δ.
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Temporal Motif Counting Problem – cont.

Count of a temporal motif M is: # of δ-instances of M in G

Problem

Given a temporal network G , a temporal motif M and a parameter δ ∈ R+ obtain the count of the
temporal motif M

The problem is NP-hard

The problem is NP-hard even for motifs in P for static networks (Liu et al., 2019)!

Lets look at existing algorithms
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Exact Algorithm by Paranjape et al. (2017)
The proposed algorithm computes the counts of all {2, 3}-node 3-edge temporal motifs.

General framework

▶ computes the aggregate graph GA of G

▶ enumerates all subgraphs H ⊆ GA isomorphic to K (i.e., H ∼ K )

▶ for each H gathers the corresponding temporal networks GH and sorts edges by timestamps
▶ applies dynamic-programming to obtain the counts of all the sequences of length ℓ in a window of

size δ

Runtime. O(|E |+ nk +
∑

H∼K |EGH
|(log(|EGH

|) + |EH |ℓ)
Specialized routines for specific motif classes through dynamic programming
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Exact Algorithm by Paranjape et al. (2017)

The proposed algorithm computes the counts of all {2, 3}-node 3-edge temporal motifs.
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427

Other Exact Algorithms

Other exact approaches

(Mackey et al., 2018) enumerates all δ-instances of a fixed temporal motif M without constrains

(Pashanasangi and Seshadhri, 2021) Fast algorithms for temporal triangle counting based on
degeneracy ordering

(Gao et al., 2022) improved algorithms for counting {2, 3}-node 3-edge temporal motifs

(Sarpe, 2023) improved (Mackey et al., 2018) by different matching criteria and timeline partition

(Yuan et al., 2023) dedicated hardware for counting temporal motifs

(Cai et al., 2023) exact algorithms for counting butterflies in temporal bipartite networks

...

As the problem is hard, often better rely on approximate counting!
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Motif Approximation Problem
Problem

Given a temporal network G , a temporal motif M and a parameter δ ∈ R+, and two additional
parameters ε, η ∈ (0, 1)2 obtain C ′ an estimate of the count C of the temporal motif M with

P[|C ′ − C | ≥ εC ] ≤ η

Why approximate counts?

▶ often efficient and practical to compute on massive data

▶ approximations are robust to noisy data

▶ guarantees on the quality of estimate
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▶ approximations are robust to noisy data

▶ guarantees on the quality of estimate
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Approximation Algorithms

Most of approximate algorithm are based on randomized sampling

(Liu et al., 2019): partitioning time-span of G in non-overlapping windows and uses importance
sampling to decide windows to explore

(Wang et al., 2020): sampling temporal edges with fixed probability, specialized estimators for
triangles, and streaming

(Sarpe and Vandin, 2021b; Sarpe, 2023): interval based algorithms performing uniform sampling
without partitioning

(Pu et al., 2023): edges sampling techniques for counting temporal butterflies on undirected bipartite
temporal networks

. . .
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On the Selection of σ (Sarpe and Vandin, 2021a)
A temporal motif is a pair (K , σ), how to properly pick σ?
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Multiple values of σ may need to be tested!

Problem

Given a temporal network G , a parameter δ ∈ R+, a static undirected subgraph H and a value ℓ ≥ |EH |
compute the count of all temporal motifs “mapping” on H and having ℓ temporal edges
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odeN (Sarpe and Vandin, 2021a)

Proposed algorithm odeN: randomized sampling algorithm + theoretical guarantees
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odeN (Sarpe and Vandin, 2021a)

Proposed algorithm odeN: randomized sampling algorithm + theoretical guarantees

Efficiently estimates multiple temporal motifs counts simultaneously. H: triangle and data comes from
Facebook posts, varying ℓ.



436

Are there applications?

Temporal motifs enabled both novel algorithmic problems and more nuanced applications
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Stochastic Block Models (Porter et al., 2022)

Goal. Obtain highly accurate stochastic block models (SBM) to capture temporal motif δ-instances

Proposed solution. Temporal Activity SBM

1. partition nodes according to their activity level {in, out}-edges (resp. C in, cout groups)

2. model temporal edges according

θ =

θ1,1θ1,2
θ2,1θ2,2


where θ ∈ RC in×C out

models edge occurrence

3. analytical computation of motif counts according to such model
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Stochastic Block Models (Porter et al., 2022)

Goal. Obtain highly accurate stochastic block models (SBM) to capture temporal motif δ-instances

Proposed solution. Temporal Activity SBM
1. partition nodes according to their activity level {in, out}-edges (resp. C in, cout groups)
2. model temporal edges according

θ =

θ1,1θ1,2
θ2,1θ2,2


where θ ∈ RC in×C out

models edge occurrence
3. analytical computation of motif counts according to such model

The model accurately tracks temporal motif counts. Financial dataset recorded over 10 years,
δ = 90 days, left M1 = ⟨(v1, v2), (v3, v2), (v1, v2)⟩, right M2 = ⟨(v1, v2), (v2, v1), (v2, v1)⟩
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Synthetic Network Generators (Liu and Sariyüce, 2023)

Goal. Obtain a synthetic temporal network, similar to the one in input for temporal motifs

Proposed solution. Motif Transition Model

Cold event (CE ): first event on a temporal motif instance

1. compute temporal network statistics

– static degree distribution (KCE ) and timestamps (TCE ) of cold events

– P motif-transition properties (how likely are motifs to evolve from one to another)

– Λ motif transition rated (how often they transition)

– µ number of static edges involved in transitions.

2. generate static network from KCE and assign (TCE )

3. simulate transition process according to computed metrics
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Mining Persistent Events (Belth et al., 2020)

Goal. Distinguish between how motif occur over time streams

Proposed solution. Assign persistence score and algorithms to compute it

Let x be an event (e.g., temporal motif instance) then the persistence P(·)

P(x) = f

W (x)︸ ︷︷ ︸
width

, F (x)︸︷︷︸
frequency

, S(x)︸︷︷︸
uniformity


Online and offline streaming algorithms are developed, efficient for small size of events (small ℓ)

The score allows to distinguish between frequent/infrequence and bursty/persistent
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Some Practical Applications (Liu et al., 2024)

▶ capturing high-order patterns for phishing gang identification on cryptocurrency networks
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Some Practical Applications (Lei et al., 2020)

▶ analyzing different temporal travel patterns in people commuting (metro vs bike sharing)

(a) using metro (b) using bikesharing
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Other Temporal Motif Definitions

Several other definitions exist in literature

▶ (Boekhout et al., 2019): studied temporal multilayer motifs

▶ (Lee and Shin, 2023): studied temporal hypergraph motifs

▶ (Longa et al., 2021): studied motifs based ego-networks

▶ (Kosyfaki et al., 2018): defined motifs for temporal networks with flows

▶ ...

If you want to know more, check the survey by Liu et al. (2021)
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Diffusion and Random Networks
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Diffusion Analysis and Spreading

▶ propagation models

– used to study disease spreading or information
cascade in the network

▶ activity spreading: virus, information, idea, rumor

▶ applications: epidemiology, information security,
marketing

▶ why use models?

– facilitate mathematical analysis of propagation
– processes

– have intuitive interpretation

– proven to be realistic by empirical studies

▶ extensive survey in the book (Shakarian et al., 2015)

(a) t = 1

(b) t = 2
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Standard Models

Most used models are

▶ susceptible-infected (SI) model

– SIR, SIRS, other variants

▶ independent cascade (IC) model

▶ linear threshold (LT) model

Such models are important building blocks for many data mining formulations!



451

Susceptible-Infectious (SI) Model

▶ beginning

– time step t0

– one or several infected nodes in It0 (seeds of infection)

▶ subsequent timestamp t

– all infected nodes try to infect each of their susceptible neighbors

– with probability p infection is passed through an edge

– if a node receives infection becomes infected

▶ the process continues until all nodes are infected.

Some other node types, recovered (nodes that were infectious and now cannot spread), and exposed
(infected that cannot spread)
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Independent Cascade (IC) Model

▶ nodes can be in either susceptible or infectious

▶ each edge (u, v) has an individual infection probability (based on proximity, frequency, etc..)

▶ infected node u has a single chance to infect its neighbors

Used to study new propagation of ideas, concepts, or products (Kempe et al., 2003; Wang et al., 2012)
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Linear Threshold (LT) Model

▶ every edge (u, v) has a probability p(u, v)

▶ at the time step t, u: susceptible → infectious, if the total weight from its infectious neighbors is
larger than a random propagation threshold θu∑

v∈N(u)

p(v , u)1[v is infectious at t] ≥ θu

▶ conditional on thresholds and the initially infected nodes the process is deterministic.

LT model has applications in viral-marketing (Chen et al., 2010; Goyal et al., 2011)
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Mining Applications

Powerful modeling for many mining primitives

1. immunization strategies, e.g., find smallest set of nodes to stop a spreading process. (Lee et al.,
2012; Yu et al., 2010; Starnini et al., 2013; Génois et al., 2015; Mantzaris and Higham, 2016;
Valdano et al., 2015; Gauvin et al., 2015)

2. influence maximization, e.g., select the initial set of seeds, to optimize diffusion, applications in
marketing and network design. (Aggarwal et al., 2012; Zhuang et al., 2013; Gayraud et al., 2015;
Rodriguez et al., 2011; Gomez-Rodriguez et al., 2016; Chen et al., 2012; Liu et al., 2012;
Rodriguez and Schölkopf, 2012; Du et al., 2013)

3. seed and cascade reconstruction, e.g., given some observed data of a spreading phenomenon,
find the most probable seed nodes or cascades, applications in epidemiology and nfluencer
discovery. (Shah and Zaman, 2011; Lappas et al., 2010; Prakash et al., 2012)
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Random Models

Common questions in temporal data analysis

▶ how novel is this result?

▶ is this only due to random chance?

▶ are there properties in the data explaining the results?

To find an answer → use a statistical test (Pellegrina et al., 2019)

▶ start from a temporal network G

▶ formulate an hypothesis (H0) about data (e.g., time does not matter for f (G ))

▶ perform a test to reject H0, usually

– generate multiple datasets GH0
1 , . . . ,GH0

L for some large L according to H0

– compute some function g(GH0
1 , . . . ,GH0

L ) to reject H0 (e.g., g(·) not explains f (G )).
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Random Models Gauvin et al. (2022)

Randomized models are used to test temporal/static properties in data
A temporal network as time-line of events

We have

1. static structure (SS)

2. timeline associated to its links (TL)

To obtain random models → use these two properties or combinations of the two

Let us see some examples
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Random Models Gauvin et al. (2022)

Shuffling only static properties while fixing the temporal ones

(a) link shuffling

(b) (conn.) constrained degree link shuffling
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Random Models Gauvin et al. (2022)

timeline shuffling

This model retains static properties and conditions on the observed temporal ones
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Random Models Gauvin et al. (2022)

Other models retaining static properties

(a) shuffling events over each timeline

(b) shuffling events and retaining gaps

... and much more such combinations (static + temporal) ...
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Random Models Gauvin et al. (2022)

Some random models for snapshot-based temporal networks

(a) snapshot shuffling

(b) isomorphism based
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Random Models

Summary.

▶ random models can be of fundamental importance for testing significance/generating additional
data

▶ they can be applied for most of the mining problems that we discussed

▶ some of them may be hard to compute and new methods may be required
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Agenda

Part I : Introduction and Motivation

▶ models of temporal networks

▶ algorithmic approaches

Part II : Mining Temporal Networks A:

▶ connectivity, temporal properties

▶ centrality, cores

Part III : Mining Temporal Networks B:

▶ communities, patterns and events

▶ diffusion and random networks

Part IV : Tools and Code Libraries

Part V : Challenges, Open Problems, and Trends
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Part IV

Tools and Code Libraries
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Tools Overview

Tool Name Language Functionalities

SNAP C++/Python Temporal motifs

Graph-tool Python/C++ Simulate network dynamics (e.g., spreading)

Teneto Python Temporal network measures (centrality, reachability, etc..), community detection, visualization

Phasik Python Infer temporal networks from time series data

Reticula C++/Python Random networks, random models, temporal reachability, events...

Tglib C++/Python Paths, centrality and other properties (cores, clustering coefficient, etc..)

Raphtory Rust/Python Centrality, communities, cores, motifs, null models, visualization and more...

https://github.com/snap-stanford/snap
https://graph-tool.skewed.de/
https://github.com/wiheto/teneto
https://phasik.readthedocs.io/en/latest/
https://docs.reticula.network/
https://gitlab.com/tgpublic/tglib
https://github.com/Pometry/Raphtory
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Part V

Challenges, Open Problems, and Trends
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Challenges in Temporal Network Mining

▶ large number of problem formulations and variants

▶ gaps fundamental theoretical treatment

– many are combinations of several ideas of static cases

– require often many parameters

▶ hard to compare methods and choose based on applications

– few datasets with ground-truth solutions

– synthetic generators are built on various assumptions

– no standards and benchmarks

– as always: lack of useful and rich datasets

▶ a large number of quality metrics to calculate and compare

▶ comparisons are misleading if methods are designed for other definitions
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Directions in Temporal Network Mining

▶ more systematic approaches, quality guarantees

▶ interpretability of the results

▶ diversity and fairness

▶ applications and application-tailored algorithms

– encourage interdisciplinary research and collaborations

– computational social science
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Thanks for your attention!

https://miningtemporalnetworks.github.io/

menti.com

code: 14 46 97 6

https://miningtemporalnetworks.github.io/
menti.com
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