
Temporal Graph Mining

Aristides Gionis, Lutz Oettershagen, Ilie Sarpe

{argioni, lutzo, ilsarpe}@kth.se

KTH Royal Institute of Technology

2

Tutors

Aristides Gionis Lutz Oettershagen Ilie Sarpe

3

Website

https://miningtemporalnetworks.github.io/

https://miningtemporalnetworks.github.io/

4

Interaction

menti.com

code: 14 46 97 6

menti.com

5

Agenda

Part I : Introduction and Motivation

▶ models of temporal networks

▶ algorithmic approaches

Part II : Mining Temporal Networks A:

▶ connectivity, temporal properties

▶ centrality, cores

Part III : Mining Temporal Networks B:

▶ communities, patterns and events

▶ diffusion and random networks

Part IV : Tools and Code Libraries

Part V : Challenges, Open Problems, and Trends

6

Part I

Introduction and Motivation

7

Interconnected World

▶ networks model objects and their relations

▶ many different network types

– social (WhatsApp, LinkedIn, etc..)

– informational (co-authorship, email, etc..)

– technological (IP-level, transportation, etc..)

– purchase (E-commerce, crypto, etc..)

– . . .

▶ networks are ubiquitous in WWW-based applications

PY

JK
PD

VK

HPK

PY

JK
PD

VK

HPK

PY

JK
PD

VK

HPK

PY

JK
PD

VK

HPK

PY

JK
PD

VK

HPK

Figure 2: Discovered strong edges of 5 ego-networks of KDD innovation award winners. The �rst 5 �gures contain
only strong edges: the colored edges and vertices show 5 topics that were used as input: cluster, classif, pattern,
network, distribut. The last topic consisted of 2 connected components which we used as two separated communities.
The last �gure shows strong and weak edges. Some of the vertices do no belong to any of the communities. Some
edges are strong despite not belonging to any of the communities because we keep edges that do not induce violations.

[17] Gueorgi Kossinets and Duncan Watts. 2006. Empirical analysis of an
evolving social network. Science 311, 5757 (2006), 88–90.

[18] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. 2010. Predicting
positive and negative links in online social networks. In Proceedings of the
19th international conference on World Wide Web. ACM, 641–650.

[19] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large
Network Dataset Collection. http://snap.stanford.edu/data. (June 2014).

[20] David Liben-Nowell and Jon Kleinberg. 2007. The link-prediction problem
for social networks. journal of the Association for Information Science and
Technology 58, 7 (2007), 1019–1031.

[21] Linyuan Lü and Tao Zhou. 2010. Link prediction in weighted networks:
The role of weak ties. EPL (Europhysics Letters) 89, 1 (2010), 18001.

[22] Haris Memic. 2009. Testing the strength of weak ties theory in small
educational social networking websites. In International Conference on
Information Technology Interfaces. IEEE, 273–278.

[23] James D Montgomery. 1992. Job search and network composition: Im-
plications of the strength-of-weak-ties hypothesis. American Sociological
Review (1992), 586–596.

[24] T. M. Newcomb. 1961. The acquaintance process. Holt, Rinehart & Winston.

[25] J-P Onnela, Jari Saramäki, Jorkki Hyvönen, György Szabó, David Lazer,
Kimmo Kaski, János Kertész, and A-L Barabási. 2007. Structure and tie
strengths in mobile communication networks. Proceedings of the National
Academy of Sciences 104, 18 (2007), 7332–7336.

[26] James Oxley. 2003. What is a matroid? Cubo Matemática Educacional 5, 3
(2003), 179–218.

[27] Stavros Sintos and Panayiotis Tsaparas. 2014. Using strong triadic closure
to characterize ties in social networks. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge Discovery and Data Mining.
ACM, 1466–1475.

[28] Jie Tang, Tiancheng Lou, and Jon Kleinberg. 2012. Inferring social ties
across heterogenous networks. In Proceedings of the �fth ACM international
conference on Web Search and Data Mining. ACM, 743–752.

[29] Rongjing Xiang, Jennifer Neville, and Monica Rogati. 2010. Modeling
relationship strength in online social networks. In Proceedings of the 19th
international conference on World Wide Web. ACM, 981–990.

[30] Wayne W Zachary. 1977. An information �ow model for con�ict and
�ssion in small groups. Journal of anthropological research 33, 4 (1977),
452–473.

9

8

Interconnected World

▶ networks model objects and their relations

▶ many different network types

– social (WhatsApp, LinkedIn, etc..)

– informational (co-authorship, email, etc..)

– technological (IP-level, transportation, etc..)

– purchase (E-commerce, crypto, etc..)

– . . .

▶ networks are ubiquitous in WWW-based applications

PY

JK
PD

VK

HPK

PY

JK
PD

VK

HPK

PY

JK
PD

VK

HPK

PY

JK
PD

VK

HPK

PY

JK
PD

VK

HPK

Figure 2: Discovered strong edges of 5 ego-networks of KDD innovation award winners. The �rst 5 �gures contain
only strong edges: the colored edges and vertices show 5 topics that were used as input: cluster, classif, pattern,
network, distribut. The last topic consisted of 2 connected components which we used as two separated communities.
The last �gure shows strong and weak edges. Some of the vertices do no belong to any of the communities. Some
edges are strong despite not belonging to any of the communities because we keep edges that do not induce violations.

[17] Gueorgi Kossinets and Duncan Watts. 2006. Empirical analysis of an
evolving social network. Science 311, 5757 (2006), 88–90.

[18] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. 2010. Predicting
positive and negative links in online social networks. In Proceedings of the
19th international conference on World Wide Web. ACM, 641–650.

[19] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large
Network Dataset Collection. http://snap.stanford.edu/data. (June 2014).

[20] David Liben-Nowell and Jon Kleinberg. 2007. The link-prediction problem
for social networks. journal of the Association for Information Science and
Technology 58, 7 (2007), 1019–1031.

[21] Linyuan Lü and Tao Zhou. 2010. Link prediction in weighted networks:
The role of weak ties. EPL (Europhysics Letters) 89, 1 (2010), 18001.

[22] Haris Memic. 2009. Testing the strength of weak ties theory in small
educational social networking websites. In International Conference on
Information Technology Interfaces. IEEE, 273–278.

[23] James D Montgomery. 1992. Job search and network composition: Im-
plications of the strength-of-weak-ties hypothesis. American Sociological
Review (1992), 586–596.

[24] T. M. Newcomb. 1961. The acquaintance process. Holt, Rinehart & Winston.

[25] J-P Onnela, Jari Saramäki, Jorkki Hyvönen, György Szabó, David Lazer,
Kimmo Kaski, János Kertész, and A-L Barabási. 2007. Structure and tie
strengths in mobile communication networks. Proceedings of the National
Academy of Sciences 104, 18 (2007), 7332–7336.

[26] James Oxley. 2003. What is a matroid? Cubo Matemática Educacional 5, 3
(2003), 179–218.

[27] Stavros Sintos and Panayiotis Tsaparas. 2014. Using strong triadic closure
to characterize ties in social networks. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge Discovery and Data Mining.
ACM, 1466–1475.

[28] Jie Tang, Tiancheng Lou, and Jon Kleinberg. 2012. Inferring social ties
across heterogenous networks. In Proceedings of the �fth ACM international
conference on Web Search and Data Mining. ACM, 743–752.

[29] Rongjing Xiang, Jennifer Neville, and Monica Rogati. 2010. Modeling
relationship strength in online social networks. In Proceedings of the 19th
international conference on World Wide Web. ACM, 981–990.

[30] Wayne W Zachary. 1977. An information �ow model for con�ict and
�ssion in small groups. Journal of anthropological research 33, 4 (1977),
452–473.

9

9

Interconnected World

▶ networks model objects and their relations

▶ many different network types

– social (WhatsApp, LinkedIn, etc..)

– informational (co-authorship, email, etc..)

– technological (IP-level, transportation, etc..)

– purchase (E-commerce, crypto, etc..)

– . . .

▶ networks are ubiquitous in WWW-based applications

PY

JK
PD

VK

HPK

PY

JK
PD

VK

HPK

PY

JK
PD

VK

HPK

PY

JK
PD

VK

HPK

PY

JK
PD

VK

HPK

Figure 2: Discovered strong edges of 5 ego-networks of KDD innovation award winners. The �rst 5 �gures contain
only strong edges: the colored edges and vertices show 5 topics that were used as input: cluster, classif, pattern,
network, distribut. The last topic consisted of 2 connected components which we used as two separated communities.
The last �gure shows strong and weak edges. Some of the vertices do no belong to any of the communities. Some
edges are strong despite not belonging to any of the communities because we keep edges that do not induce violations.

[17] Gueorgi Kossinets and Duncan Watts. 2006. Empirical analysis of an
evolving social network. Science 311, 5757 (2006), 88–90.

[18] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. 2010. Predicting
positive and negative links in online social networks. In Proceedings of the
19th international conference on World Wide Web. ACM, 641–650.

[19] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large
Network Dataset Collection. http://snap.stanford.edu/data. (June 2014).

[20] David Liben-Nowell and Jon Kleinberg. 2007. The link-prediction problem
for social networks. journal of the Association for Information Science and
Technology 58, 7 (2007), 1019–1031.

[21] Linyuan Lü and Tao Zhou. 2010. Link prediction in weighted networks:
The role of weak ties. EPL (Europhysics Letters) 89, 1 (2010), 18001.

[22] Haris Memic. 2009. Testing the strength of weak ties theory in small
educational social networking websites. In International Conference on
Information Technology Interfaces. IEEE, 273–278.

[23] James D Montgomery. 1992. Job search and network composition: Im-
plications of the strength-of-weak-ties hypothesis. American Sociological
Review (1992), 586–596.

[24] T. M. Newcomb. 1961. The acquaintance process. Holt, Rinehart & Winston.

[25] J-P Onnela, Jari Saramäki, Jorkki Hyvönen, György Szabó, David Lazer,
Kimmo Kaski, János Kertész, and A-L Barabási. 2007. Structure and tie
strengths in mobile communication networks. Proceedings of the National
Academy of Sciences 104, 18 (2007), 7332–7336.

[26] James Oxley. 2003. What is a matroid? Cubo Matemática Educacional 5, 3
(2003), 179–218.

[27] Stavros Sintos and Panayiotis Tsaparas. 2014. Using strong triadic closure
to characterize ties in social networks. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge Discovery and Data Mining.
ACM, 1466–1475.

[28] Jie Tang, Tiancheng Lou, and Jon Kleinberg. 2012. Inferring social ties
across heterogenous networks. In Proceedings of the �fth ACM international
conference on Web Search and Data Mining. ACM, 743–752.

[29] Rongjing Xiang, Jennifer Neville, and Monica Rogati. 2010. Modeling
relationship strength in online social networks. In Proceedings of the 19th
international conference on World Wide Web. ACM, 981–990.

[30] Wayne W Zachary. 1977. An information �ow model for con�ict and
�ssion in small groups. Journal of anthropological research 33, 4 (1977),
452–473.

9

10

Interconnected World

▶ networks model objects and their relations

▶ many different network types

– social (WhatsApp, LinkedIn, etc..)

– informational (co-authorship, email, etc..)

– technological (IP-level, transportation, etc..)

– purchase (E-commerce, crypto, etc..)

– . . .

▶ networks are ubiquitous in WWW-based applications

PY

JK
PD

VK

HPK

PY

JK
PD

VK

HPK

PY

JK
PD

VK

HPK

PY

JK
PD

VK

HPK

PY

JK
PD

VK

HPK

Figure 2: Discovered strong edges of 5 ego-networks of KDD innovation award winners. The �rst 5 �gures contain
only strong edges: the colored edges and vertices show 5 topics that were used as input: cluster, classif, pattern,
network, distribut. The last topic consisted of 2 connected components which we used as two separated communities.
The last �gure shows strong and weak edges. Some of the vertices do no belong to any of the communities. Some
edges are strong despite not belonging to any of the communities because we keep edges that do not induce violations.

[17] Gueorgi Kossinets and Duncan Watts. 2006. Empirical analysis of an
evolving social network. Science 311, 5757 (2006), 88–90.

[18] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. 2010. Predicting
positive and negative links in online social networks. In Proceedings of the
19th international conference on World Wide Web. ACM, 641–650.

[19] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large
Network Dataset Collection. http://snap.stanford.edu/data. (June 2014).

[20] David Liben-Nowell and Jon Kleinberg. 2007. The link-prediction problem
for social networks. journal of the Association for Information Science and
Technology 58, 7 (2007), 1019–1031.

[21] Linyuan Lü and Tao Zhou. 2010. Link prediction in weighted networks:
The role of weak ties. EPL (Europhysics Letters) 89, 1 (2010), 18001.

[22] Haris Memic. 2009. Testing the strength of weak ties theory in small
educational social networking websites. In International Conference on
Information Technology Interfaces. IEEE, 273–278.

[23] James D Montgomery. 1992. Job search and network composition: Im-
plications of the strength-of-weak-ties hypothesis. American Sociological
Review (1992), 586–596.

[24] T. M. Newcomb. 1961. The acquaintance process. Holt, Rinehart & Winston.

[25] J-P Onnela, Jari Saramäki, Jorkki Hyvönen, György Szabó, David Lazer,
Kimmo Kaski, János Kertész, and A-L Barabási. 2007. Structure and tie
strengths in mobile communication networks. Proceedings of the National
Academy of Sciences 104, 18 (2007), 7332–7336.

[26] James Oxley. 2003. What is a matroid? Cubo Matemática Educacional 5, 3
(2003), 179–218.

[27] Stavros Sintos and Panayiotis Tsaparas. 2014. Using strong triadic closure
to characterize ties in social networks. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge Discovery and Data Mining.
ACM, 1466–1475.

[28] Jie Tang, Tiancheng Lou, and Jon Kleinberg. 2012. Inferring social ties
across heterogenous networks. In Proceedings of the �fth ACM international
conference on Web Search and Data Mining. ACM, 743–752.

[29] Rongjing Xiang, Jennifer Neville, and Monica Rogati. 2010. Modeling
relationship strength in online social networks. In Proceedings of the 19th
international conference on World Wide Web. ACM, 981–990.

[30] Wayne W Zachary. 1977. An information �ow model for con�ict and
�ssion in small groups. Journal of anthropological research 33, 4 (1977),
452–473.

9

11

Interconnected World

▶ networks model objects and their relations

▶ many different network types

– social (WhatsApp, LinkedIn, etc..)

– informational (co-authorship, email, etc..)

– technological (IP-level, transportation, etc..)

– purchase (E-commerce, crypto, etc..)

– . . .

▶ networks are ubiquitous in WWW-based applications

PY

JK
PD

VK

HPK

PY

JK
PD

VK

HPK

PY

JK
PD

VK

HPK

PY

JK
PD

VK

HPK

PY

JK
PD

VK

HPK

Figure 2: Discovered strong edges of 5 ego-networks of KDD innovation award winners. The �rst 5 �gures contain
only strong edges: the colored edges and vertices show 5 topics that were used as input: cluster, classif, pattern,
network, distribut. The last topic consisted of 2 connected components which we used as two separated communities.
The last �gure shows strong and weak edges. Some of the vertices do no belong to any of the communities. Some
edges are strong despite not belonging to any of the communities because we keep edges that do not induce violations.

[17] Gueorgi Kossinets and Duncan Watts. 2006. Empirical analysis of an
evolving social network. Science 311, 5757 (2006), 88–90.

[18] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. 2010. Predicting
positive and negative links in online social networks. In Proceedings of the
19th international conference on World Wide Web. ACM, 641–650.

[19] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large
Network Dataset Collection. http://snap.stanford.edu/data. (June 2014).

[20] David Liben-Nowell and Jon Kleinberg. 2007. The link-prediction problem
for social networks. journal of the Association for Information Science and
Technology 58, 7 (2007), 1019–1031.

[21] Linyuan Lü and Tao Zhou. 2010. Link prediction in weighted networks:
The role of weak ties. EPL (Europhysics Letters) 89, 1 (2010), 18001.

[22] Haris Memic. 2009. Testing the strength of weak ties theory in small
educational social networking websites. In International Conference on
Information Technology Interfaces. IEEE, 273–278.

[23] James D Montgomery. 1992. Job search and network composition: Im-
plications of the strength-of-weak-ties hypothesis. American Sociological
Review (1992), 586–596.

[24] T. M. Newcomb. 1961. The acquaintance process. Holt, Rinehart & Winston.

[25] J-P Onnela, Jari Saramäki, Jorkki Hyvönen, György Szabó, David Lazer,
Kimmo Kaski, János Kertész, and A-L Barabási. 2007. Structure and tie
strengths in mobile communication networks. Proceedings of the National
Academy of Sciences 104, 18 (2007), 7332–7336.

[26] James Oxley. 2003. What is a matroid? Cubo Matemática Educacional 5, 3
(2003), 179–218.

[27] Stavros Sintos and Panayiotis Tsaparas. 2014. Using strong triadic closure
to characterize ties in social networks. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge Discovery and Data Mining.
ACM, 1466–1475.

[28] Jie Tang, Tiancheng Lou, and Jon Kleinberg. 2012. Inferring social ties
across heterogenous networks. In Proceedings of the �fth ACM international
conference on Web Search and Data Mining. ACM, 743–752.

[29] Rongjing Xiang, Jennifer Neville, and Monica Rogati. 2010. Modeling
relationship strength in online social networks. In Proceedings of the 19th
international conference on World Wide Web. ACM, 981–990.

[30] Wayne W Zachary. 1977. An information �ow model for con�ict and
�ssion in small groups. Journal of anthropological research 33, 4 (1977),
452–473.

9

12

Interconnected World

▶ networks model objects and their relations

▶ many different network types

– social (WhatsApp, LinkedIn, etc..)

– informational (co-authorship, email, etc..)

– technological (IP-level, transportation, etc..)

– purchase (E-commerce, crypto, etc..)

– . . .

▶ networks are ubiquitous in WWW-based applications

PY

JK
PD

VK

HPK

PY

JK
PD

VK

HPK

PY

JK
PD

VK

HPK

PY

JK
PD

VK

HPK

PY

JK
PD

VK

HPK

Figure 2: Discovered strong edges of 5 ego-networks of KDD innovation award winners. The �rst 5 �gures contain
only strong edges: the colored edges and vertices show 5 topics that were used as input: cluster, classif, pattern,
network, distribut. The last topic consisted of 2 connected components which we used as two separated communities.
The last �gure shows strong and weak edges. Some of the vertices do no belong to any of the communities. Some
edges are strong despite not belonging to any of the communities because we keep edges that do not induce violations.

[17] Gueorgi Kossinets and Duncan Watts. 2006. Empirical analysis of an
evolving social network. Science 311, 5757 (2006), 88–90.

[18] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. 2010. Predicting
positive and negative links in online social networks. In Proceedings of the
19th international conference on World Wide Web. ACM, 641–650.

[19] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large
Network Dataset Collection. http://snap.stanford.edu/data. (June 2014).

[20] David Liben-Nowell and Jon Kleinberg. 2007. The link-prediction problem
for social networks. journal of the Association for Information Science and
Technology 58, 7 (2007), 1019–1031.

[21] Linyuan Lü and Tao Zhou. 2010. Link prediction in weighted networks:
The role of weak ties. EPL (Europhysics Letters) 89, 1 (2010), 18001.

[22] Haris Memic. 2009. Testing the strength of weak ties theory in small
educational social networking websites. In International Conference on
Information Technology Interfaces. IEEE, 273–278.

[23] James D Montgomery. 1992. Job search and network composition: Im-
plications of the strength-of-weak-ties hypothesis. American Sociological
Review (1992), 586–596.

[24] T. M. Newcomb. 1961. The acquaintance process. Holt, Rinehart & Winston.

[25] J-P Onnela, Jari Saramäki, Jorkki Hyvönen, György Szabó, David Lazer,
Kimmo Kaski, János Kertész, and A-L Barabási. 2007. Structure and tie
strengths in mobile communication networks. Proceedings of the National
Academy of Sciences 104, 18 (2007), 7332–7336.

[26] James Oxley. 2003. What is a matroid? Cubo Matemática Educacional 5, 3
(2003), 179–218.

[27] Stavros Sintos and Panayiotis Tsaparas. 2014. Using strong triadic closure
to characterize ties in social networks. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge Discovery and Data Mining.
ACM, 1466–1475.

[28] Jie Tang, Tiancheng Lou, and Jon Kleinberg. 2012. Inferring social ties
across heterogenous networks. In Proceedings of the �fth ACM international
conference on Web Search and Data Mining. ACM, 743–752.

[29] Rongjing Xiang, Jennifer Neville, and Monica Rogati. 2010. Modeling
relationship strength in online social networks. In Proceedings of the 19th
international conference on World Wide Web. ACM, 981–990.

[30] Wayne W Zachary. 1977. An information �ow model for con�ict and
�ssion in small groups. Journal of anthropological research 33, 4 (1977),
452–473.

9

13

Interconnected World

▶ networks model objects and their relations

▶ many different network types

– social (WhatsApp, LinkedIn, etc..)

– informational (co-authorship, email, etc..)

– technological (IP-level, transportation, etc..)

– purchase (E-commerce, crypto, etc..)

– . . .

▶ networks are ubiquitous in WWW-based applications

PY

JK
PD

VK

HPK

PY

JK
PD

VK

HPK

PY

JK
PD

VK

HPK

PY

JK
PD

VK

HPK

PY

JK
PD

VK

HPK

Figure 2: Discovered strong edges of 5 ego-networks of KDD innovation award winners. The �rst 5 �gures contain
only strong edges: the colored edges and vertices show 5 topics that were used as input: cluster, classif, pattern,
network, distribut. The last topic consisted of 2 connected components which we used as two separated communities.
The last �gure shows strong and weak edges. Some of the vertices do no belong to any of the communities. Some
edges are strong despite not belonging to any of the communities because we keep edges that do not induce violations.

[17] Gueorgi Kossinets and Duncan Watts. 2006. Empirical analysis of an
evolving social network. Science 311, 5757 (2006), 88–90.

[18] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. 2010. Predicting
positive and negative links in online social networks. In Proceedings of the
19th international conference on World Wide Web. ACM, 641–650.

[19] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large
Network Dataset Collection. http://snap.stanford.edu/data. (June 2014).

[20] David Liben-Nowell and Jon Kleinberg. 2007. The link-prediction problem
for social networks. journal of the Association for Information Science and
Technology 58, 7 (2007), 1019–1031.

[21] Linyuan Lü and Tao Zhou. 2010. Link prediction in weighted networks:
The role of weak ties. EPL (Europhysics Letters) 89, 1 (2010), 18001.

[22] Haris Memic. 2009. Testing the strength of weak ties theory in small
educational social networking websites. In International Conference on
Information Technology Interfaces. IEEE, 273–278.

[23] James D Montgomery. 1992. Job search and network composition: Im-
plications of the strength-of-weak-ties hypothesis. American Sociological
Review (1992), 586–596.

[24] T. M. Newcomb. 1961. The acquaintance process. Holt, Rinehart & Winston.

[25] J-P Onnela, Jari Saramäki, Jorkki Hyvönen, György Szabó, David Lazer,
Kimmo Kaski, János Kertész, and A-L Barabási. 2007. Structure and tie
strengths in mobile communication networks. Proceedings of the National
Academy of Sciences 104, 18 (2007), 7332–7336.

[26] James Oxley. 2003. What is a matroid? Cubo Matemática Educacional 5, 3
(2003), 179–218.

[27] Stavros Sintos and Panayiotis Tsaparas. 2014. Using strong triadic closure
to characterize ties in social networks. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge Discovery and Data Mining.
ACM, 1466–1475.

[28] Jie Tang, Tiancheng Lou, and Jon Kleinberg. 2012. Inferring social ties
across heterogenous networks. In Proceedings of the �fth ACM international
conference on Web Search and Data Mining. ACM, 743–752.

[29] Rongjing Xiang, Jennifer Neville, and Monica Rogati. 2010. Modeling
relationship strength in online social networks. In Proceedings of the 19th
international conference on World Wide Web. ACM, 981–990.

[30] Wayne W Zachary. 1977. An information �ow model for con�ict and
�ssion in small groups. Journal of anthropological research 33, 4 (1977),
452–473.

9

14

Impact of Networks

▶ online communication networks and social media

▶ implications in

– knowledge creation

– peoples’ behavior

– information sharing

– education

– democracy

– society as a whole

15

Impact of Networks

▶ online communication networks and social media

▶ implications in

– knowledge creation

– peoples’ behavior

– information sharing

– education

– democracy

– society as a whole

16

Impact of Networks

▶ online communication networks and social media

▶ implications in

– knowledge creation

– peoples’ behavior

– information sharing

– education

– democracy

– society as a whole

17

Impact of Networks

▶ online communication networks and social media

▶ implications in

– knowledge creation

– peoples’ behavior

– information sharing

– education

– democracy

– society as a whole

18

Impact of Networks

▶ online communication networks and social media

▶ implications in

– knowledge creation

– peoples’ behavior

– information sharing

– education

– democracy

– society as a whole

19

Impact of Networks

▶ online communication networks and social media

▶ implications in

– knowledge creation

– peoples’ behavior

– information sharing

– education

– democracy

– society as a whole

20

Impact of Networks

▶ online communication networks and social media

▶ implications in

– knowledge creation

– peoples’ behavior

– information sharing

– education

– democracy

– society as a whole

21

Impact of Networks

▶ 4.76 billion social media users,
ca. 60% of the world’s population

▶ 73.3% of all global spending on advertising
for digital platforms in 2022

▶ 53.9% of users are concerned about misinformation

▶ insights can lead to huge monetary and societal impacts

22

Impact of Networks

▶ 4.76 billion social media users,
ca. 60% of the world’s population

▶ 73.3% of all global spending on advertising
for digital platforms in 2022

▶ 53.9% of users are concerned about misinformation

▶ insights can lead to huge monetary and societal impacts

23

Impact of Networks

▶ 4.76 billion social media users,
ca. 60% of the world’s population

▶ 73.3% of all global spending on advertising
for digital platforms in 2022

▶ 53.9% of users are concerned about misinformation

▶ insights can lead to huge monetary and societal impacts

24

Impact of Networks

▶ 4.76 billion social media users,
ca. 60% of the world’s population

▶ 73.3% of all global spending on advertising
for digital platforms in 2022

▶ 53.9% of users are concerned about misinformation

▶ insights can lead to huge monetary and societal impacts

25

Research Questions in Network Mining

▶ structure discovery

– communities, summarization, events, role mining

▶ study complex dynamic phenomena

– evolution, information diffusion, opinion formation,
– structural prediction, patterns

▶ develop novel applications and mining primitives

▶ design efficient algorithms

26

Research Questions in Network Mining

▶ structure discovery

– communities, summarization, events, role mining

▶ study complex dynamic phenomena

– evolution, information diffusion, opinion formation,
– structural prediction, patterns

▶ develop novel applications and mining primitives

▶ design efficient algorithms

27

Research Questions in Network Mining

▶ structure discovery

– communities, summarization, events, role mining

▶ study complex dynamic phenomena

– evolution, information diffusion, opinion formation,
– structural prediction, patterns

▶ develop novel applications and mining primitives

▶ design efficient algorithms

28

Research Questions in Network Mining

▶ structure discovery

– communities, summarization, events, role mining

▶ study complex dynamic phenomena

– evolution, information diffusion, opinion formation,
– structural prediction, patterns

▶ develop novel applications and mining primitives

▶ design efficient algorithms

29

Network Mining: Traditional View

▶ networks represented as pure graph-theory objects

– no additional vertex / edge information

▶ emphasis on static networks

30

Network Mining: Traditional View

▶ networks represented as pure graph-theory objects

– no additional vertex / edge information

▶ emphasis on static networks

31

Temporal Networks: A new lens for network mining

▶ ability to collect and store large volumes of network data

▶ available data have time granularity

▶ lots of additional information associated to vertices/edges

▶ capturing activity and interaction occurring over systems

▶ giving rise to new concepts, new problems, and new computational
challenges and opportunities

32

Temporal Networks: A new lens for network mining

▶ ability to collect and store large volumes of network data

▶ available data have time granularity

▶ lots of additional information associated to vertices/edges

▶ capturing activity and interaction occurring over systems

▶ giving rise to new concepts, new problems, and new computational
challenges and opportunities

33

Temporal Networks: A new lens for network mining

▶ ability to collect and store large volumes of network data

▶ available data have time granularity

▶ lots of additional information associated to vertices/edges

▶ capturing activity and interaction occurring over systems

▶ giving rise to new concepts, new problems, and new computational
challenges and opportunities

34

Temporal Networks: A new lens for network mining

▶ ability to collect and store large volumes of network data

▶ available data have time granularity

▶ lots of additional information associated to vertices/edges

▶ capturing activity and interaction occurring over systems

▶ giving rise to new concepts, new problems, and new computational
challenges and opportunities

35

Temporal Networks: A new lens for network mining

▶ ability to collect and store large volumes of network data

▶ available data have time granularity

▶ lots of additional information associated to vertices/edges

▶ capturing activity and interaction occurring over systems

▶ giving rise to new concepts, new problems, and new computational
challenges and opportunities

36

Modeling Activity in Networks

1. network nodes perform actions (e.g., posting messages)

time

x

y

z

w

u

a c

b c a

c e b

d a b

c d a

2. network nodes interact with each other

(e.g., a “like”, a repost, or sending a message to each other)

time

x

y

z

w

u

37

Modeling Activity in Networks

1. network nodes perform actions (e.g., posting messages)

time

x

y

z

w

u

a c

b c a

c e b

d a b

c d a

2. network nodes interact with each other

(e.g., a “like”, a repost, or sending a message to each other)

time

x

y

z

w

u

38

Many Novel and Interesting Concepts

x

y

z

w

u

a

a

a

b

b

b

new pattern types

x

y

z

w

u

temporal information paths

x

y

z

w

u

a

a

a

a

new types of events

x

y

z

w

u

network evolution

39

Temporal Network Mining — Objectives

▶ identify new phenomena to be captured

▶ formulate suitable problems capturing the inherent complexity

▶ develop algorithmic approaches

▶ analyze real-world data and gain novel insights

40

Temporal Network Mining — Objectives

▶ identify new phenomena to be captured

▶ formulate suitable problems capturing the inherent complexity

▶ develop algorithmic approaches

▶ analyze real-world data and gain novel insights

41

Temporal Network Mining — Objectives

▶ identify new phenomena to be captured

▶ formulate suitable problems capturing the inherent complexity

▶ develop algorithmic approaches

▶ analyze real-world data and gain novel insights

42

Temporal Network Mining — Objectives

▶ identify new phenomena to be captured

▶ formulate suitable problems capturing the inherent complexity

▶ develop algorithmic approaches

▶ analyze real-world data and gain novel insights

43

Terminology

▶ we use term “temporal networks”, but terminology is not standardized

▶ term “X Y” can be encountered in the literature, where

X :
– temporal
– dynamic
– (time-)evolving
– time-varying
– time-dependent
– evolutionary

Y :
– networks
– graphs

▶ some combinations have distinct meaning, but not always

44

Terminology

▶ we use term “temporal networks”, but terminology is not standardized

▶ term “X Y” can be encountered in the literature, where

X :
– temporal
– dynamic
– (time-)evolving
– time-varying
– time-dependent
– evolutionary

Y :
– networks
– graphs

▶ some combinations have distinct meaning, but not always

45

Terminology

▶ we use term “temporal networks”, but terminology is not standardized

▶ term “X Y” can be encountered in the literature, where

X :
– temporal
– dynamic
– (time-)evolving
– time-varying
– time-dependent
– evolutionary

Y :
– networks
– graphs

▶ some combinations have distinct meaning, but not always

46

Terminology

▶ we use term “temporal networks”, but terminology is not standardized

▶ term “X Y” can be encountered in the literature, where

X :
– temporal
– dynamic
– (time-)evolving
– time-varying
– time-dependent
– evolutionary

Y :
– networks
– graphs

▶ some combinations have distinct meaning, but not always

47

Examples of Temporal Networks

▶ online communication networks

– phone, email, text messages, etc.

▶ economic networks

– credit card transactions

– trade networks of countries

– bitcoin transcations

▶ bibliographic networks

– collaboration and citation networks

(Holme, 2015)

48

Examples of Temporal Networks

▶ online communication networks

– phone, email, text messages, etc.

▶ economic networks

– credit card transactions

– trade networks of countries

– bitcoin transcations

▶ bibliographic networks

– collaboration and citation networks

(Holme, 2015)

49

Examples of Temporal Networks

▶ online communication networks

– phone, email, text messages, etc.

▶ economic networks

– credit card transactions

– trade networks of countries

– bitcoin transcations

▶ bibliographic networks

– collaboration and citation networks

(Holme, 2015)

50

Examples of Temporal Networks

▶ human proximity networks

– recorded by various sensors and devices,
– e.g., bluetooth, wifi, etc.

– patient-referral networks, i.e., how patients are
– transferred between wards of a hospital system

– sexual contact networks

▶ travel and transportation networks

– airline connections, bus transport, bike-sharing systems

(Holme, 2015)

51

Examples of Temporal Networks

▶ human proximity networks

– recorded by various sensors and devices,
– e.g., bluetooth, wifi, etc.

– patient-referral networks, i.e., how patients are
– transferred between wards of a hospital system

– sexual contact networks

▶ travel and transportation networks

– airline connections, bus transport, bike-sharing systems

(Holme, 2015)

52

Examples of Temporal Networks

▶ brain networks

– temporal correlations of the oxygen levels of brain
– regions as measured by fMRI scanning

▶ biological networks

– genes involved in different interactions that change
– over time

▶ animal proximity networks

– obtained via RFID devices

– lifestock or wildlife

(Holme, 2015)

53

Examples of Temporal Networks

▶ brain networks

– temporal correlations of the oxygen levels of brain
– regions as measured by fMRI scanning

▶ biological networks

– genes involved in different interactions that change
– over time

▶ animal proximity networks

– obtained via RFID devices

– lifestock or wildlife

(Holme, 2015)

54

Examples of Temporal Networks

▶ brain networks

– temporal correlations of the oxygen levels of brain
– regions as measured by fMRI scanning

▶ biological networks

– genes involved in different interactions that change
– over time

▶ animal proximity networks

– obtained via RFID devices

– lifestock or wildlife

(Holme, 2015)

55

Representation of Temporal Networks

1. Sequence of interactions

▶ a temporal network is represented as G = (V ,E)

– with (static) set of nodes V , and

– set of edges E = {(u, v , t)}, with u, v ∈ V and t ∈ T where T is the time domain

– T is usually N or R≥0

– if interactions have duration, then E = {(u, v , t, λ)} with λ in N or R≥0

▶ this is a lossless representation

▶ also known as sequence of contacts, or sequence of (temporal) edges or temporal edge stream

▶ usually, edges given in chronological order

56

Representation of Temporal Networks

1. Sequence of interactions

▶ a temporal network is represented as G = (V ,E)

– with (static) set of nodes V , and

– set of edges E = {(u, v , t)}, with u, v ∈ V and t ∈ T where T is the time domain

– T is usually N or R≥0

– if interactions have duration, then E = {(u, v , t, λ)} with λ in N or R≥0

▶ this is a lossless representation

▶ also known as sequence of contacts, or sequence of (temporal) edges or temporal edge stream

▶ usually, edges given in chronological order

57

Representation of Temporal Networks

1. Sequence of interactions

▶ a temporal network is represented as G = (V ,E)

– with (static) set of nodes V , and

– set of edges E = {(u, v , t)}, with u, v ∈ V and t ∈ T where T is the time domain

– T is usually N or R≥0

– if interactions have duration, then E = {(u, v , t, λ)} with λ in N or R≥0

▶ this is a lossless representation

▶ also known as sequence of contacts, or sequence of (temporal) edges or temporal edge stream

▶ usually, edges given in chronological order

58

Representation of Temporal Networks

1. Sequence of interactions

▶ a temporal network is represented as G = (V ,E)

– with (static) set of nodes V , and

– set of edges E = {(u, v , t)}, with u, v ∈ V and t ∈ T where T is the time domain

– T is usually N or R≥0

– if interactions have duration, then E = {(u, v , t, λ)} with λ in N or R≥0

▶ this is a lossless representation

▶ also known as sequence of contacts, or sequence of (temporal) edges or temporal edge stream

▶ usually, edges given in chronological order

59

Representation of Temporal Networks

1. Sequence of interactions

▶ a temporal network is represented as G = (V ,E)

– with (static) set of nodes V , and

– set of edges E = {(u, v , t)}, with u, v ∈ V and t ∈ T where T is the time domain

– T is usually N or R≥0

– if interactions have duration, then E = {(u, v , t, λ)} with λ in N or R≥0

▶ this is a lossless representation

▶ also known as sequence of contacts, or sequence of (temporal) edges or temporal edge stream

▶ usually, edges given in chronological order

60

Representation of Temporal Networks

1. Sequence of interactions

▶ a temporal network is represented as G = (V ,E)

– with (static) set of nodes V , and

– set of edges E = {(u, v , t)}, with u, v ∈ V and t ∈ T where T is the time domain

– T is usually N or R≥0

– if interactions have duration, then E = {(u, v , t, λ)} with λ in N or R≥0

▶ this is a lossless representation

▶ also known as sequence of contacts, or sequence of (temporal) edges or temporal edge stream

▶ usually, edges given in chronological order

61

Representation of Temporal Networks

1. Sequence of interactions

▶ a temporal network is represented as G = (V ,E)

– with (static) set of nodes V , and

– set of edges E = {(u, v , t)}, with u, v ∈ V and t ∈ T where T is the time domain

– T is usually N or R≥0

– if interactions have duration, then E = {(u, v , t, λ)} with λ in N or R≥0

▶ this is a lossless representation

▶ also known as sequence of contacts, or sequence of (temporal) edges or temporal edge stream

▶ usually, edges given in chronological order

62

Representation of Temporal Networks

1. Sequence of interactions

▶ visual representation of a temporal network as a sequence of interactions

a

b

c

d

e

1 2 3 4 5 6 7

time

63

Representation of Temporal Networks

2. Sequence of static graphs

▶ sequence G1, . . . ,GT

– where Gt = (Vt ,Et), with t = 1, . . . ,T with T ∈ N
– typically assume that nodes are fixed, i.e., Vt = V

– Et are the edges that occur in time interval t

▶ not equivalent representation with sequence of interactions

– representation depends on quantization parameter, e.g., seconds, minutes, hours, days, etc.

64

Representation of Temporal Networks

2. Sequence of static graphs

▶ sequence G1, . . . ,GT

– where Gt = (Vt ,Et), with t = 1, . . . ,T with T ∈ N

– typically assume that nodes are fixed, i.e., Vt = V

– Et are the edges that occur in time interval t

▶ not equivalent representation with sequence of interactions

– representation depends on quantization parameter, e.g., seconds, minutes, hours, days, etc.

65

Representation of Temporal Networks

2. Sequence of static graphs

▶ sequence G1, . . . ,GT

– where Gt = (Vt ,Et), with t = 1, . . . ,T with T ∈ N
– typically assume that nodes are fixed, i.e., Vt = V

– Et are the edges that occur in time interval t

▶ not equivalent representation with sequence of interactions

– representation depends on quantization parameter, e.g., seconds, minutes, hours, days, etc.

66

Representation of Temporal Networks

2. Sequence of static graphs

▶ sequence G1, . . . ,GT

– where Gt = (Vt ,Et), with t = 1, . . . ,T with T ∈ N
– typically assume that nodes are fixed, i.e., Vt = V

– Et are the edges that occur in time interval t

▶ not equivalent representation with sequence of interactions

– representation depends on quantization parameter, e.g., seconds, minutes, hours, days, etc.

67

Representation of Temporal Networks

2. Sequence of static graphs

▶ sequence G1, . . . ,GT

– where Gt = (Vt ,Et), with t = 1, . . . ,T with T ∈ N
– typically assume that nodes are fixed, i.e., Vt = V

– Et are the edges that occur in time interval t

▶ not equivalent representation with sequence of interactions

– representation depends on quantization parameter, e.g., seconds, minutes, hours, days, etc.

68

Representation of Temporal Networks

2. Sequence of static graphs

▶ sequence G1, . . . ,GT

– where Gt = (Vt ,Et), with t = 1, . . . ,T with T ∈ N
– typically assume that nodes are fixed, i.e., Vt = V

– Et are the edges that occur in time interval t

▶ not equivalent representation with sequence of interactions

– representation depends on quantization parameter, e.g., seconds, minutes, hours, days, etc.

69

Representation of Temporal Networks

2. Sequence of static graphs

▶ visual representation of a temporal network as a sequence of static graphs

70

Time Granularity
▶ choosing the right time resolution is important

▶ quantization: binning of time stamps into time intervals of fixed size,
e.g, seconds, minutes, hours, days

– coarse resolution may lead to information loss, dense time steps

– fine resolution captures more information but may lead to sparse (or even empty) time steps

time point in contact network with time resolution of 24h, 1h, and
5 minutes (Lehmann, 2019)

mean degrees for different time
resolutions (Clauset and Eagle,
2012)

71

Time Granularity
▶ choosing the right time resolution is important

▶ quantization: binning of time stamps into time intervals of fixed size,
e.g, seconds, minutes, hours, days

– coarse resolution may lead to information loss, dense time steps

– fine resolution captures more information but may lead to sparse (or even empty) time steps

time point in contact network with time resolution of 24h, 1h, and
5 minutes (Lehmann, 2019)

mean degrees for different time
resolutions (Clauset and Eagle,
2012)

72

Time Granularity
▶ choosing the right time resolution is important

▶ quantization: binning of time stamps into time intervals of fixed size,
e.g, seconds, minutes, hours, days

– coarse resolution may lead to information loss, dense time steps

– fine resolution captures more information but may lead to sparse (or even empty) time steps

time point in contact network with time resolution of 24h, 1h, and
5 minutes (Lehmann, 2019)

mean degrees for different time
resolutions (Clauset and Eagle,
2012)

73

Time Granularity
▶ choosing the right time resolution is important

▶ quantization: binning of time stamps into time intervals of fixed size,
e.g, seconds, minutes, hours, days

– coarse resolution may lead to information loss, dense time steps

– fine resolution captures more information but may lead to sparse (or even empty) time steps

time point in contact network with time resolution of 24h, 1h, and
5 minutes (Lehmann, 2019)

mean degrees for different time
resolutions (Clauset and Eagle,
2012)

74

Time Granularity
▶ choosing the right time resolution is important

▶ quantization: binning of time stamps into time intervals of fixed size,
e.g, seconds, minutes, hours, days

– coarse resolution may lead to information loss, dense time steps

– fine resolution captures more information but may lead to sparse (or even empty) time steps

time point in contact network with time resolution of 24h, 1h, and
5 minutes (Lehmann, 2019)

mean degrees for different time
resolutions (Clauset and Eagle,
2012)

75

Representation of Temporal Networks

3. Time series of contacts

– a time-series for each pair of nodes in the network

– equivalent representation with sequence of interactions

4. Tensor representation

– tensor representing node× node× time information

– can apply powerful tensor-algebra techniques

– a complication is that time is directed, while tensor algebra
assumes that indices can be relabeled (breaking the time ordering)

– equivalent representation with sequence of interactions

76

Representation of Temporal Networks

3. Time series of contacts

– a time-series for each pair of nodes in the network

– equivalent representation with sequence of interactions

4. Tensor representation

– tensor representing node× node× time information

– can apply powerful tensor-algebra techniques

– a complication is that time is directed, while tensor algebra
assumes that indices can be relabeled (breaking the time ordering)

– equivalent representation with sequence of interactions

77

Representation of Temporal Networks

(Casteigts et al., 2012)

5. Time-varying graphs defined as G = (V ,E ,T , p, λ),
where

– V : set of nodes

– E ⊆ V × V : set of edges

– T : a time domain

– p : E × T → {0, 1} : a presence function

– λ : E × T → R : a latency function

▶ equivalent representation with sequence of interactions

78

Representation of Temporal Networks

(Latapy et al., 2018)

6. Stream graphs and link streams

▶ a formalization for modeling interactions over time

▶ a stream graph is defined as G = (T ,V ,W ,E), where

– T : a time domain

– V : a set of nodes

– W ⊆ T × V : a set of temporal nodes

– E ⊆ T × V × V : a set of links

– s.t., (t, u, v) ∈ E implies (t, u) ∈ W and (t, v) ∈ W

▶ stream graph: nodes are temporal too

▶ link stream equivalent representation with sequence of interactions

79

Representation of Temporal Networks

(Holme, 2015)

7. Time window graph or underlying graph or projected graph

▶ static graph GI = (VI ,EI) for given time interval (or window) I = [a, b]

– with EI = {(u, v) | (u, v , t) ∈ E and t ∈ I} be the set of edges with time stamp t ∈ I

– and with VI = {u, v | (u, v) ∈ EI}

▶ time window can be complete time span of G

▶ possible to add weights to the static edges, reflecting different temporal aspects,
e.g, number of contacts, or sum of durations of contacts

▶ not equivalent representation with sequence of interactions

▶ usually results in loss of information

80

Representation of Temporal Networks

(Holme, 2015)

7. Time window graph or underlying graph or projected graph

▶ static graph GI = (VI ,EI) for given time interval (or window) I = [a, b]

– with EI = {(u, v) | (u, v , t) ∈ E and t ∈ I} be the set of edges with time stamp t ∈ I

– and with VI = {u, v | (u, v) ∈ EI}

▶ time window can be complete time span of G

▶ possible to add weights to the static edges, reflecting different temporal aspects,
e.g, number of contacts, or sum of durations of contacts

▶ not equivalent representation with sequence of interactions

▶ usually results in loss of information

81

Representation of Temporal Networks

(Holme, 2015)

7. Time window graph or underlying graph or projected graph

▶ static graph GI = (VI ,EI) for given time interval (or window) I = [a, b]

– with EI = {(u, v) | (u, v , t) ∈ E and t ∈ I} be the set of edges with time stamp t ∈ I

– and with VI = {u, v | (u, v) ∈ EI}

▶ time window can be complete time span of G

▶ possible to add weights to the static edges, reflecting different temporal aspects,
e.g, number of contacts, or sum of durations of contacts

▶ not equivalent representation with sequence of interactions

▶ usually results in loss of information

82

Representation of Temporal Networks

(Holme, 2015)

7. Time window graph or underlying graph or projected graph

▶ static graph GI = (VI ,EI) for given time interval (or window) I = [a, b]

– with EI = {(u, v) | (u, v , t) ∈ E and t ∈ I} be the set of edges with time stamp t ∈ I

– and with VI = {u, v | (u, v) ∈ EI}

▶ time window can be complete time span of G

▶ possible to add weights to the static edges, reflecting different temporal aspects,
e.g, number of contacts, or sum of durations of contacts

▶ not equivalent representation with sequence of interactions

▶ usually results in loss of information

83

Representation of Temporal Networks

(Holme, 2015)

7. Time window graph or underlying graph or projected graph

▶ static graph GI = (VI ,EI) for given time interval (or window) I = [a, b]

– with EI = {(u, v) | (u, v , t) ∈ E and t ∈ I} be the set of edges with time stamp t ∈ I

– and with VI = {u, v | (u, v) ∈ EI}

▶ time window can be complete time span of G

▶ possible to add weights to the static edges, reflecting different temporal aspects,
e.g, number of contacts, or sum of durations of contacts

▶ not equivalent representation with sequence of interactions

▶ usually results in loss of information

84

Representation of Temporal Networks

(Holme, 2015)

7. Time window graph or underlying graph or projected graph

▶ static graph GI = (VI ,EI) for given time interval (or window) I = [a, b]

– with EI = {(u, v) | (u, v , t) ∈ E and t ∈ I} be the set of edges with time stamp t ∈ I

– and with VI = {u, v | (u, v) ∈ EI}

▶ time window can be complete time span of G

▶ possible to add weights to the static edges, reflecting different temporal aspects,
e.g, number of contacts, or sum of durations of contacts

▶ not equivalent representation with sequence of interactions

▶ usually results in loss of information

85

Representation of Temporal Networks

(Holme, 2015)

7. Time window graph or underlying graph or projected graph

▶ static graph GI = (VI ,EI) for given time interval (or window) I = [a, b]

– with EI = {(u, v) | (u, v , t) ∈ E and t ∈ I} be the set of edges with time stamp t ∈ I

– and with VI = {u, v | (u, v) ∈ EI}

▶ time window can be complete time span of G

▶ possible to add weights to the static edges, reflecting different temporal aspects,
e.g, number of contacts, or sum of durations of contacts

▶ not equivalent representation with sequence of interactions

▶ usually results in loss of information

86

Representation of Temporal Networks

(Holme, 2015)

7. Time window graph or underlying graph or projected graph

▶ static graph GI = (VI ,EI) for given time interval (or window) I = [a, b]

– with EI = {(u, v) | (u, v , t) ∈ E and t ∈ I} be the set of edges with time stamp t ∈ I

– and with VI = {u, v | (u, v) ∈ EI}

▶ time window can be complete time span of G

▶ possible to add weights to the static edges, reflecting different temporal aspects,
e.g, number of contacts, or sum of durations of contacts

▶ not equivalent representation with sequence of interactions

▶ usually results in loss of information

87

Representation of Temporal Networks

7. time window graph or underlying graph or projected graph

time window graphs for intervals [1, 9], [4, 9], [6, 7]

88

Temporal Graph Variants

▶ time-intervals instead of time stamps

▶ directed vs. undirected edges

▶ multi edges

▶ (time-variant) labeled or colored nodes and edges

▶ (time-variant) node and edge features

▶ temporal hypergraphs
(Cencetti et al., 2021)

Combinations possible: temporal multi-layer hypergraphs with node features

89

Temporal Networks vs. Dynamic Graphs

▶ dynamic graphs is a standard model typically studied in theoretical computer science

– e.g., (Henzinger et al., 1999; Thorup, 2000; Hanauer et al., 2021)

▶ dynamic graphs are represented as a sequence of edge additions and/or edge deletions

▶ objective: efficient maintenance of graph properties

– e.g., connectivity, shortest paths, spanners, etc.

▶ emphasis on computational efficiency

– computation time per operation

– e.g., cost of maintaining a minimum spanning tree per edge additions/deletions

90

Temporal Networks vs. Dynamic Graphs

▶ dynamic graphs is a standard model typically studied in theoretical computer science

– e.g., (Henzinger et al., 1999; Thorup, 2000; Hanauer et al., 2021)

▶ dynamic graphs are represented as a sequence of edge additions and/or edge deletions

▶ objective: efficient maintenance of graph properties

– e.g., connectivity, shortest paths, spanners, etc.

▶ emphasis on computational efficiency

– computation time per operation

– e.g., cost of maintaining a minimum spanning tree per edge additions/deletions

91

Temporal Networks vs. Dynamic Graphs

▶ dynamic graphs is a standard model typically studied in theoretical computer science

– e.g., (Henzinger et al., 1999; Thorup, 2000; Hanauer et al., 2021)

▶ dynamic graphs are represented as a sequence of edge additions and/or edge deletions

▶ objective: efficient maintenance of graph properties

– e.g., connectivity, shortest paths, spanners, etc.

▶ emphasis on computational efficiency

– computation time per operation

– e.g., cost of maintaining a minimum spanning tree per edge additions/deletions

92

Temporal Networks vs. Dynamic Graphs

▶ dynamic graphs resemble sequence of interactions model

▶ main difference lies on which graph properties we study

▶ for dynamic graphs we typically consider properties on graph snapshots

– i.e., minimum spanning tree on the current snapshot

▶ for temporal graphs we typically consider properties that span a time interval

– i.e., a temporal pattern

▶ disclaimer: we do not consider dynamic graphs

93

Temporal Networks vs. Dynamic Graphs

▶ dynamic graphs resemble sequence of interactions model

▶ main difference lies on which graph properties we study

▶ for dynamic graphs we typically consider properties on graph snapshots

– i.e., minimum spanning tree on the current snapshot

▶ for temporal graphs we typically consider properties that span a time interval

– i.e., a temporal pattern

▶ disclaimer: we do not consider dynamic graphs

94

Temporal Networks vs. Dynamic Graphs

▶ dynamic graphs resemble sequence of interactions model

▶ main difference lies on which graph properties we study

▶ for dynamic graphs we typically consider properties on graph snapshots

– i.e., minimum spanning tree on the current snapshot

▶ for temporal graphs we typically consider properties that span a time interval

– i.e., a temporal pattern

▶ disclaimer: we do not consider dynamic graphs

95

Temporal Networks vs. Dynamic Graphs

▶ dynamic graphs resemble sequence of interactions model

▶ main difference lies on which graph properties we study

▶ for dynamic graphs we typically consider properties on graph snapshots

– i.e., minimum spanning tree on the current snapshot

▶ for temporal graphs we typically consider properties that span a time interval

– i.e., a temporal pattern

▶ disclaimer: we do not consider dynamic graphs

96

Dynamic Networks in Network Generation

▶ in graph generation models, we consider dynamic networks

– e.g., Barabási-Albert, forest-fire, copying model, etc.

▶ similar to dynamic graphs: a sequence of node/edge additions
(typically no deletions)

▶ node/edge addition are governed by a probabilistic model, not
arbitrary, or worst case, as in algorithmic models

▶ emphasis again on network topology, i.e., how certain network
structures emerge

– e.g., scale-free distribution, small world, etc.

▶ disclaimer: we do not consider dynamic networks in this context

97

Dynamic Networks in Network Generation

▶ in graph generation models, we consider dynamic networks

– e.g., Barabási-Albert, forest-fire, copying model, etc.

▶ similar to dynamic graphs: a sequence of node/edge additions
(typically no deletions)

▶ node/edge addition are governed by a probabilistic model, not
arbitrary, or worst case, as in algorithmic models

▶ emphasis again on network topology, i.e., how certain network
structures emerge

– e.g., scale-free distribution, small world, etc.

▶ disclaimer: we do not consider dynamic networks in this context

98

Dynamic Networks in Network Generation

▶ in graph generation models, we consider dynamic networks

– e.g., Barabási-Albert, forest-fire, copying model, etc.

▶ similar to dynamic graphs: a sequence of node/edge additions
(typically no deletions)

▶ node/edge addition are governed by a probabilistic model, not
arbitrary, or worst case, as in algorithmic models

▶ emphasis again on network topology, i.e., how certain network
structures emerge

– e.g., scale-free distribution, small world, etc.

▶ disclaimer: we do not consider dynamic networks in this context

99

Dynamic Networks in Network Generation

▶ in graph generation models, we consider dynamic networks

– e.g., Barabási-Albert, forest-fire, copying model, etc.

▶ similar to dynamic graphs: a sequence of node/edge additions
(typically no deletions)

▶ node/edge addition are governed by a probabilistic model, not
arbitrary, or worst case, as in algorithmic models

▶ emphasis again on network topology, i.e., how certain network
structures emerge

– e.g., scale-free distribution, small world, etc.

▶ disclaimer: we do not consider dynamic networks in this context

100

Dynamic Networks in Network Generation

▶ in graph generation models, we consider dynamic networks

– e.g., Barabási-Albert, forest-fire, copying model, etc.

▶ similar to dynamic graphs: a sequence of node/edge additions
(typically no deletions)

▶ node/edge addition are governed by a probabilistic model, not
arbitrary, or worst case, as in algorithmic models

▶ emphasis again on network topology, i.e., how certain network
structures emerge

– e.g., scale-free distribution, small world, etc.

▶ disclaimer: we do not consider dynamic networks in this context

101

Dynamic Networks in Network Generation

▶ in graph generation models, we consider dynamic networks

– e.g., Barabási-Albert, forest-fire, copying model, etc.

▶ similar to dynamic graphs: a sequence of node/edge additions
(typically no deletions)

▶ node/edge addition are governed by a probabilistic model, not
arbitrary, or worst case, as in algorithmic models

▶ emphasis again on network topology, i.e., how certain network
structures emerge

– e.g., scale-free distribution, small world, etc.

▶ disclaimer: we do not consider dynamic networks in this context

102

Graph Streams

▶ data-stream model: (Muthukrishnan et al., 2005)

– data are presented as a sequence of data items (potentially infinite)

– assume a small number of passes, typically constant or just one pass

– assume small memory compared to data size, e.g., poly-logarithmic

– assume fast computation per data item processed, e.g., constant or poly-logarithmic

▶ a graph stream is a graph dataset in the data-stream model

e.g., sequence of interactions (temporal network), or edge additions/deletions (dynamic graph)

▶ a graph stream is not a representation model, but underlying computational model

▶ we can study questions of mining temporal networks in the graph-stream model

103

Graph Streams

▶ data-stream model: (Muthukrishnan et al., 2005)

– data are presented as a sequence of data items (potentially infinite)

– assume a small number of passes, typically constant or just one pass

– assume small memory compared to data size, e.g., poly-logarithmic

– assume fast computation per data item processed, e.g., constant or poly-logarithmic

▶ a graph stream is a graph dataset in the data-stream model

e.g., sequence of interactions (temporal network), or edge additions/deletions (dynamic graph)

▶ a graph stream is not a representation model, but underlying computational model

▶ we can study questions of mining temporal networks in the graph-stream model

104

Graph Streams

▶ data-stream model: (Muthukrishnan et al., 2005)

– data are presented as a sequence of data items (potentially infinite)

– assume a small number of passes, typically constant or just one pass

– assume small memory compared to data size, e.g., poly-logarithmic

– assume fast computation per data item processed, e.g., constant or poly-logarithmic

▶ a graph stream is a graph dataset in the data-stream model

e.g., sequence of interactions (temporal network), or edge additions/deletions (dynamic graph)

▶ a graph stream is not a representation model, but underlying computational model

▶ we can study questions of mining temporal networks in the graph-stream model

105

Graph Streams

▶ data-stream model: (Muthukrishnan et al., 2005)

– data are presented as a sequence of data items (potentially infinite)

– assume a small number of passes, typically constant or just one pass

– assume small memory compared to data size, e.g., poly-logarithmic

– assume fast computation per data item processed, e.g., constant or poly-logarithmic

▶ a graph stream is a graph dataset in the data-stream model

e.g., sequence of interactions (temporal network), or edge additions/deletions (dynamic graph)

▶ a graph stream is not a representation model, but underlying computational model

▶ we can study questions of mining temporal networks in the graph-stream model

106

Graph Streams

▶ data-stream model: (Muthukrishnan et al., 2005)

– data are presented as a sequence of data items (potentially infinite)

– assume a small number of passes, typically constant or just one pass

– assume small memory compared to data size, e.g., poly-logarithmic

– assume fast computation per data item processed, e.g., constant or poly-logarithmic

▶ a graph stream is a graph dataset in the data-stream model

e.g., sequence of interactions (temporal network), or edge additions/deletions (dynamic graph)

▶ a graph stream is not a representation model, but underlying computational model

▶ we can study questions of mining temporal networks in the graph-stream model

107

Graph Streams

▶ data-stream model: (Muthukrishnan et al., 2005)

– data are presented as a sequence of data items (potentially infinite)

– assume a small number of passes, typically constant or just one pass

– assume small memory compared to data size, e.g., poly-logarithmic

– assume fast computation per data item processed, e.g., constant or poly-logarithmic

▶ a graph stream is a graph dataset in the data-stream model

e.g., sequence of interactions (temporal network), or edge additions/deletions (dynamic graph)

▶ a graph stream is not a representation model, but underlying computational model

▶ we can study questions of mining temporal networks in the graph-stream model

108

Graph Streams

▶ data-stream model: (Muthukrishnan et al., 2005)

– data are presented as a sequence of data items (potentially infinite)

– assume a small number of passes, typically constant or just one pass

– assume small memory compared to data size, e.g., poly-logarithmic

– assume fast computation per data item processed, e.g., constant or poly-logarithmic

▶ a graph stream is a graph dataset in the data-stream model

e.g., sequence of interactions (temporal network), or edge additions/deletions (dynamic graph)

▶ a graph stream is not a representation model, but underlying computational model

▶ we can study questions of mining temporal networks in the graph-stream model

109

Graph Streams

▶ data-stream model: (Muthukrishnan et al., 2005)

– data are presented as a sequence of data items (potentially infinite)

– assume a small number of passes, typically constant or just one pass

– assume small memory compared to data size, e.g., poly-logarithmic

– assume fast computation per data item processed, e.g., constant or poly-logarithmic

▶ a graph stream is a graph dataset in the data-stream model

e.g., sequence of interactions (temporal network), or edge additions/deletions (dynamic graph)

▶ a graph stream is not a representation model, but underlying computational model

▶ we can study questions of mining temporal networks in the graph-stream model

110

Graph Streams

▶ data-stream model: (Muthukrishnan et al., 2005)

– data are presented as a sequence of data items (potentially infinite)

– assume a small number of passes, typically constant or just one pass

– assume small memory compared to data size, e.g., poly-logarithmic

– assume fast computation per data item processed, e.g., constant or poly-logarithmic

▶ a graph stream is a graph dataset in the data-stream model

e.g., sequence of interactions (temporal network), or edge additions/deletions (dynamic graph)

▶ a graph stream is not a representation model, but underlying computational model

▶ we can study questions of mining temporal networks in the graph-stream model

111

Temporal Graph Learning

▶ rich and fast growing body of works on temporal graph learning

▶ tasks: dynamic link/node property prediction, graph classification, clustering, link prediction,
representation learning, ...

▶ methods: graph neural networks, recurrent neural network, graph transformers, ...

▶ several extensive surveys available, e.g.,
(Gupta and Bedathur, 2022; Longa et al., 2023; Kazemi et al., 2020)

▶ disclaimer: in this tutorial we do not consider temporal graph learning

112

Temporal Graph Learning

▶ rich and fast growing body of works on temporal graph learning

▶ tasks: dynamic link/node property prediction, graph classification, clustering, link prediction,
representation learning, ...

▶ methods: graph neural networks, recurrent neural network, graph transformers, ...

▶ several extensive surveys available, e.g.,
(Gupta and Bedathur, 2022; Longa et al., 2023; Kazemi et al., 2020)

▶ disclaimer: in this tutorial we do not consider temporal graph learning

113

Temporal Graph Learning

▶ rich and fast growing body of works on temporal graph learning

▶ tasks: dynamic link/node property prediction, graph classification, clustering, link prediction,
representation learning, ...

▶ methods: graph neural networks, recurrent neural network, graph transformers, ...

▶ several extensive surveys available, e.g.,
(Gupta and Bedathur, 2022; Longa et al., 2023; Kazemi et al., 2020)

▶ disclaimer: in this tutorial we do not consider temporal graph learning

114

Temporal Graph Learning

▶ rich and fast growing body of works on temporal graph learning

▶ tasks: dynamic link/node property prediction, graph classification, clustering, link prediction,
representation learning, ...

▶ methods: graph neural networks, recurrent neural network, graph transformers, ...

▶ several extensive surveys available, e.g.,
(Gupta and Bedathur, 2022; Longa et al., 2023; Kazemi et al., 2020)

▶ disclaimer: in this tutorial we do not consider temporal graph learning

115

Temporal Graph Learning

▶ rich and fast growing body of works on temporal graph learning

▶ tasks: dynamic link/node property prediction, graph classification, clustering, link prediction,
representation learning, ...

▶ methods: graph neural networks, recurrent neural network, graph transformers, ...

▶ several extensive surveys available, e.g.,
(Gupta and Bedathur, 2022; Longa et al., 2023; Kazemi et al., 2020)

▶ disclaimer: in this tutorial we do not consider temporal graph learning

116

Theoretical Aspects of Temporal Graphs

▶ how is the complexity of classic combinatorial optimization problems changes when time is added?

▶ some old results: the max-flow min-cut theorem holds with unit capacities for temporal paths
(Berman, 1996)

▶ a number of recent works

– graph coloring (Mertzios et al., 2018)

– maximal matching (Mertzios et al., 2019)

– cliques (Viard et al., 2015, 2016; Himmel et al., 2017; Mertzios et al., 2024)

– network design (Akrida et al., 2017; Enright et al., 2021)

– path problems (Casteigts et al., 2021; Klobas et al., 2022, 2023)

– vertex cover (Hamm et al., 2022; Akrida et al., 2020)

– ...

▶ discussing complexity, FPT algorithms, enumeration, etc.

117

Theoretical Aspects of Temporal Graphs

▶ how is the complexity of classic combinatorial optimization problems changes when time is added?

▶ some old results: the max-flow min-cut theorem holds with unit capacities for temporal paths
(Berman, 1996)

▶ a number of recent works

– graph coloring (Mertzios et al., 2018)

– maximal matching (Mertzios et al., 2019)

– cliques (Viard et al., 2015, 2016; Himmel et al., 2017; Mertzios et al., 2024)

– network design (Akrida et al., 2017; Enright et al., 2021)

– path problems (Casteigts et al., 2021; Klobas et al., 2022, 2023)

– vertex cover (Hamm et al., 2022; Akrida et al., 2020)

– ...

▶ discussing complexity, FPT algorithms, enumeration, etc.

118

Agenda

Part I : Introduction and Motivation

▶ models of temporal networks

▶ algorithmic approaches

Part II : Mining Temporal Networks A:

▶ connectivity, temporal properties

▶ centrality, cores

Part III : Mining Temporal Networks B:

▶ communities, patterns and events

▶ diffusion and random networks

Part IV : Tools and Code Libraries

Part V : Challenges, Open Problems, and Trends

119

Part II

Mining Temporal Networks A

120

Time-respecting Walks and Paths

▶ a fundamental concept in analysis of temporal networks

▶ a time-respecting (or temporal) walk is a sequence of temporal edges, such that

– consecutive edges share a common node, and

– time stamps of temporal edges are increasing

– (non-strict version: time stamps non-decreasing)

▶ a temporal paths is a temporal walk that visits each vertex at most once

a b c d
1 3 2

a b c d
1 2 3

121

Time-respecting Walks and Paths

▶ a fundamental concept in analysis of temporal networks

▶ a time-respecting (or temporal) walk is a sequence of temporal edges, such that

– consecutive edges share a common node, and

– time stamps of temporal edges are increasing

– (non-strict version: time stamps non-decreasing)

▶ a temporal paths is a temporal walk that visits each vertex at most once

a b c d
1 3 2

a b c d
1 2 3

122

Time-respecting Walks and Paths

▶ a fundamental concept in analysis of temporal networks

▶ a time-respecting (or temporal) walk is a sequence of temporal edges, such that

– consecutive edges share a common node, and

– time stamps of temporal edges are increasing

– (non-strict version: time stamps non-decreasing)

▶ a temporal paths is a temporal walk that visits each vertex at most once

a b c d
1 3 2

a b c d
1 2 3

123

Time-respecting Walks and Paths

▶ a fundamental concept in analysis of temporal networks

▶ a time-respecting (or temporal) walk is a sequence of temporal edges, such that

– consecutive edges share a common node, and

– time stamps of temporal edges are increasing

– (non-strict version: time stamps non-decreasing)

▶ a temporal paths is a temporal walk that visits each vertex at most once

a b c d
1 3 2

a b c d
1 2 3

124

Time-respecting Walks and Paths

▶ a fundamental concept in analysis of temporal networks

▶ a time-respecting (or temporal) walk is a sequence of temporal edges, such that

– consecutive edges share a common node, and

– time stamps of temporal edges are increasing

– (non-strict version: time stamps non-decreasing)

▶ a temporal paths is a temporal walk that visits each vertex at most once

a b c d
1 3 2

a b c d
1 2 3

125

Time-respecting Walks and Paths

▶ a fundamental concept in analysis of temporal networks

▶ a time-respecting (or temporal) walk is a sequence of temporal edges, such that

– consecutive edges share a common node, and

– time stamps of temporal edges are increasing

– (non-strict version: time stamps non-decreasing)

▶ a temporal paths is a temporal walk that visits each vertex at most once

a b c d
1 3 2

a b c d
1 2 3

126

Time-respecting Walks and Paths

▶ a fundamental concept in analysis of temporal networks

▶ a time-respecting (or temporal) walk is a sequence of temporal edges, such that

– consecutive edges share a common node, and

– time stamps of temporal edges are increasing

– (non-strict version: time stamps non-decreasing)

▶ a temporal paths is a temporal walk that visits each vertex at most once

a b c d
1 3 2

a b c d
1 2 3

127

Time-respecting Paths — Example

a

b

c

d

e

1 2 3 4 5 6 7

time

(c , e, 2), (e, d , 5), (d , b, 6) is a time-respecting path from c to b

(c , b, 3), (b, a, 1) is not a time-respecting path

▶ non-symmetric: from e to b but not from b to e

▶ non-transitive: from b to d and from d to e but not from b to e

128

Time-respecting Paths — Example

a

b

c

d

e

1 2 3 4 5 6 7

time

(c , e, 2), (e, d , 5), (d , b, 6) is a time-respecting path from c to b

(c , b, 3), (b, a, 1) is not a time-respecting path

▶ non-symmetric: from e to b but not from b to e

▶ non-transitive: from b to d and from d to e but not from b to e

129

Time-respecting Paths — Example

a

b

c

d

e

1 2 3 4 5 6 7

time

(c , e, 2), (e, d , 5), (d , b, 6) is a time-respecting path from c to b

(c , b, 3), (b, a, 1) is not a time-respecting path

▶ non-symmetric: from e to b but not from b to e

▶ non-transitive: from b to d and from d to e but not from b to e

130

Time-respecting Paths — Example

a

b

c

d

e

1 2 3 4 5 6 7

time

(c , e, 2), (e, d , 5), (d , b, 6) is a time-respecting path from c to b

(c , b, 3), (b, a, 1) is not a time-respecting path

▶ non-symmetric: from e to b but not from b to e

▶ non-transitive: from b to d and from d to e but not from b to e

131

Applications

▶ information (or disease) can only propagate over time-respecting walks

▶ communication networks: capture possible flow of information

▶ financial networks: trace the sequence of financial exchanges to identify
patterns, detect fraudulent activity, or assess market dynamics

▶ epidemiology: understanding the spread of diseases

▶ social network analysis: centrality measures for ranking users

132

Applications

▶ information (or disease) can only propagate over time-respecting walks

▶ communication networks: capture possible flow of information

▶ financial networks: trace the sequence of financial exchanges to identify
patterns, detect fraudulent activity, or assess market dynamics

▶ epidemiology: understanding the spread of diseases

▶ social network analysis: centrality measures for ranking users

133

Applications

▶ information (or disease) can only propagate over time-respecting walks

▶ communication networks: capture possible flow of information

▶ financial networks: trace the sequence of financial exchanges to identify
patterns, detect fraudulent activity, or assess market dynamics

▶ epidemiology: understanding the spread of diseases

▶ social network analysis: centrality measures for ranking users

134

Applications

▶ information (or disease) can only propagate over time-respecting walks

▶ communication networks: capture possible flow of information

▶ financial networks: trace the sequence of financial exchanges to identify
patterns, detect fraudulent activity, or assess market dynamics

▶ epidemiology: understanding the spread of diseases

▶ social network analysis: centrality measures for ranking users

135

Applications

▶ information (or disease) can only propagate over time-respecting walks

▶ communication networks: capture possible flow of information

▶ financial networks: trace the sequence of financial exchanges to identify
patterns, detect fraudulent activity, or assess market dynamics

▶ epidemiology: understanding the spread of diseases

▶ social network analysis: centrality measures for ranking users

136

Temporal Reachability

Reachability is defined as in static graphs, but using time-respecting walks

”There exists temporal (s, z)-walk in G“ not always useful—the existence depends on time interval

a b

cd

zs

4

42

3

1

2

5

4

▶ temporal walks and paths problems, and reachability are always related to a time interval I

▶ if no time-interval given, we take the complete span of G

▶ finding all from s reachable nodes in linear time (later)

137

Temporal Reachability

Reachability is defined as in static graphs, but using time-respecting walks

”There exists temporal (s, z)-walk in G“ not always useful—the existence depends on time interval

a b

cd

zs

4

42

3

1

2

5

4

▶ temporal walks and paths problems, and reachability are always related to a time interval I

▶ if no time-interval given, we take the complete span of G

▶ finding all from s reachable nodes in linear time (later)

138

Temporal Reachability

Reachability is defined as in static graphs, but using time-respecting walks

”There exists temporal (s, z)-walk in G“ not always useful—the existence depends on time interval

a b

cd

zs

4

42

3

1

2

5

4

▶ temporal walks and paths problems, and reachability are always related to a time interval I

▶ if no time-interval given, we take the complete span of G

▶ finding all from s reachable nodes in linear time (later)

139

Temporal Reachability

Reachability is defined as in static graphs, but using time-respecting walks

”There exists temporal (s, z)-walk in G“ not always useful—the existence depends on time interval

a b

cd

zs

4

42

3

1

2

5

4

▶ temporal walks and paths problems, and reachability are always related to a time interval I

▶ if no time-interval given, we take the complete span of G

▶ finding all from s reachable nodes in linear time (later)

140

Temporal Reachability

Reachability is defined as in static graphs, but using time-respecting walks

”There exists temporal (s, z)-walk in G“ not always useful—the existence depends on time interval

a b

cd

zs

4

42

3

1

2

5

4

▶ temporal walks and paths problems, and reachability are always related to a time interval I

▶ if no time-interval given, we take the complete span of G

▶ finding all from s reachable nodes in linear time (later)

141

Temporal Reachability

Reachability is defined as in static graphs, but using time-respecting walks

”There exists temporal (s, z)-walk in G“ not always useful—the existence depends on time interval

a b

cd

zs

4

42

3

1

2

5

4

▶ temporal walks and paths problems, and reachability are always related to a time interval I

▶ if no time-interval given, we take the complete span of G

▶ finding all from s reachable nodes in linear time (later)

142

A Reachability Problem

Temporal Exploration Problem

▶ Given: Temporal graph G = (V ,E), vertex s ∈ V

▶ Question: Can we reach all other nodes with a single temporal walk starting from s?

Problem is NP-complete (corresponding problem in static graphs in linear time!)

a b

cd

1

1

1, 2 2
1

3

If transition time non-zero ⇒ each edge at most
once in a strict temporal walk

Proof idea:

▶ reduction from Hamilton path problem

(Michail and Spirakis, 2016)

143

A Reachability Problem

Temporal Exploration Problem

▶ Given: Temporal graph G = (V ,E), vertex s ∈ V

▶ Question: Can we reach all other nodes with a single temporal walk starting from s?

Problem is NP-complete (corresponding problem in static graphs in linear time!)

a b

cd

1

1

1, 2 2
1

3

If transition time non-zero ⇒ each edge at most
once in a strict temporal walk

Proof idea:

▶ reduction from Hamilton path problem

(Michail and Spirakis, 2016)

144

A Reachability Problem

Temporal Exploration Problem

▶ Given: Temporal graph G = (V ,E), vertex s ∈ V

▶ Question: Can we reach all other nodes with a single temporal walk starting from s?

Problem is NP-complete (corresponding problem in static graphs in linear time!)

a b

cd

1

1

1, 2 2
1

3

If transition time non-zero ⇒ each edge at most
once in a strict temporal walk

Proof idea:

▶ reduction from Hamilton path problem

(Michail and Spirakis, 2016)

145

Connectivity and Connected Components

▶ static connected components are based on reachability

– each node in connected component C can reach each all other nodes in C

▶ equivalence relation that partitions the graph

– reflexivity, symmetry, transitivity

▶ temporal connected components are based on temporal reachability

– a subset of the nodes C ⊆ V

– there is a temporal walk between each pair u, v ∈ C

146

Connectivity and Connected Components

▶ static connected components are based on reachability

– each node in connected component C can reach each all other nodes in C

▶ equivalence relation that partitions the graph

– reflexivity, symmetry, transitivity

▶ temporal connected components are based on temporal reachability

– a subset of the nodes C ⊆ V

– there is a temporal walk between each pair u, v ∈ C

147

Connectivity and Connected Components

Temporal Connectivity Problem

▶ Given: A temporal graph and integer k

▶ Question: Is there a subset of the vertices V ′ ⊆ V of size k such that all vertices in V ′ can
reach each other by a temporal path?

▶ two versions: open variant allows paths using nodes outsides of V ′, closed variant not

▶ both cases are NP-complete (Bhadra and Ferreira, 2003)

a

b c

d e f

5 8

8 51

1

1

1

a

b c

d

ef

1

3

2

3

1

2

148

Connectivity and Connected Components
Temporal Connectivity Problem

▶ Given: A temporal graph and integer k

▶ Question: Is there a subset of the vertices V ′ ⊆ V of size k such that all vertices in V ′ can
reach each other by a temporal path?

▶ two versions: open variant allows paths using nodes outsides of V ′, closed variant not

▶ both cases are NP-complete (Bhadra and Ferreira, 2003)

a

b c

d e f

5 8

8 51

1

1

1

a

b c

d

ef

1

3

2

3

1

2

a and d are openly connected

Connected components can be overlapping

149

Time Window Reachability and Connectivity

▶ compute reachability or connected components in time window graph GI = (VI ,EI)

– given time window I = [a, b], GI = (VI ,EI) is static graph induced by edges appearing in I

▶ time window reachability for u ∈ V in time interval I = [a, b] (Wen et al., 2020)

– the set of nodes that u can reach in GI = (VI ,EI) with static walk

▶ time window connected components in time interval I = [a, b] (Xie et al., 2023)

– the set of static connected components in GI = (VI ,EI)

▶ both problems solvable in linear time

▶ alternative: index-based algorithms for large scale graphs

150

Time Window Reachability and Connectivity

▶ compute reachability or connected components in time window graph GI = (VI ,EI)

– given time window I = [a, b], GI = (VI ,EI) is static graph induced by edges appearing in I

▶ time window reachability for u ∈ V in time interval I = [a, b] (Wen et al., 2020)

– the set of nodes that u can reach in GI = (VI ,EI) with static walk

▶ time window connected components in time interval I = [a, b] (Xie et al., 2023)

– the set of static connected components in GI = (VI ,EI)

▶ both problems solvable in linear time

▶ alternative: index-based algorithms for large scale graphs

151

Time Window Reachability and Connectivity

▶ compute reachability or connected components in time window graph GI = (VI ,EI)

– given time window I = [a, b], GI = (VI ,EI) is static graph induced by edges appearing in I

▶ time window reachability for u ∈ V in time interval I = [a, b] (Wen et al., 2020)

– the set of nodes that u can reach in GI = (VI ,EI) with static walk

▶ time window connected components in time interval I = [a, b] (Xie et al., 2023)

– the set of static connected components in GI = (VI ,EI)

▶ both problems solvable in linear time

▶ alternative: index-based algorithms for large scale graphs

152

Time Window Reachability and Connectivity

▶ compute reachability or connected components in time window graph GI = (VI ,EI)

– given time window I = [a, b], GI = (VI ,EI) is static graph induced by edges appearing in I

▶ time window reachability for u ∈ V in time interval I = [a, b] (Wen et al., 2020)

– the set of nodes that u can reach in GI = (VI ,EI) with static walk

▶ time window connected components in time interval I = [a, b] (Xie et al., 2023)

– the set of static connected components in GI = (VI ,EI)

▶ both problems solvable in linear time

▶ alternative: index-based algorithms for large scale graphs

153

Time-Respecting Paths

a

cb f

hg i

kj l

4

1

2

3

10

63
3

5

76

7

2 9 8

(a) Temporal Graph

a

cb f

hg i

kj l

(b) Static Graph

▶ some paths in the static graph are not meaningful in the temporal graph

▶ e.g., a – b – g – j is not time-respecting path

▶ what is an optimal path from a to k?

(Wu et al., 2014)

154

Time-Respecting Paths

a

cb f

hg i

kj l

4

1

2

3

10

63
3

5

76

7

2 9 8

(a) Temporal Graph

a

cb f

hg i

kj l

(b) Static Graph

▶ some paths in the static graph are not meaningful in the temporal graph

▶ e.g., a – b – g – j is not time-respecting path

▶ what is an optimal path from a to k?

(Wu et al., 2014)

155

Time-Respecting Paths

a

cb f

hg i

kj l

4

1

2

3

10

63
3

5

76

7

2 9 8

(a) Temporal Graph

a

cb f

hg i

kj l

(b) Static Graph

▶ some paths in the static graph are not meaningful in the temporal graph

▶ e.g., a – b – g – j is not time-respecting path

▶ what is an optimal path from a to k?

(Wu et al., 2014)

156

Minimum Temporal Paths

▶ earliest-arrival path : a path from x to y with earliest arrival time

▶ latest-departure path : a path from x to y with latest departure time

▶ fastest path : path from x to y with minimum elapsed time

▶ shortest path : a path from x to y minimum sum of traversal times

▶ minimum hop path: a path from x to y with minimum number of hops

x

a

b1 b2

c1 c2 c3

d1 d2 d3

y

1 5

3 4 5

1

2 3

4

11

12 13

14

(Wu et al., 2014)

157

Minimum Temporal Paths

▶ earliest-arrival path : a path from x to y with earliest arrival time

▶ latest-departure path : a path from x to y with latest departure time

▶ fastest path : path from x to y with minimum elapsed time

▶ shortest path : a path from x to y minimum sum of traversal times

▶ minimum hop path: a path from x to y with minimum number of hops

x

a

b1 b2

c1 c2 c3

d1 d2 d3

y

1 5

3 4 5

1

2 3

4

11

12 13

14

(Wu et al., 2014)

158

Minimum Temporal Paths

▶ earliest-arrival path : a path from x to y with earliest arrival time

▶ latest-departure path : a path from x to y with latest departure time

▶ fastest path : path from x to y with minimum elapsed time

▶ shortest path : a path from x to y minimum sum of traversal times

▶ minimum hop path: a path from x to y with minimum number of hops

x

a

b1 b2

c1 c2 c3

d1 d2 d3

y

1 5

3 4 5

1

2 3

4

11

12 13

14

(Wu et al., 2014)

159

Minimum Temporal Paths

▶ earliest-arrival path : a path from x to y with earliest arrival time

▶ latest-departure path : a path from x to y with latest departure time

▶ fastest path : path from x to y with minimum elapsed time

▶ shortest path : a path from x to y minimum sum of traversal times

▶ minimum hop path: a path from x to y with minimum number of hops

x

a

b1 b2

c1 c2 c3

d1 d2 d3

y

1 5

3 4 5

1

2 3

4

11

12 13

14

(Wu et al., 2014)

160

Minimum Temporal Paths

▶ earliest-arrival path : a path from x to y with earliest arrival time

▶ latest-departure path : a path from x to y with latest departure time

▶ fastest path : path from x to y with minimum elapsed time

▶ shortest path : a path from x to y minimum sum of traversal times

▶ minimum hop path: a path from x to y with minimum number of hops

x

a

b1 b2

c1 c2 c3

d1 d2 d3

y

1 5

3 4 5

1

2 3

4

11

12 13

14

(Wu et al., 2014)

161

Optimal Path Computation

Observation

Let P(s,z) be an optimal temporal path and P a subpath of P(s,z), then, in general, P is not optimal

a b

cd

zs

2

42

3

1

2

5

6

Example:

▶ fastest path (s, d , b, z) with duration 4

▶ subpath (s, d , b) has duration 3 but path (s, a, b) has duration 2

▶ similar examples for other variants

▶ greedy Dijkstra does not work in general

162

Optimal Path Computation

Observation

Let P(s,z) be an optimal temporal path and P a subpath of P(s,z), then, in general, P is not optimal

a b

cd

zs

2

42

3

1

2

5

6

Example:

▶ fastest path (s, d , b, z) with duration 4

▶ subpath (s, d , b) has duration 3 but path (s, a, b) has duration 2

▶ similar examples for other variants

▶ greedy Dijkstra does not work in general

163

Optimal Path Computation

Observation

Let P(s,z) be an optimal temporal path and P a subpath of P(s,z), then, in general, P is not optimal

a b

cd

zs

2

42

3

1

2

5

6

Example:

▶ fastest path (s, d , b, z) with duration 4

▶ subpath (s, d , b) has duration 3 but path (s, a, b) has duration 2

▶ similar examples for other variants

▶ greedy Dijkstra does not work in general

164

Optimal Path Computation

Observation

Let P(s,z) be an optimal temporal path and P a subpath of P(s,z), then, in general, P is not optimal

a b

cd

zs

2

42

3

1

2

5

6

Example:

▶ fastest path (s, d , b, z) with duration 4

▶ subpath (s, d , b) has duration 3 but path (s, a, b) has duration 2

▶ similar examples for other variants

▶ greedy Dijkstra does not work in general

165

Earliest-arrival Path

(Wu et al., 2014)

Subpath Optimality

If there exists an earliest arrival (s, z)-path, then there exist an earliest arrival (s, z)-path P such that
each prefix path of P is an earliest arrival path

▶ source vertex x , starting time ts

▶ array A of size |V | to record arrival times to each node

▶ A[x] = ts and A[v] = ∞, for nodes other than source

▶ process edges (u, v , t, λ) in temporal order

– if t ≥ A[u] (u is already reached from x)

– current edge might be earliest path from x to v

– update A[v] = min (A[v], t + λ)

Linear time algorithm

166

Earliest-arrival Path

(Wu et al., 2014)

Subpath Optimality

If there exists an earliest arrival (s, z)-path, then there exist an earliest arrival (s, z)-path P such that
each prefix path of P is an earliest arrival path

▶ source vertex x , starting time ts

▶ array A of size |V | to record arrival times to each node

▶ A[x] = ts and A[v] = ∞, for nodes other than source

▶ process edges (u, v , t, λ) in temporal order

– if t ≥ A[u] (u is already reached from x)

– current edge might be earliest path from x to v

– update A[v] = min (A[v], t + λ)

Linear time algorithm

167

Earliest-arrival Path

(Wu et al., 2014)

Subpath Optimality

If there exists an earliest arrival (s, z)-path, then there exist an earliest arrival (s, z)-path P such that
each prefix path of P is an earliest arrival path

▶ source vertex x , starting time ts

▶ array A of size |V | to record arrival times to each node

▶ A[x] = ts and A[v] = ∞, for nodes other than source

▶ process edges (u, v , t, λ) in temporal order

– if t ≥ A[u] (u is already reached from x)

– current edge might be earliest path from x to v

– update A[v] = min (A[v], t + λ)

Linear time algorithm

168

Earliest-arrival Path

(Wu et al., 2014)

Subpath Optimality

If there exists an earliest arrival (s, z)-path, then there exist an earliest arrival (s, z)-path P such that
each prefix path of P is an earliest arrival path

▶ source vertex x , starting time ts

▶ array A of size |V | to record arrival times to each node

▶ A[x] = ts and A[v] = ∞, for nodes other than source

▶ process edges (u, v , t, λ) in temporal order

– if t ≥ A[u] (u is already reached from x)

– current edge might be earliest path from x to v

– update A[v] = min (A[v], t + λ)

Linear time algorithm

169

Earliest-arrival Path

(Wu et al., 2014)

Subpath Optimality

If there exists an earliest arrival (s, z)-path, then there exist an earliest arrival (s, z)-path P such that
each prefix path of P is an earliest arrival path

▶ source vertex x , starting time ts

▶ array A of size |V | to record arrival times to each node

▶ A[x] = ts and A[v] = ∞, for nodes other than source

▶ process edges (u, v , t, λ) in temporal order

– if t ≥ A[u] (u is already reached from x)

– current edge might be earliest path from x to v

– update A[v] = min (A[v], t + λ)

Linear time algorithm

170

Earliest-arrival Path

(Wu et al., 2014)

Subpath Optimality

If there exists an earliest arrival (s, z)-path, then there exist an earliest arrival (s, z)-path P such that
each prefix path of P is an earliest arrival path

▶ source vertex x , starting time ts

▶ array A of size |V | to record arrival times to each node

▶ A[x] = ts and A[v] = ∞, for nodes other than source

▶ process edges (u, v , t, λ) in temporal order

– if t ≥ A[u] (u is already reached from x)

– current edge might be earliest path from x to v

– update A[v] = min (A[v], t + λ)

Linear time algorithm

171

Earliest-arrival Path

(Wu et al., 2014)

Subpath Optimality

If there exists an earliest arrival (s, z)-path, then there exist an earliest arrival (s, z)-path P such that
each prefix path of P is an earliest arrival path

▶ source vertex x , starting time ts

▶ array A of size |V | to record arrival times to each node

▶ A[x] = ts and A[v] = ∞, for nodes other than source

▶ process edges (u, v , t, λ) in temporal order

– if t ≥ A[u] (u is already reached from x)

– current edge might be earliest path from x to v

– update A[v] = min (A[v], t + λ)

Linear time algorithm

172

Earliest-arrival Path

(Wu et al., 2014)

Subpath Optimality

If there exists an earliest arrival (s, z)-path, then there exist an earliest arrival (s, z)-path P such that
each prefix path of P is an earliest arrival path

▶ source vertex x , starting time ts

▶ array A of size |V | to record arrival times to each node

▶ A[x] = ts and A[v] = ∞, for nodes other than source

▶ process edges (u, v , t, λ) in temporal order

– if t ≥ A[u] (u is already reached from x)

– current edge might be earliest path from x to v

– update A[v] = min (A[v], t + λ)

Linear time algorithm

173

Earliest-arrival Path

(Wu et al., 2014)

Subpath Optimality

If there exists an earliest arrival (s, z)-path, then there exist an earliest arrival (s, z)-path P such that
each prefix path of P is an earliest arrival path

▶ source vertex x , starting time ts

▶ array A of size |V | to record arrival times to each node

▶ A[x] = ts and A[v] = ∞, for nodes other than source

▶ process edges (u, v , t, λ) in temporal order

– if t ≥ A[u] (u is already reached from x)

– current edge might be earliest path from x to v

– update A[v] = min (A[v], t + λ)

Linear time algorithm

174

Latest-departure Path

(Wu et al., 2014)

▶ temporal graph G = (V ,E)

▶ sink vertex x , ending time ts

▶ same process as for earliest-arrival path, but

▶ process edges in reversed temporal order

▶ add new interaction to the path if it does not violate temporal order

175

Latest-departure Path

(Wu et al., 2014)

▶ temporal graph G = (V ,E)

▶ sink vertex x , ending time ts

▶ same process as for earliest-arrival path, but

▶ process edges in reversed temporal order

▶ add new interaction to the path if it does not violate temporal order

176

Latest-departure Path

(Wu et al., 2014)

▶ temporal graph G = (V ,E)

▶ sink vertex x , ending time ts

▶ same process as for earliest-arrival path, but

▶ process edges in reversed temporal order

▶ add new interaction to the path if it does not violate temporal order

177

Latest-departure Path

(Wu et al., 2014)

▶ temporal graph G = (V ,E)

▶ sink vertex x , ending time ts

▶ same process as for earliest-arrival path, but

▶ process edges in reversed temporal order

▶ add new interaction to the path if it does not violate temporal order

178

Dominating Path

(Wu et al., 2014)

▶ source vertex x and sink v

▶ for a path P1 arriving at v let (a, s), where

– a : time of arrival at v

– s : time of departure from x

▶ consider another path P2 arriving at v with (a′, s ′)

▶ if (s ′ > s and a′ ≤ a) or (s ′ = s and a′ < a)

– then path P2 dominates path P1

– because a′ − s ′ < a− s

▶ we can replace P1 with P2 and improve duration

179

Dominating Path

(Wu et al., 2014)

▶ source vertex x and sink v

▶ for a path P1 arriving at v let (a, s), where

– a : time of arrival at v

– s : time of departure from x

▶ consider another path P2 arriving at v with (a′, s ′)

▶ if (s ′ > s and a′ ≤ a) or (s ′ = s and a′ < a)

– then path P2 dominates path P1

– because a′ − s ′ < a− s

▶ we can replace P1 with P2 and improve duration

180

Dominating Path

(Wu et al., 2014)

▶ source vertex x and sink v

▶ for a path P1 arriving at v let (a, s), where

– a : time of arrival at v

– s : time of departure from x

▶ consider another path P2 arriving at v with (a′, s ′)

▶ if (s ′ > s and a′ ≤ a) or (s ′ = s and a′ < a)

– then path P2 dominates path P1

– because a′ − s ′ < a− s

▶ we can replace P1 with P2 and improve duration

181

Finding Optimal Path

Fastest Path (Wu et al., 2014)

▶ streaming algorithm can be adapted using dominating paths

– keep a list of non-dominated labels at each node

– when new edge arrives extend non-dominated path

Shortest and Minimum Hop Path

▶ similar to algorithm for fastest path

– but keep track of non-dominated path wrt to the

– transition times, or

– number of interactions, instead of the duration

Linear time algorithms in case of equal transition times

182

Finding Optimal Path

Fastest Path (Wu et al., 2014)

▶ streaming algorithm can be adapted using dominating paths

– keep a list of non-dominated labels at each node

– when new edge arrives extend non-dominated path

Shortest and Minimum Hop Path

▶ similar to algorithm for fastest path

– but keep track of non-dominated path wrt to the

– transition times, or

– number of interactions, instead of the duration

Linear time algorithms in case of equal transition times

183

Finding Optimal Path

Fastest Path (Wu et al., 2014)

▶ streaming algorithm can be adapted using dominating paths

– keep a list of non-dominated labels at each node

– when new edge arrives extend non-dominated path

Shortest and Minimum Hop Path

▶ similar to algorithm for fastest path

– but keep track of non-dominated path wrt to the

– transition times, or

– number of interactions, instead of the duration

Linear time algorithms in case of equal transition times

184

Finding Optimal Path

Fastest Path (Wu et al., 2014)

▶ streaming algorithm can be adapted using dominating paths

– keep a list of non-dominated labels at each node

– when new edge arrives extend non-dominated path

Shortest and Minimum Hop Path

▶ similar to algorithm for fastest path

– but keep track of non-dominated path wrt to the

– transition times, or

– number of interactions, instead of the duration

Linear time algorithms in case of equal transition times

185

Finding Optimal Path

Fastest Path (Wu et al., 2014)

▶ streaming algorithm can be adapted using dominating paths

– keep a list of non-dominated labels at each node

– when new edge arrives extend non-dominated path

Shortest and Minimum Hop Path

▶ similar to algorithm for fastest path

– but keep track of non-dominated path wrt to the

– transition times, or

– number of interactions, instead of the duration

Linear time algorithms in case of equal transition times

186

Finding Optimal Path

Fastest Path (Wu et al., 2014)

▶ streaming algorithm can be adapted using dominating paths

– keep a list of non-dominated labels at each node

– when new edge arrives extend non-dominated path

Shortest and Minimum Hop Path

▶ similar to algorithm for fastest path

– but keep track of non-dominated path wrt to the

– transition times, or

– number of interactions, instead of the duration

Linear time algorithms in case of equal transition times

187

Finding Optimal Path

Fastest Path (Wu et al., 2014)

▶ streaming algorithm can be adapted using dominating paths

– keep a list of non-dominated labels at each node

– when new edge arrives extend non-dominated path

Shortest and Minimum Hop Path

▶ similar to algorithm for fastest path

– but keep track of non-dominated path wrt to the

– transition times, or

– number of interactions, instead of the duration

Linear time algorithms in case of equal transition times

188

Restless Walks and Paths

▶ function β : V → R determines the maximum waiting time at each node

– motivation, e.g., spreading of disease

▶ finding restless temporal paths is NP-hard (Casteigts et al., 2021)

▶ finding restless temporal walks possible in O(|V |+ |E | log |E |) (Himmel et al., 2019)

▶ extended for colored restless path and reachability (Thejaswi et al., 2020)

189

Restless Walks and Paths

▶ function β : V → R determines the maximum waiting time at each node

– motivation, e.g., spreading of disease

▶ finding restless temporal paths is NP-hard (Casteigts et al., 2021)

▶ finding restless temporal walks possible in O(|V |+ |E | log |E |) (Himmel et al., 2019)

▶ extended for colored restless path and reachability (Thejaswi et al., 2020)

190

Restless Walks and Paths

▶ function β : V → R determines the maximum waiting time at each node

– motivation, e.g., spreading of disease

▶ finding restless temporal paths is NP-hard (Casteigts et al., 2021)

▶ finding restless temporal walks possible in O(|V |+ |E | log |E |) (Himmel et al., 2019)

▶ extended for colored restless path and reachability (Thejaswi et al., 2020)

191

Restless Walks and Paths

▶ function β : V → R determines the maximum waiting time at each node

– motivation, e.g., spreading of disease

▶ finding restless temporal paths is NP-hard (Casteigts et al., 2021)

▶ finding restless temporal walks possible in O(|V |+ |E | log |E |) (Himmel et al., 2019)

▶ extended for colored restless path and reachability (Thejaswi et al., 2020)

192

Restless Walks and Paths

▶ function β : V → R determines the maximum waiting time at each node

– motivation, e.g., spreading of disease

▶ finding restless temporal paths is NP-hard (Casteigts et al., 2021)

▶ finding restless temporal walks possible in O(|V |+ |E | log |E |) (Himmel et al., 2019)

▶ extended for colored restless path and reachability (Thejaswi et al., 2020)

193

Static Expansion of a Temporal Network

▶ transformation of a temporal network to a directed static network

– temporal paths in temporal network correspond to static paths in the directed static network

▶ how to create such a transformation?

1. create a copy of each node for each time instance

2. create a directed edge from the (t − 1)-th copy of u to
the t-th copy of u, for all nodes u, and all time instances t

3. create directed edges for the temporal edges

194

Static Expansion of a Temporal Network

▶ transformation of a temporal network to a directed static network

– temporal paths in temporal network correspond to static paths in the directed static network

▶ how to create such a transformation?

1. create a copy of each node for each time instance

2. create a directed edge from the (t − 1)-th copy of u to
the t-th copy of u, for all nodes u, and all time instances t

3. create directed edges for the temporal edges

195

Static Expansion of a Temporal Network

▶ transformation of a temporal network to a directed static network

– temporal paths in temporal network correspond to static paths in the directed static network

▶ how to create such a transformation?

1. create a copy of each node for each time instance

2. create a directed edge from the (t − 1)-th copy of u to
the t-th copy of u, for all nodes u, and all time instances t

3. create directed edges for the temporal edges

196

Static Expansion of a Temporal Network

▶ transformation of a temporal network to a directed static network

– temporal paths in temporal network correspond to static paths in the directed static network

▶ how to create such a transformation?

1. create a copy of each node for each time instance

2. create a directed edge from the (t − 1)-th copy of u to
the t-th copy of u, for all nodes u, and all time instances t

3. create directed edges for the temporal edges

197

Static Expansion Graphs
▶ Ve = {(v , t) | v ∈ V , t ∈ T}, where T is the set of all possible timestamps

▶ edges Ee : interactions between the temporal nodes Vt

a

b

c

d

t1 42 3 65 118 127 9 10 13

temporal graph with transition time 1

a

b

c

d

t1 42 3 65 118 12

(a,1)

(b,1)

(c,1)

(d,1)

(a,2) (a,3) (a,13)(a,12)(a,11)(a,8)(a,4) …... …...

(b,2)

(c,2)

(b,3)

…...

(b,13)

(c,13)

(d,13)

7 9 10 13

Problem: Size in number of time-steps Θ(|T | · |V |+ |E |)

198

Static Expansion Graphs
▶ Ve = {(v , t) | v ∈ V , t ∈ T}, where T is the set of all possible timestamps

▶ edges Ee : interactions between the temporal nodes Vt

a

b

c

d

t1 42 3 65 118 127 9 10 13

temporal graph with transition time 1

a

b

c

d

t1 42 3 65 118 12

(a,1)

(b,1)

(c,1)

(d,1)

(a,2) (a,3) (a,13)(a,12)(a,11)(a,8)(a,4) …... …...

(b,2)

(c,2)

(b,3)

…...

(b,13)

(c,13)

(d,13)

7 9 10 13

Problem: Size in number of time-steps Θ(|T | · |V |+ |E |)

199

Static Expansion Graphs
▶ Ve = {(v , t) | v ∈ V , t ∈ T (v)}, where T (v) is the set of times with activity at v

▶ edges Ee : interactions between the temporal nodes Vt

a

b

c

d

t1 42 3 65 118 127 9 10 13

temporal graph with transition time 1

a

b

c

d

t1 42 3 65 118 127 9 10 13

(a,1) (a,2)

(b,1) (b,2)

(c,2) (c,3)

(b,3)

(a,4) (a,5) (a,9)

(b,12)

(c,13)

(d,13)(d,5)

.....

.....

Size in number of edges O(|E |)

200

Static Expansion Graphs
▶ Ve = {(v , t) | v ∈ V , t ∈ T (v)}, where T (v) is the set of times with activity at v

▶ edges Ee : interactions between the temporal nodes Vt

a

b

c

d

t1 42 3 65 118 127 9 10 13

temporal graph with transition time 1

a

b

c

d

t1 42 3 65 118 127 9 10 13

(a,1) (a,2)

(b,1) (b,2)

(c,2) (c,3)

(b,3)

(a,4) (a,5) (a,9)

(b,12)

(c,13)

(d,13)(d,5)

.....

.....

Size in number of edges O(|E |)

201

Directed Line Graph

Temporal graph

a

b

c

d

e

f

g

1 3

2

3

3

4 5 2

5

Directed line graph

n2ac

n1ab n3bc n3cd

n3ce

n4de n5ef

n5eg

n2fg

▶ temporal walk in G of length ℓ+ 1 ⇔ walk of length ℓ in D(G)

▶ counting walks by matrix powers of adjacency matrix

▶ size in O(|E |2)

202

Static Representations

▶ static expansion graph and directed line graph are directed acyclic graphs
if edges have non-zero transition times

▶ standard graph algorithms (bfs, dfs, Dijkstra, Bellman-Ford) can be adopted for finding

– optimal temporal paths and temporal walks

▶ upstream, downstream reachability sets

203

Transportation Temporal Networks

(Kujala et al., 2018)

204

Pareto-optimal Journeys

(Kujala et al., 2018)

205

Pareto-optimal Journeys

Weighted Temporal Graph

▶ Additional edge costs
(u, v , t, λ, c) with c ∈ R

Bicriteria optimal paths

▶ solution: pair (duration, costs)

▶ non-stop: fast but expensive (2h, 200)

▶ via Munich: slow but cheap (4h, 100)

Bonn

Munich

Rome

(10 am, 2h, 200)

(10 am, 1h, 50)

(1 pm, 1h, 50)

Enumeration of temporal paths that are efficient wrt. duration and cost in polynomial delay and space
(Mutzel and Oettershagen, 2019)

206

Pareto-optimal Journeys

Weighted Temporal Graph

▶ Additional edge costs
(u, v , t, λ, c) with c ∈ R

Bicriteria optimal paths

▶ solution: pair (duration, costs)

▶ non-stop: fast but expensive (2h, 200)

▶ via Munich: slow but cheap (4h, 100)

Bonn

Munich

Rome

(10 am, 2h, 200)

(10 am, 1h, 50)

(1 pm, 1h, 50)

Enumeration of temporal paths that are efficient wrt. duration and cost in polynomial delay and space
(Mutzel and Oettershagen, 2019)

207

Temporal Graph Properties

▶ many static graph properties need to be adapted for temporal graphs to be meaningful

▶ local and global properties, often several variants with different focus

▶ diameter

– shortest latency of time-respecting paths over connected pairs (Chaintreau et al., 2007)

– restricted on connected pairs, as real data have many disconnected pairs

– the minimum integer d for which the duration between
– each pair of nodes u, v ∈ V is at most d (over all possible starting times) (Michail, 2016)

208

Temporal Graph Properties

▶ many static graph properties need to be adapted for temporal graphs to be meaningful

▶ local and global properties, often several variants with different focus

▶ diameter

– shortest latency of time-respecting paths over connected pairs (Chaintreau et al., 2007)

– restricted on connected pairs, as real data have many disconnected pairs

– the minimum integer d for which the duration between
– each pair of nodes u, v ∈ V is at most d (over all possible starting times) (Michail, 2016)

209

Temporal Network Efficiency

▶ network efficiency : the harmonic mean of durations (latency) over all pairs (Tang et al., 2009)

E (t1, t2) =
1

n(n − 1)

∑
u,v∈V

1

d(t1,t2)(u, v)

▶ application: robustness of network (Scellato et al., 2011)

drop in efficiency: at time t = 150, 20% of nodes are removed (sliding time window)

210

Burstiness

(Goh and Barabási, 2008)

▶ defined for sequence of inter-event times τ (of single node or pair of nodes, or global)

▶ measures deviation from memoryless random Poisson process

▶ defined as

B(τ) =
στ −mτ

στ +mτ
∈ [−1, 1],

where στ and mτ denote the standard deviation and mean of the inter-contact times τ

▶ (a) B(τ) = 0 ⇒ a Poisson distribution
(b) B(τ) = 1 ⇒ a maximally bursty sequence
(c) B(τ) = −1 ⇒ a periodic sequence

211

Burstiness

(Goh and Barabási, 2008)

▶ defined for sequence of inter-event times τ (of single node or pair of nodes, or global)

▶ measures deviation from memoryless random Poisson process

▶ defined as

B(τ) =
στ −mτ

στ +mτ
∈ [−1, 1],

where στ and mτ denote the standard deviation and mean of the inter-contact times τ

▶ (a) B(τ) = 0 ⇒ a Poisson distribution
(b) B(τ) = 1 ⇒ a maximally bursty sequence
(c) B(τ) = −1 ⇒ a periodic sequence

212

Topological Overlap

▶ quantifies the persistency of edges through time (Tang et al., 2010b)

▶ the topological overlap is defined as

Tto(G) =
1

n

∑
u∈V

1

T

T−1∑
t=1

∑
v∈N(u) ϕ

t
uvϕ

t+1
uv√∑

v∈N(u) ϕ
t
uv

∑
v∈N(u) ϕ

t+1
uv

∈ [0, 1],

where ϕt
uv = 1 iff. there exists a temporal edges between u and v at time t and zero otherwise

▶ value close to zero: many edges change between consecutive time steps

▶ value close to one: means there are often only a few changes.

213

Topological Overlap

▶ quantifies the persistency of edges through time (Tang et al., 2010b)

▶ the topological overlap is defined as

Tto(G) =
1

n

∑
u∈V

1

T

T−1∑
t=1

∑
v∈N(u) ϕ

t
uvϕ

t+1
uv√∑

v∈N(u) ϕ
t
uv

∑
v∈N(u) ϕ

t+1
uv

∈ [0, 1],

where ϕt
uv = 1 iff. there exists a temporal edges between u and v at time t and zero otherwise

▶ value close to zero: many edges change between consecutive time steps

▶ value close to one: means there are often only a few changes.

214

Topological Overlap

▶ quantifies the persistency of edges through time (Tang et al., 2010b)

▶ the topological overlap is defined as

Tto(G) =
1

n

∑
u∈V

1

T

T−1∑
t=1

∑
v∈N(u) ϕ

t
uvϕ

t+1
uv√∑

v∈N(u) ϕ
t
uv

∑
v∈N(u) ϕ

t+1
uv

∈ [0, 1],

where ϕt
uv = 1 iff. there exists a temporal edges between u and v at time t and zero otherwise

▶ value close to zero: many edges change between consecutive time steps

▶ value close to one: means there are often only a few changes.

215

Temporal Clustering Coefficient

▶ the temporal clustering coefficient of node u in time interval I is defined as (Tang et al., 2009)

CC (u, I) =

∑
t∈I πt(u)

|I |
(|N(u)|

2

) ,

where πt(u) = number of edges between neighbors of u at time t

▶ adaption of static clustering coefficient

▶ quantifies how close a nodes neighbors are to being a clique during time interval I

216

Temporal Clustering Coefficient

▶ human contact network at MIT campus using bluetooth scanning every 5 minutes

▶ global temporal clustering coefficient for each day

▶ higher during middle of the week and no clustering on holidays

(Tang et al., 2009)

217

Centrality Measures – Finding Important Nodes

218

Centrality Measures

Task

▶ assign to each node v ∈ V a centrality value c(v)

▶ the higher c(v) the more important is v

▶ many centrality measures on static graphs:
e.g., degree, closeness, betweenness, Katz centrality, PageRank, ...

Many important applications:

▶ identify key players, super spreaders, important persons, ...

▶ ranking web pages

▶ H-index used for ranking academics

219

Centrality Measures

Task

▶ assign to each node v ∈ V a centrality value c(v)

▶ the higher c(v) the more important is v

▶ many centrality measures on static graphs:
e.g., degree, closeness, betweenness, Katz centrality, PageRank, ...

Many important applications:

▶ identify key players, super spreaders, important persons, ...

▶ ranking web pages

▶ H-index used for ranking academics

220

Temporal Centrality Measures

▶ many common centrality measures are walk or path based

▶ classification in medial and radial (Borgatti and Everett, 2006)

radial: captures node influence over its neighbors

▶ count incoming or outgoing walks or paths

medial: captures node role as intermediary

▶ count walks or paths passing node

u

u

Common approach for temporal networks:

▶ replace path or walks with time-respecting paths or walks

221

Temporal Centrality Measures

▶ many common centrality measures are walk or path based

▶ classification in medial and radial (Borgatti and Everett, 2006)

radial: captures node influence over its neighbors

▶ count incoming or outgoing walks or paths

medial: captures node role as intermediary

▶ count walks or paths passing node

u

u

Common approach for temporal networks:

▶ replace path or walks with time-respecting paths or walks

222

Temporal Centrality Measures

▶ many common centrality measures are walk or path based

▶ classification in medial and radial (Borgatti and Everett, 2006)

radial: captures node influence over its neighbors

▶ count incoming or outgoing walks or paths

medial: captures node role as intermediary

▶ count walks or paths passing node

u

u

Common approach for temporal networks:

▶ replace path or walks with time-respecting paths or walks

223

Temporal Centrality

Name Type Use-case

temporal degree radial - identify nodes with high degree

temporal closeness radial paths identify nodes that can reach other nodes fast (or can be reached fast)

temporal pagerank radial walks adapts static pagerank to capture concept drift

temporal katz radial walks identify nodes with many incoming temporal walks

temporal H-index radial walks identification of super-spreaders

temporal betweenness medial paths identify nodes passed by many optimal temporal paths

temporal walk centrality medial walks identify nodes that can obtain and distribute information

▶ choosing the right centrality measure depends on use-case

▶ many further temporal centrality variants, e.g., temporal eigenvector, temporal gravity, etc.
(Hu et al., 2015; Rocha and Masuda, 2014; Tang et al., 2010a; Tsalouchidou et al., 2020; Bi
et al., 2021; Elmezain et al., 2021; Zaoli et al., 2019; Tao et al., 2022; Taylor et al., 2021;
Rozenshtein and Gionis, 2016) ...

224

Temporal Centrality

Name Type Use-case

temporal degree radial - identify nodes with high degree

temporal closeness radial paths identify nodes that can reach other nodes fast (or can be reached fast)

temporal pagerank radial walks adapts static pagerank to capture concept drift

temporal katz radial walks identify nodes with many incoming temporal walks

temporal H-index radial walks identification of super-spreaders

temporal betweenness medial paths identify nodes passed by many optimal temporal paths

temporal walk centrality medial walks identify nodes that can obtain and distribute information

▶ choosing the right centrality measure depends on use-case

▶ many further temporal centrality variants, e.g., temporal eigenvector, temporal gravity, etc.
(Hu et al., 2015; Rocha and Masuda, 2014; Tang et al., 2010a; Tsalouchidou et al., 2020; Bi
et al., 2021; Elmezain et al., 2021; Zaoli et al., 2019; Tao et al., 2022; Taylor et al., 2021;
Rozenshtein and Gionis, 2016) ...

225

From Static to Temporal Closeness

Static harmonic closeness:

Cc(u) =
∑

v∈V\{u}

1

ds(u, v)

▶ ds(u, v) is shortest path distance

▶ high centrality means short paths to many other nodes

▶ temporal: replace ds(u, v) with temporal distance

▶ several different variants
(Wu et al., 2014; Crescenzi et al., 2020; Tang et al., 2010a; Santoro et al., 2011; Gao et al., 2015)

226

Temporal Closeness

Harmonic temporal closeness for u ∈ V :

c(u) =
∑

v∈V\{u}

1

d(u, v)

d(u, v) is the minimum duration distance (i.e., arrival time - starting time).

Use case

▶ find nodes that spread information fast

Computation:

▶ call minimum duration streaming algorithm
(Wu et al., 2014) for each node

▶ lack of scalability
100

200

300

400

500

600

700

800

900

1000

1100

0 50000 100000 150000 200000 250000 300000 350000 400000

#
 P

e
rs

o
n
s

w
it

h
 t

h
e
 I
n
fo

rm
a
ti

o
n

Time step

Temporal closeness
Static closeness

Degree centrality
Random Avg.

(Oettershagen and Mutzel, 2022)

227

Temporal Closeness – Top-k Computation

Top-k closeness problem: find all nodes with one of the k topmost closeness values

Top-k closeness computation

▶ for each vertex u ∈ V
▶ run min. duration algorithm to compute d(u, v) for all v ∈ V

▶ if upper bound of c(u) is smaller than k-th largest value: stop computation early

(Oettershagen and Mutzel, 2022)

228

Temporal Closeness – Index

Problem: rank all nodes according to temporal closeness.

Indexing approach

▶ index to speed up minimum duration computation

▶ two phases: (i) indexing and (ii) query phase

(Oettershagen and Mutzel, 2023)

229

Temporal Closeness – Index

▶ Construction:
▶ construct k subgraphs {S1, . . . , Sk} = S
▶ find mapping f : V → S that assigns to each Sj ∈ S all vertices v ∈ V s.t. all edges reachable from v

are in f (v) = Sj

▶ minimize size maxS∈S{|S |}

a

c

b

d

e f

3

1

2
2

9

3

1
6

7

(a) G

a

c

b

d

e f

3

1

2
2

9

3

(b) S1

a

c

b

d

e f

9 1
6

7

(c) S2

Optimal assignment is NP-hard

230

Temporal Closeness – Index

Approximation ratio of greedy:
size(Greedy)

size(Opt)
≤ k

δ
,

with 1 ≤ δ ≤ k depending on the topology of the graph

Time complexity: O(nmk)

▶ n = |V | rounds, m = |E |
▶ each round determine Sj such that greedy choice is minimal in O(m) for j ∈ {1, . . . , k}

Shared memory parallelization: O(nmk
P) using P processors (CREW)

231

Temporal Closeness – Index

OOT—Out of time after 7 days. number of subgraphs k = 2048.

Data set |V | |E | Baseline Top-100 SubStream

Infectious 10 972 415 912 12.06 s 2.25 s 1.51 s
AskUbuntu 159 316 964 437 229.73 s 132.53 s 102.46 s
Prosper 89 269 3 394 978 1 665.20 s 260.87 s 109.33 s
Arxiv 28 093 4 596 803 630.60 s 398.50 s 286.86 s
Youtube 3 223 585 9 375 374 145.98 h 81.21 h 59.72 h
StackOverflow 2 464 606 17 823 525 OOT 107.66 h 86.49 h

▶ Baseline: Streaming algorithm (Wu et al., 2014)

▶ Top-100: Top-k algorithm with k = 100

▶ SubStream: Index based computation

232

Temporal Centrality

Name Type Use-case

temporal degree radial - identify nodes with high degree

temporal closeness radial paths identify nodes that can reach other nodes fast (or can be reached fast)

temporal pagerank radial walks adapts static pagerank to capture concept drift

temporal katz radial walks identify nodes with many incoming temporal walks

temporal H-index radial walks identification of super-spreaders

temporal betweenness medial paths identify nodes passed by many optimal temporal paths

temporal walk centrality medial walks identify nodes that can obtain and distribute information

▶ choosing the right centrality measure depends on use-case

▶ many further temporal centrality variants, e.g., temporal eigenvector, temporal gravity, etc.
(Hu et al., 2015; Rocha and Masuda, 2014; Tang et al., 2010a; Tsalouchidou et al., 2020; Bi
et al., 2021; Elmezain et al., 2021; Zaoli et al., 2019; Tao et al., 2022; Taylor et al., 2021;
Rozenshtein and Gionis, 2016) ...

233

Static H-Index

▶ the H-index was originally proposed by J. E. Hirsch 2005
→ measuring the productivity and impact of scientists

▶ the maximum value of h such that the author has published at least h papers that have each been
cited at least h times

paper ID citations counted in H-index

1 25 Yes
2 18 Yes
3 12 Yes
4 9 Yes
5 7 Yes

6 5 No
7 3 No

Recently used for quantifying spreading influence (Lü et al., 2016)

234

Static H-Index

▶ the H-index was originally proposed by J. E. Hirsch 2005
→ measuring the productivity and impact of scientists

▶ the maximum value of h such that the author has published at least h papers that have each been
cited at least h times

paper ID citations counted in H-index

1 25 Yes
2 18 Yes
3 12 Yes
4 9 Yes
5 7 Yes

6 5 No
7 3 No

Recently used for quantifying spreading influence (Lü et al., 2016)

235

Static H-Index

▶ H : M → N0 returns for a multiset of integers S ⊆ {{s | s ∈ N0}} the maximum integer i such that
there are at least i elements s in S with s ≥ i

n-th order H-index s
(n)
u of a node u in a static graph:

▶ let s
(0)
u = δ(u) the degree of node u, then

s(n)u = H
(
{{s(n−1)

v | v ∈ V and v is neighbor of u}}
)

▶ the value of s
(1)
u corresponds to the H-index of u

(Lü et al., 2016)

236

Static H-Index

▶ H : M → N0 returns for a multiset of integers S ⊆ {{s | s ∈ N0}} the maximum integer i such that
there are at least i elements s in S with s ≥ i

n-th order H-index s
(n)
u of a node u in a static graph:

▶ let s
(0)
u = δ(u) the degree of node u, then

s(n)u = H
(
{{s(n−1)

v | v ∈ V and v is neighbor of u}}
)

▶ the value of s
(1)
u corresponds to the H-index of u

(Lü et al., 2016)

237

n-th Order Temporal H-Index

▶ the multiset N (v , t) contains all pairs of nodes and times (w , tw) such that there is a temporal
edge from v to w leaving at time t ′ ≥ t and arriving at time tw

Definition

The n-th order temporal H-index of a node v ∈ V is defined as h
(n)
v = h

(n)
v ,0 with

h
(n)
v ,t = H

({{
h
(n−1)
w ,tw

∣∣∣ (w , tw) ∈ N (v , t)
}})

,

and h
(0)
v ,t = |N (v , t)|.

Computation:

▶ single-pass streaming algorithm for each node i-th order H-indices for 0 ≤ i ≤ n

▶ running time in O(|E |nδmax) and space in O(|V |nδmax)

(Oettershagen et al., 2023b)

238

n-th Order Temporal H-Index

▶ the multiset N (v , t) contains all pairs of nodes and times (w , tw) such that there is a temporal
edge from v to w leaving at time t ′ ≥ t and arriving at time tw

Definition

The n-th order temporal H-index of a node v ∈ V is defined as h
(n)
v = h

(n)
v ,0 with

h
(n)
v ,t = H

({{
h
(n−1)
w ,tw

∣∣∣ (w , tw) ∈ N (v , t)
}})

,

and h
(0)
v ,t = |N (v , t)|.

Computation:

▶ single-pass streaming algorithm for each node i-th order H-indices for 0 ≤ i ≤ n

▶ running time in O(|E |nδmax) and space in O(|V |nδmax)

(Oettershagen et al., 2023b)

239

n-th Order Temporal H-Index

▶ the multiset N (v , t) contains all pairs of nodes and times (w , tw) such that there is a temporal
edge from v to w leaving at time t ′ ≥ t and arriving at time tw

Definition

The n-th order temporal H-index of a node v ∈ V is defined as h
(n)
v = h

(n)
v ,0 with

h
(n)
v ,t = H

({{
h
(n−1)
w ,tw

∣∣∣ (w , tw) ∈ N (v , t)
}})

,

and h
(0)
v ,t = |N (v , t)|.

Computation:

▶ single-pass streaming algorithm for each node i-th order H-indices for 0 ≤ i ≤ n

▶ running time in O(|E |nδmax) and space in O(|V |nδmax)

(Oettershagen et al., 2023b)

240

n-th Order Temporal H-Index

(a) Temporal network G.

Depth:
0

1

2

3

4

5

f ,0

d,2 e,2 h,2 g ,2

e,3 a,6g ,5 d,3 h,4 e,4 i,6 j,6 g ,5 c,5 d,5 h,5

(b) The reachability tree Γ(f) for vertex f in the temporal network
shown in (a).

h
(1)
f ,0 = H({{h(0)d,2, h

(0)
e,2, h

(0)
h,2, h

(0)
g ,2}}) = H({{3, 2, 4, 3}}) = 3

241

n-th Order Temporal H-Index

(a) Temporal network G.

Depth:
0

1

2

3

4

5

f ,0

d,2 e,2 h,2 g ,2

e,3 a,6g ,5 d,3 h,4 e,4 i,6 j,6 g ,5 c,5 d,5 h,5

h,4 b,7 a,6g ,5 j,7 i,7 b,7 a,6 i,6 j,6

i,6 j,6 b,7 b,7 j,7 i,7

j,7 i,7

j,6i,6

i,7j,7g ,5

g ,5

(b) The reachability tree Γ(f) for vertex f in the temporal network
shown in (a).

h
(2)
f ,0 =

H({{h(1)d,2, h
(1)
e,2, h

(1)
h,2, h

(1)
g ,2}})

= H({{H({{h(0)g ,5, h
(0)
e,3, h

(0)
a,6}}),H({{h(0)d,3, h

(0)
h,4}}),H({{h(0)e,4, h

(0)
i,6 , h

(0)
j,6 , h

(0)
g ,5}}),H({{h(0)c,5, h

(0)
d,5, h

(0)
h,5}})}})

= H({{H({{0, 1, 1}}),H({{2, 3}}),H({{0, 1, 1, 0}}),H({{1, 1, 2}})}}) = H({{1, 2, 1, 1}}) = 1

242

n-th Order Temporal H-Index

(a) Temporal network G.

Depth:
0

1

2

3

4

5

f ,0

d,2 e,2 h,2 g ,2

e,3 a,6g ,5 d,3 h,4 e,4 i,6 j,6 g ,5 c,5 d,5 h,5

h,4 b,7 a,6g ,5 j,7 i,7 b,7 a,6 i,6 j,6

i,6 j,6 b,7 b,7 j,7 i,7

j,7 i,7

j,6i,6

i,7j,7g ,5

g ,5

(b) The reachability tree Γ(f) for vertex f in the temporal network
shown in (a).

h
(2)
f ,0 = H({{h(1)d,2, h

(1)
e,2, h

(1)
h,2, h

(1)
g ,2}})

= H({{H({{h(0)g ,5, h
(0)
e,3, h

(0)
a,6}}),H({{h(0)d,3, h

(0)
h,4}}),H({{h(0)e,4, h

(0)
i,6 , h

(0)
j,6 , h

(0)
g ,5}}),H({{h(0)c,5, h

(0)
d,5, h

(0)
h,5}})}})

= H({{H({{0, 1, 1}}),H({{2, 3}}),H({{0, 1, 1, 0}}),H({{1, 1, 2}})}}) = H({{1, 2, 1, 1}}) = 1

243

n-th Order Temporal H-Index

(a) Temporal network G.

Depth:
0

1

2

3

4

5

f ,0

d,2 e,2 h,2 g ,2

e,3 a,6g ,5 d,3 h,4 e,4 i,6 j,6 g ,5 c,5 d,5 h,5

h,4 b,7 a,6g ,5 j,7 i,7 b,7 a,6 i,6 j,6

i,6 j,6 b,7 b,7 j,7 i,7

j,7 i,7

j,6i,6

i,7j,7g ,5

g ,5

(b) The reachability tree Γ(f) for vertex f in the temporal network
shown in (a).

h
(2)
f ,0 = H({{h(1)d,2, h

(1)
e,2, h

(1)
h,2, h

(1)
g ,2}})

= H({{H({{h(0)g ,5, h
(0)
e,3, h

(0)
a,6}}),H({{h(0)d,3, h

(0)
h,4}}),H({{h(0)e,4, h

(0)
i,6 , h

(0)
j,6 , h

(0)
g ,5}}),H({{h(0)c,5, h

(0)
d,5, h

(0)
h,5}})}})

= H({{H({{0, 1, 1}}),H({{2, 3}}),H({{0, 1, 1, 0}}),H({{1, 1, 2}})}}) = H({{1, 2, 1, 1}}) = 1

244

n-th Order Temporal H-Index

(a) Temporal network G.

Depth:
0

1

2

3

4

5

f ,0

d,2 e,2 h,2 g ,2

e,3 a,6g ,5 d,3 h,4 e,4 i,6 j,6 g ,5 c,5 d,5 h,5

h,4 b,7 a,6g ,5 j,7 i,7 b,7 a,6 i,6 j,6

i,6 j,6 b,7 b,7 j,7 i,7

j,7 i,7

j,6i,6

i,7j,7g ,5

g ,5

(b) The reachability tree Γ(f) for vertex f in the temporal network
shown in (a).

h
(2)
f ,0 = H({{h(1)d,2, h

(1)
e,2, h

(1)
h,2, h

(1)
g ,2}})

= H({{H({{h(0)g ,5, h
(0)
e,3, h

(0)
a,6}}),H({{h(0)d,3, h

(0)
h,4}}),H({{h(0)e,4, h

(0)
i,6 , h

(0)
j,6 , h

(0)
g ,5}}),H({{h(0)c,5, h

(0)
d,5, h

(0)
h,5}})}})

= H({{H({{0, 1, 1}}),H({{2, 3}}),H({{0, 1, 1, 0}}),H({{1, 1, 2}})}})

= H({{1, 2, 1, 1}}) = 1

245

n-th Order Temporal H-Index

(a) Temporal network G.

Depth:
0

1

2

3

4

5

f ,0

d,2 e,2 h,2 g ,2

e,3 a,6g ,5 d,3 h,4 e,4 i,6 j,6 g ,5 c,5 d,5 h,5

h,4 b,7 a,6g ,5 j,7 i,7 b,7 a,6 i,6 j,6

i,6 j,6 b,7 b,7 j,7 i,7

j,7 i,7

j,6i,6

i,7j,7g ,5

g ,5

(b) The reachability tree Γ(f) for vertex f in the temporal network
shown in (a).

h
(2)
f ,0 = H({{h(1)d,2, h

(1)
e,2, h

(1)
h,2, h

(1)
g ,2}})

= H({{H({{h(0)g ,5, h
(0)
e,3, h

(0)
a,6}}),H({{h(0)d,3, h

(0)
h,4}}),H({{h(0)e,4, h

(0)
i,6 , h

(0)
j,6 , h

(0)
g ,5}}),H({{h(0)c,5, h

(0)
d,5, h

(0)
h,5}})}})

= H({{H({{0, 1, 1}}),H({{2, 3}}),H({{0, 1, 1, 0}}),H({{1, 1, 2}})}}) = H({{1, 2, 1, 1}}) = 1

246

n-th Order Temporal H-Index

Use Case: Influential spreader identification

▶ computed for different infection probabilities β the mean node influence Ru over 1000 independent
SIR simulations leading to the SIR node rankings

▶ compared the SIR rankings with those obtained by the centrality measures using the Kendall τb
rank correlation measure0.2 0.4 0.6 0.8

0.4

0.6

Thi (n=32)

Thi (n=64)

Degree

Static H-index

Static K-core

Temp. Closeness

Temp. Walk Centrality

Gravity Centrality

Local Gravity Centrality

Coreness+

0.2 0.4 0.6 0.8
β

0.45

0.50

0.55

0.60

τ b

(a) Malawi

0.2 0.4 0.6 0.8
β

0.55

0.60

0.65

0.70
τ b

(b) FacebookMsg

0.2 0.4 0.6 0.8
β

0.4

0.6

τ b

(c) Email

247

Temporal Centrality

Name Type Use-case

temporal degree radial - identify nodes with high degree

temporal closeness radial paths identify nodes that can reach other nodes fast (or can be reached fast)

temporal pagerank radial walks adapts static pagerank to capture concept drift

temporal katz radial walks identify nodes with many incoming temporal walks

temporal H-index radial walks identification of super-spreaders

temporal betweenness medial paths identify nodes passed by many optimal temporal paths

temporal walk centrality medial walks identify nodes that can obtain and distribute information

▶ choosing the right centrality measure depends on use-case

▶ many further temporal centrality variants, e.g., temporal eigenvector, temporal gravity, etc.
(Hu et al., 2015; Rocha and Masuda, 2014; Tang et al., 2010a; Tsalouchidou et al., 2020; Bi
et al., 2021; Elmezain et al., 2021; Zaoli et al., 2019; Tao et al., 2022; Taylor et al., 2021;
Rozenshtein and Gionis, 2016) ...

248

Betweenness Centrality

▶ node importance of u ∈ V in terms of number of optimal paths visiting u

B(u) =
∑

s ̸=u ̸=z∈V

σs,z(u)

σs,z

– σs,z number of shortest s, z-paths

– σs,z(u) number of shortest s, z-paths visiting u

▶ Brandes’ algorithm: iteratively calculates the shortest paths using dynamic programming,
efficiently updating centrality scores

▶ idea: replace shortest paths with optimal temporal paths (Kim and Anderson, 2012)

▶ computing betweenness values is at least as hard as counting optimal paths

249

Betweenness Centrality

▶ node importance of u ∈ V in terms of number of optimal paths visiting u

B(u) =
∑

s ̸=u ̸=z∈V

σs,z(u)

σs,z

– σs,z number of shortest s, z-paths

– σs,z(u) number of shortest s, z-paths visiting u

▶ Brandes’ algorithm: iteratively calculates the shortest paths using dynamic programming,
efficiently updating centrality scores

▶ idea: replace shortest paths with optimal temporal paths (Kim and Anderson, 2012)

▶ computing betweenness values is at least as hard as counting optimal paths

250

Betweenness Centrality

▶ node importance of u ∈ V in terms of number of optimal paths visiting u

B(u) =
∑

s ̸=u ̸=z∈V

σs,z(u)

σs,z

– σs,z number of shortest s, z-paths

– σs,z(u) number of shortest s, z-paths visiting u

▶ Brandes’ algorithm: iteratively calculates the shortest paths using dynamic programming,
efficiently updating centrality scores

▶ idea: replace shortest paths with optimal temporal paths (Kim and Anderson, 2012)

▶ computing betweenness values is at least as hard as counting optimal paths

251

Betweenness Centrality

▶ node importance of u ∈ V in terms of number of optimal paths visiting u

B(u) =
∑

s ̸=u ̸=z∈V

σs,z(u)

σs,z

– σs,z number of shortest s, z-paths

– σs,z(u) number of shortest s, z-paths visiting u

▶ Brandes’ algorithm: iteratively calculates the shortest paths using dynamic programming,
efficiently updating centrality scores

▶ idea: replace shortest paths with optimal temporal paths (Kim and Anderson, 2012)

▶ computing betweenness values is at least as hard as counting optimal paths

252

Temporal Betweenness

Overview over the complexity of computing temporal betweenness centrality

path type strict non-strict

min.-hop O(n3 · T 2) O(n3 · T 2)

earliest arrival #P-hard #P-hard

fastest #P-hard #P-hard

prefix-earliest arrival O(n ·m · logm) #P-hard

min.-hop earliest arrival O(n3 · T 2) O(n3 · T 2)

Prefix-earliest arrival: every prefix of the temporal path is an earliest arrival path

▶ computation using adapted Brandes’ algorithm (Buß et al., 2020)

253

Temporal Betweenness

▶ more possible temporal walks and path types (Rymar et al., 2021)

– characterization of properties such that path are efficient countable

▶ approximation algorithms (Santoro and Sarpe, 2022; Cruciani, 2023)

– sampling-based approximations for different kinds of temporal path types

▶ comparison of different proxies for temporal betweenness (Becker et al., 2023)

– replacing global centrality with local pass-through-degree

254

Temporal Betweenness

▶ more possible temporal walks and path types (Rymar et al., 2021)

– characterization of properties such that path are efficient countable

▶ approximation algorithms (Santoro and Sarpe, 2022; Cruciani, 2023)

– sampling-based approximations for different kinds of temporal path types

▶ comparison of different proxies for temporal betweenness (Becker et al., 2023)

– replacing global centrality with local pass-through-degree

255

Temporal Betweenness

▶ more possible temporal walks and path types (Rymar et al., 2021)

– characterization of properties such that path are efficient countable

▶ approximation algorithms (Santoro and Sarpe, 2022; Cruciani, 2023)

– sampling-based approximations for different kinds of temporal path types

▶ comparison of different proxies for temporal betweenness (Becker et al., 2023)

– replacing global centrality with local pass-through-degree

256

Temporal Centrality

Name Type Use-case

temporal degree radial - identify nodes with high degree

temporal closeness radial paths identify nodes that can reach other nodes fast (or can be reached fast)

temporal pagerank radial walks adapts static pagerank to capture concept drift

temporal katz radial walks identify nodes with many incoming temporal walks

temporal H-index radial walks identification of super-spreaders

temporal betweenness medial paths identify nodes passed by many optimal temporal paths

temporal walk centrality medial walks identify nodes that can obtain and distribute information

▶ choosing the right centrality measure depends on use-case

▶ many further temporal centrality variants, e.g., temporal eigenvector, temporal gravity, etc.
(Hu et al., 2015; Rocha and Masuda, 2014; Tang et al., 2010a; Tsalouchidou et al., 2020; Bi
et al., 2021; Elmezain et al., 2021; Zaoli et al., 2019; Tao et al., 2022; Taylor et al., 2021;
Rozenshtein and Gionis, 2016) ...

257

Temporal Walk Centrality

▶ let Yin(u, t) and Yout(u, t) be the sets of incoming and outgoing temporal walks, resp.,
at node u and time t.

▶ for weighting functions τΦin and τΦout , define

Win(u, t) =
∑

ω∈Yin(u,t)

τΦin(ω) and Wout(u, t) =
∑

ω∈Yout(u,t)

τΦout (ω)

Temporal Walk Centrality

The temporal walk centrality of a vertex u ∈ V is

C (u) =
∑

t1,t2∈T (G),t1≤t2

(Win(u, t1) · Wout(u, t2) · Φm(t1, t2)) .

Captures a nodes ability to obtain and pass on information

258

Temporal Walk Centrality

▶ let Yin(u, t) and Yout(u, t) be the sets of incoming and outgoing temporal walks, resp.,
at node u and time t.

▶ for weighting functions τΦin and τΦout , define

Win(u, t) =
∑

ω∈Yin(u,t)

τΦin(ω) and Wout(u, t) =
∑

ω∈Yout(u,t)

τΦout (ω)

Temporal Walk Centrality

The temporal walk centrality of a vertex u ∈ V is

C (u) =
∑

t1,t2∈T (G),t1≤t2

(Win(u, t1) · Wout(u, t2) · Φm(t1, t2)) .

Captures a nodes ability to obtain and pass on information

259

Temporal Walk Centrality

▶ let Yin(u, t) and Yout(u, t) be the sets of incoming and outgoing temporal walks, resp.,
at node u and time t.

▶ for weighting functions τΦin and τΦout , define

Win(u, t) =
∑

ω∈Yin(u,t)

τΦin(ω) and Wout(u, t) =
∑

ω∈Yout(u,t)

τΦout (ω)

Temporal Walk Centrality

The temporal walk centrality of a vertex u ∈ V is

C (u) =
∑

t1,t2∈T (G),t1≤t2

(Win(u, t1) · Wout(u, t2) · Φm(t1, t2)) .

Captures a nodes ability to obtain and pass on information

260

Temporal Walk Centrality

▶ let Yin(u, t) and Yout(u, t) be the sets of incoming and outgoing temporal walks, resp.,
at node u and time t.

▶ for weighting functions τΦin and τΦout , define

Win(u, t) =
∑

ω∈Yin(u,t)

τΦin(ω) and Wout(u, t) =
∑

ω∈Yout(u,t)

τΦout (ω)

Temporal Walk Centrality

The temporal walk centrality of a vertex u ∈ V is

C (u) =
∑

t1,t2∈T (G),t1≤t2

(Win(u, t1) · Wout(u, t2) · Φm(t1, t2)) .

Captures a nodes ability to obtain and pass on information

261

Temporal Walk Centrality

a

b

c

d

e

f

g

1 3

2

3

3

4 5 2

5

Directed line graph

n2ac

n1ab n3bc n3cd

n3ce

n4de n5ef

n5eg

n2fg

▶ temporal walk in G of length ℓ+ 1 ⇔ walk of length ℓ in D(G)

▶ walks can be computed by matrix powers: Neumann series and the identity
∑∞

ℓ=0 Aℓ = (I − A)−1

holds if the sum converges—guaranteed when largest absolute eigenvalue less than one

▶ computation in O(|E |2.373) using matrix inversion

▶ approximation with power iteration in O(k(|E |2))

262

Temporal Walk Centrality

a

b

c

d

e

f

g

1 3

2

3

3

4 5 2

5

Directed line graph

n2ac

n1ab n3bc n3cd

n3ce

n4de n5ef

n5eg

n2fg

▶ temporal walk in G of length ℓ+ 1 ⇔ walk of length ℓ in D(G)

▶ walks can be computed by matrix powers: Neumann series and the identity
∑∞

ℓ=0 Aℓ = (I − A)−1

holds if the sum converges—guaranteed when largest absolute eigenvalue less than one

▶ computation in O(|E |2.373) using matrix inversion

▶ approximation with power iteration in O(k(|E |2))

263

Temporal Walk Centrality

a

b

c

d

e

f

g

1 3

2

3

3

4 5 2

5

Directed line graph

n2ac

n1ab n3bc n3cd

n3ce

n4de n5ef

n5eg

n2fg

▶ temporal walk in G of length ℓ+ 1 ⇔ walk of length ℓ in D(G)

▶ walks can be computed by matrix powers: Neumann series and the identity
∑∞

ℓ=0 Aℓ = (I − A)−1

holds if the sum converges—guaranteed when largest absolute eigenvalue less than one

▶ computation in O(|E |2.373) using matrix inversion

▶ approximation with power iteration in O(k(|E |2))

264

Temporal Walk Centrality

Two-Pass Streaming Algorithm

▶ input: edge sequence in chronological order, ties broken arbitrarily

▶ forward pass for computing incoming walks for Win

▶ backward pass for computing outgoing walks for Wout

▶ running time O(|E | · τmax)

▶ τmax the largest cardinality of availability or arrival times at a node

265

Temporal Walk Centrality

0

1

2

3

4

5

6

7

8

9

10

11

121314

15
16

17

18

19

20
21

22

23
24

25

26

27

28 29

30

31

32

33

34

35

36

37

(a) temporal walk centr.

0

1

2

3

4

5

6

7

8

9

10

11

121314

15
16

17

18

19

20
21

22

23
24

25

26

27

28 29

30

31

32

33

34

35

36

37

(b) temporal between.

0

1

2

3

4

5

6

7

8

9

10

11

121314

15
16

17

18

19

20
21

22

23
24

25

26

27

28 29

30

31

32

33

34

35

36

37

(c) static walk between.

▶ enron email subgraph: of 38 nodes and 541 temporal edges.

▶ colors represent centrality value: darker → higher centrality.

266

Temporal Centrality

▶ Temporal closeness

– many different variants

– intuitive, several approaches for improving computation times

▶ Temporal H-index

– non-intuitive definition

– able to capture the spreading capabilities well, efficient

▶ Temporal betweenness

– not scalable and many variants hard to compute

– intuitive, several approaches for improving computation times

▶ Temporal walk centrality

– no ranking of sinks or sources

– intuitive and efficient

▶ choosing the right centrality measure depends on data and use-case

267

Temporal Centrality

▶ Temporal closeness

– many different variants

– intuitive, several approaches for improving computation times

▶ Temporal H-index

– non-intuitive definition

– able to capture the spreading capabilities well, efficient

▶ Temporal betweenness

– not scalable and many variants hard to compute

– intuitive, several approaches for improving computation times

▶ Temporal walk centrality

– no ranking of sinks or sources

– intuitive and efficient

▶ choosing the right centrality measure depends on data and use-case

268

Temporal Centrality

▶ Temporal closeness

– many different variants

– intuitive, several approaches for improving computation times

▶ Temporal H-index

– non-intuitive definition

– able to capture the spreading capabilities well, efficient

▶ Temporal betweenness

– not scalable and many variants hard to compute

– intuitive, several approaches for improving computation times

▶ Temporal walk centrality

– no ranking of sinks or sources

– intuitive and efficient

▶ choosing the right centrality measure depends on data and use-case

269

Temporal Centrality

▶ Temporal closeness

– many different variants

– intuitive, several approaches for improving computation times

▶ Temporal H-index

– non-intuitive definition

– able to capture the spreading capabilities well, efficient

▶ Temporal betweenness

– not scalable and many variants hard to compute

– intuitive, several approaches for improving computation times

▶ Temporal walk centrality

– no ranking of sinks or sources

– intuitive and efficient

▶ choosing the right centrality measure depends on data and use-case

270

Temporal Centrality

▶ Temporal closeness

– many different variants

– intuitive, several approaches for improving computation times

▶ Temporal H-index

– non-intuitive definition

– able to capture the spreading capabilities well, efficient

▶ Temporal betweenness

– not scalable and many variants hard to compute

– intuitive, several approaches for improving computation times

▶ Temporal walk centrality

– no ranking of sinks or sources

– intuitive and efficient

▶ choosing the right centrality measure depends on data and use-case

271

Temporal Core Decompositions

272

k-Core Decomposition

▶ k-core is a max. subgraph Gk of G , s.t. every node in Gk has at least k neighbors in Gk

▶ node u has core number c(u) = k if u belongs to a k-core but not the k + 1-core

(Seidman, 1983; Kong et al., 2019)

273

Applications

▶ identifying communities and dense graphs in
social networks

▶ anomaly detection

▶ network visualization

▶ analyzing backbone structure of the internet

▶ network resilience and robustness

▶ study of spreading processes

▶ analyzing functional brain networks

(Malliaros et al., 2020; Kong et al., 2019)

274

Applications

▶ identifying communities and dense graphs in
social networks

▶ anomaly detection

▶ network visualization

▶ analyzing backbone structure of the internet

▶ network resilience and robustness

▶ study of spreading processes

▶ analyzing functional brain networks

(Malliaros et al., 2020; Kong et al., 2019)

275

Applications

▶ identifying communities and dense graphs in
social networks

▶ anomaly detection

▶ network visualization

▶ analyzing backbone structure of the internet

▶ network resilience and robustness

▶ study of spreading processes

▶ analyzing functional brain networks

(Malliaros et al., 2020; Kong et al., 2019)

276

Applications

▶ identifying communities and dense graphs in
social networks

▶ anomaly detection

▶ network visualization

▶ analyzing backbone structure of the internet

▶ network resilience and robustness

▶ study of spreading processes

▶ analyzing functional brain networks

(Malliaros et al., 2020; Kong et al., 2019)

277

Applications

▶ identifying communities and dense graphs in
social networks

▶ anomaly detection

▶ network visualization

▶ analyzing backbone structure of the internet

▶ network resilience and robustness

▶ study of spreading processes

▶ analyzing functional brain networks

(Malliaros et al., 2020; Kong et al., 2019)

278

Applications

▶ identifying communities and dense graphs in
social networks

▶ anomaly detection

▶ network visualization

▶ analyzing backbone structure of the internet

▶ network resilience and robustness

▶ study of spreading processes

▶ analyzing functional brain networks

(Malliaros et al., 2020; Kong et al., 2019)

279

Applications

▶ identifying communities and dense graphs in
social networks

▶ anomaly detection

▶ network visualization

▶ analyzing backbone structure of the internet

▶ network resilience and robustness

▶ study of spreading processes

▶ analyzing functional brain networks

(Malliaros et al., 2020; Kong et al., 2019)

280

Temporal k-Core Decompositions

Variant Ref. Running Time Description

Historical k-core (Yu et al., 2021) O(logm +mI) static cores spanning fixed interval I

Time-range k-core (Yang et al., 2023) O(logm + |I | ·mI) static cores in fixed interval

(k , h)-core (Wu et al., 2015) O(n +m) parallel temporal edges

Span-core (Galimberti et al., 2020) O(|T |2 ·m) cores spanning intervals

(k,∆)-core (Oettershagen et al., 2023a) O(m · δm) based on temporal edge degree

▶ more variants available (Lotito and Montresor, 2020; Hung and Tseng, 2021; Qin et al., 2022,
2020; Li et al., 2018; Oettershagen et al., 2023b) ...

▶ choosing the right one depends on available data and application

281

Historical and Time-Range k-Cores

▶ definitions based on time window graph

– static, aggregated graph for time window I

▶ historical: find a static at least k-core in time window graph for given time interval I

▶ time-range: find all distinct at least k-cores in all possible time windows in time interval I

(Yu et al., 2021; Yang et al., 2023)

282

Historical and Time-Range k-Cores

6-cores of Prof. Jiawei Han’s ego network on the DBLP snapshots

▶ straight-forward computation: restrict to interval (or subintervals)

▶ index-based solution to support the k-core query for every possible time window and integer k

(Yu et al., 2021; Yang et al., 2023)

283

(k , h)-Cores

Definition

(k , h)-core is the largest subgraph H such that every v in H must have at least k neighbors in H,
where each such neighbor must be connected to v with at least h temporal edges

▶ can be interpreted as core decomposition for multi(-layer) graphs

a

c

b

d

e f

3

1

2
2

9

31

1

1

1

6

(a) Temporal graph G

a

c

b

d

e f

1

1

1

(b) Underlying multi graph

▶ nodes {a, b, c , d} induce a
(2, 2)-core

(Wu et al., 2015)

284

Span-Cores

Definition

▶ the (k,∆)-core is a maximal set of vertices C such that C is a k-core over the complete span of
time interval ∆ (each edge of the core exists in each time step in ∆)

▶ a span-core is maximal if no other span-core dominates it in k or ∆

Applications:

▶ community search

▶ identify temporal patterns

▶ anomaly detection

▶ graph embedding and vertex classification

▶ containing or maximizing spreading

(Galimberti et al., 2020; Ciaperoni et al., 2020)

285

Span-Cores

Definition

▶ the (k,∆)-core is a maximal set of vertices C such that C is a k-core over the complete span of
time interval ∆ (each edge of the core exists in each time step in ∆)

▶ a span-core is maximal if no other span-core dominates it in k or ∆

Applications:

▶ community search

▶ identify temporal patterns

▶ anomaly detection

▶ graph embedding and vertex classification

▶ containing or maximizing spreading

(Galimberti et al., 2020; Ciaperoni et al., 2020)

286

Span-Cores

Definition

▶ the (k,∆)-core is a maximal set of vertices C such that C is a k-core over the complete span of
time interval ∆ (each edge of the core exists in each time step in ∆)

▶ a span-core is maximal if no other span-core dominates it in k or ∆

Applications:

▶ community search

▶ identify temporal patterns

▶ anomaly detection

▶ graph embedding and vertex classification

▶ containing or maximizing spreading

(Galimberti et al., 2020; Ciaperoni et al., 2020)

287

Span-Cores

Definition

▶ the (k,∆)-core is a maximal set of vertices C such that C is a k-core over the complete span of
time interval ∆ (each edge of the core exists in each time step in ∆)

▶ a span-core is maximal if no other span-core dominates it in k or ∆

Applications:

▶ community search

▶ identify temporal patterns

▶ anomaly detection

▶ graph embedding and vertex classification

▶ containing or maximizing spreading

(Galimberti et al., 2020; Ciaperoni et al., 2020)

288

Span-Cores

Definition

▶ the (k,∆)-core is a maximal set of vertices C such that C is a k-core over the complete span of
time interval ∆ (each edge of the core exists in each time step in ∆)

▶ a span-core is maximal if no other span-core dominates it in k or ∆

Applications:

▶ community search

▶ identify temporal patterns

▶ anomaly detection

▶ graph embedding and vertex classification

▶ containing or maximizing spreading

(Galimberti et al., 2020; Ciaperoni et al., 2020)

289

Span-Cores

Definition

▶ the (k,∆)-core is a maximal set of vertices C such that C is a k-core over the complete span of
time interval ∆ (each edge of the core exists in each time step in ∆)

▶ a span-core is maximal if no other span-core dominates it in k or ∆

Applications:

▶ community search

▶ identify temporal patterns

▶ anomaly detection

▶ graph embedding and vertex classification

▶ containing or maximizing spreading

(Galimberti et al., 2020; Ciaperoni et al., 2020)

290

Span-Cores

Application: Temporal pattern identification

▶ temporal activity of a high school day

▶ span-core decomposition detects time-evolving cohesive substructures

▶ these completely disappear in the reshuffled data set

(Galimberti et al., 2020)

291

Span-Cores

Application: Temporal pattern identification

▶ temporal activity of a high school day

▶ span-core decomposition detects time-evolving cohesive substructures

▶ these completely disappear in the reshuffled data set

(Galimberti et al., 2020)

292

Span-Cores

Application: Temporal pattern identification

▶ temporal activity of a high school day

▶ span-core decomposition detects time-evolving cohesive substructures

▶ these completely disappear in the reshuffled data set

(Galimberti et al., 2020)

293

(k ,∆)-cores

Definition

▶ ∆-degree of an edge is the minimum number of edges incident to one of its endpoints that have
a temporal distance of at most ∆

▶ the (k,∆)-core is the inclusion-maximal edge-induced subgraph C(k,∆) of G such that each
temporal edge e = ({u, v}, t) in C(k,∆) has at least a ∆-degree of d∆(e) ≥ k + 1.

▶ each edge in a (k,∆)-core is at both ends incident to at least k + 1 edges in the core with
temporal distance at most ∆ (Oettershagen et al., 2023a)

294

(k ,∆)-cores

Definition

▶ ∆-degree of an edge is the minimum number of edges incident to one of its endpoints that have
a temporal distance of at most ∆

▶ the (k,∆)-core is the inclusion-maximal edge-induced subgraph C(k,∆) of G such that each
temporal edge e = ({u, v}, t) in C(k,∆) has at least a ∆-degree of d∆(e) ≥ k + 1.

▶ each edge in a (k,∆)-core is at both ends incident to at least k + 1 edges in the core with
temporal distance at most ∆ (Oettershagen et al., 2023a)

295

(k ,∆)-cores

Application:

▶ analyzing malicious retweets in the Twitter network

▶ the most inner cores only contain misinformation for ∆ = 1 hour

0 20 40 60 80 100 120
k

101

103

105

No
de

s/
 #

 E
dg

es
 Misinformation only

Nodes
Edges

296

Temporal k-Core Decompositions

▶ Historical and time range k-core

– based on time window graphs but efficient

▶ (k, h)-core

– considers only multilayer graph, also efficient

▶ Span-core

– needs dense sequence of static graphs, also not very scalable

– shown to be useful in wide range of applications

▶ (k,∆)-core

– can handle fine-grained data and efficient

▶ choosing the right one depends on available data and application

297

Temporal k-Core Decompositions

▶ Historical and time range k-core

– based on time window graphs but efficient

▶ (k, h)-core

– considers only multilayer graph, also efficient

▶ Span-core

– needs dense sequence of static graphs, also not very scalable

– shown to be useful in wide range of applications

▶ (k,∆)-core

– can handle fine-grained data and efficient

▶ choosing the right one depends on available data and application

298

Temporal k-Core Decompositions

▶ Historical and time range k-core

– based on time window graphs but efficient

▶ (k, h)-core

– considers only multilayer graph, also efficient

▶ Span-core

– needs dense sequence of static graphs, also not very scalable

– shown to be useful in wide range of applications

▶ (k,∆)-core

– can handle fine-grained data and efficient

▶ choosing the right one depends on available data and application

299

Temporal k-Core Decompositions

▶ Historical and time range k-core

– based on time window graphs but efficient

▶ (k, h)-core

– considers only multilayer graph, also efficient

▶ Span-core

– needs dense sequence of static graphs, also not very scalable

– shown to be useful in wide range of applications

▶ (k,∆)-core

– can handle fine-grained data and efficient

▶ choosing the right one depends on available data and application

300

Temporal k-Core Decompositions

▶ Historical and time range k-core

– based on time window graphs but efficient

▶ (k, h)-core

– considers only multilayer graph, also efficient

▶ Span-core

– needs dense sequence of static graphs, also not very scalable

– shown to be useful in wide range of applications

▶ (k,∆)-core

– can handle fine-grained data and efficient

▶ choosing the right one depends on available data and application

301

Agenda

Part I : Introduction and Motivation

▶ models of temporal networks

▶ algorithmic approaches

Part II : Mining Temporal Networks A:

▶ connectivity, temporal properties

▶ centrality, cores

Part III : Mining Temporal Networks B:

▶ communities, patterns and events

▶ diffusion and random networks

Part IV : Tools and Code Libraries

Part V : Challenges, Open Problems, and Trends

302

Part IV

Mining Temporal Networks B

303

Community Detection

304

Temporal Communities

Identifying communities is a fundamental task in computer and network science.

305

Temporal Communities

Question: How do we define a temporal community?

306

Temporal Communities

Question: How do we define a temporal community?

307

Communities in Static Networks

“community” = “umbrella term”

▶ extensive surveys (Fortunato and Hric, 2016; Su et al., 2024)

▶ possible definitions

– a community is a set of nodes, closer to each other than to the rest of the network

– a community is a “dense” subgraph

▶ typical problem settings

– a single community vs. network partitioning

– overlapping vs. non-overlapping communities

– local to some nodes vs. global

308

Communities in Static Networks

“community” = “umbrella term”

▶ extensive surveys (Fortunato and Hric, 2016; Su et al., 2024)

▶ possible definitions

– a community is a set of nodes, closer to each other than to the rest of the network

– a community is a “dense” subgraph

▶ typical problem settings

– a single community vs. network partitioning

– overlapping vs. non-overlapping communities

– local to some nodes vs. global

309

Community Detection in Static Network

Usual workflow (data analysis)

1. pick a problem setting (e.g., partition in k communities vs
identify a single local community)

2. pick a proper metric to quantify the “density” of the
community S

– average degree : |E(S)|
2|S|

– density : 2|E(S)|
|S|(|S|−1)

– conductance : cut(S,S̄)

min{vol(S),vol(S̄)}
– modularity
– . . .

3. identify/design proper algorithms to solve the problem

4. analyze data and, if needed repeat from steps 1. or 2.

310

Analyses and Applications

▶ social networks

– link prediction, targeted advertisement, content moderation, etc..

▶ financial networks

– fraud detection, money-laundry activities, etc..

▶ collaboration networks

– identifying trending topics, important group of nodes, etc..

▶ . . .

311

Analyses and Applications

▶ social networks

– link prediction, targeted advertisement, content moderation, etc..

▶ financial networks

– fraud detection, money-laundry activities, etc..

▶ collaboration networks

– identifying trending topics, important group of nodes, etc..

▶ . . .

312

Analyses and Applications

▶ social networks

– link prediction, targeted advertisement, content moderation, etc..

▶ financial networks

– fraud detection, money-laundry activities, etc..

▶ collaboration networks

– identifying trending topics, important group of nodes, etc..

▶ . . .

313

So what is new about temporal communities?

314

Temporal Evolution of Communities

Temporal networks allow us to study communities according to their temporal evolution!

Some representative behaviors,

Growing community C

𝐶 𝐶 𝐶

Time 𝑇

315

Temporal Evolution of Communities

Temporal networks allow us to study communities according to their temporal evolution!

Some representative behaviors,

Growing community C

Shrinking community C

𝐶 𝐶 𝐶

Time 𝑇

316

Temporal Evolution of Communities

Temporal networks allow us to study communities according to their temporal evolution!

Some representative behaviors,

Growing community C

Shrinking community C

Periodic community C

𝐶

𝑋

𝑋

𝑋

𝐶

𝑋

𝑋

𝐶

Time 𝑇

317

Temporal Evolution of Communities

temporal networks allow us to study communities according to their temporal evolution!

Some representative behaviors,

Growing community C

Shrinking community C

Periodic community C

Bursty community C

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋

𝐶

𝑋

𝑋

Time 𝑇

318

Temporal Evolution of Communities

Temporal networks allow us to study communities according to their temporal evolution!

Some representative behaviors,

Growing community C

Shrinking community C

Periodic community C

Bursty community C

Merging communities

. . .

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋

𝐶

𝑋

𝑋

Time 𝑇

Are there proposed taxonomies?

319

Community Detection in Temporal Networks

Question How many taxonomies exist?

320

Community Detection in Temporal Networks

▶ proposed taxonomies

– (Aynaud et al., 2013)

– (Aggarwal and Subbian, 2014)

– (Enugala et al., 2015)

– (Renaud and Naoki, 2016)

– (Hartmann et al., 2016)

– (Rossetti and Cazabet, 2018)

– (Dakiche et al., 2019)

– (Christopoulos and Tsichlas, 2022)

– ...

No need to panic: recall our steps for community identification!

321

Community Detection in Temporal Networks

▶ proposed taxonomies

– (Aynaud et al., 2013)

– (Aggarwal and Subbian, 2014)

– (Enugala et al., 2015)

– (Renaud and Naoki, 2016)

– (Hartmann et al., 2016)

– (Rossetti and Cazabet, 2018)

– (Dakiche et al., 2019)

– (Christopoulos and Tsichlas, 2022)

– ...

No need to panic: recall our steps for community identification!

322

Temporal Community Detection

Proposed workflow (exploratory analysis), everything starts from data!

1. identify if temporal data is fine-grained or course-grained (!)

2. pick a problem setting (✓)

3. pick a proper metric to quantify the “temporal density” of the
community S , encoding the desired temporal properties (!)

4. identify/design proper algorithms to solve the problem

5. analyze data and, if needed repeat from steps 1. or 2.

Lets make it more concrete!

323

BFF: Finding Lasting Communities (Semertzidis et al., 2016)

Data. Consider a temporal network G = {G1, . . . ,GT}

Setting. We want to find a single global dense community across all snapshots!

Implicit assumption. time is sufficiently course-grained so each snapshot has enough information

Metrics and temporal properties. Fix a time t, given S ⊆ V we define,

▶ davg (S ,Gt) =
1
|S|

∑
u∈S d(u,Gt [S]) =

2|E(S,Gt)|
|S| , and

▶ dmin(S ,Gt) = minu∈S d(u,Gt [S])

Combining such values across snapshots, let − ∈ {avg ,min}
▶ gmin(d−(S ,G)) = mint=1,...,T d−(S ,Gt)

▶ gavg (d−(S ,G)) = 1
T

∑
t d−(S ,Gt)

So we finally have a score for a community S ⊆ V , that is given +,− ∈ {avg ,min} we let

f+,−(S ,G) = g+(d−(S ,G))

324

BFF: Finding Lasting Communities (Semertzidis et al., 2016)

Data. Consider a temporal network G = {G1, . . . ,GT}

Setting. We want to find a single global dense community across all snapshots!

Implicit assumption. time is sufficiently course-grained so each snapshot has enough information

Metrics and temporal properties. Fix a time t, given S ⊆ V we define,

▶ davg (S ,Gt) =
1
|S|

∑
u∈S d(u,Gt [S]) =

2|E(S,Gt)|
|S| , and

▶ dmin(S ,Gt) = minu∈S d(u,Gt [S])

Combining such values across snapshots, let − ∈ {avg ,min}
▶ gmin(d−(S ,G)) = mint=1,...,T d−(S ,Gt)

▶ gavg (d−(S ,G)) = 1
T

∑
t d−(S ,Gt)

So we finally have a score for a community S ⊆ V , that is given +,− ∈ {avg ,min} we let

f+,−(S ,G) = g+(d−(S ,G))

325

BFF: Finding Lasting Communities (Semertzidis et al., 2016)

Data. Consider a temporal network G = {G1, . . . ,GT}

Setting. We want to find a single global dense community across all snapshots!

Implicit assumption. time is sufficiently course-grained so each snapshot has enough information

Metrics and temporal properties. Fix a time t, given S ⊆ V we define,

▶ davg (S ,Gt) =
1
|S|

∑
u∈S d(u,Gt [S]) =

2|E(S,Gt)|
|S| , and

▶ dmin(S ,Gt) = minu∈S d(u,Gt [S])

Combining such values across snapshots, let − ∈ {avg ,min}
▶ gmin(d−(S ,G)) = mint=1,...,T d−(S ,Gt)

▶ gavg (d−(S ,G)) = 1
T

∑
t d−(S ,Gt)

So we finally have a score for a community S ⊆ V , that is given +,− ∈ {avg ,min} we let

f+,−(S ,G) = g+(d−(S ,G))

326

BFF: A Closer Look on the Metrics

Problem

Given G = (G1, . . . ,GT), let +,− ∈ {avg ,min} and a target density f+,− find a subset of vertices
S∗ ⊆ V maximizing the objective f+,−(S ,G) over all communities.

Inspecting the objective values

▶ fmin,min(S ,G) = gmin(dmin(S ,G)) = mint=1,...,T minu∈S d(u,Gt [S])),
minimum degree on every snapshot of all vertices v ∈ S∗ is high

▶ fmin,avg (S ,G) = gmin(davg (S ,G)) = mint=1,...,T
2|E(S,Gt)|

|S| ,

average degree of each node in S is large on each snapshot

▶ favg ,min(S ,G) = gavg (dmin(S ,G)) = 1
T

∑
t minu∈S d(u,Gt [S])),

on average the minimum degree of each node in S is high (more flexible than fmin,min)

▶ favg ,avg (S ,G) = gavg (davg (S ,G)) = 1
T

∑
t
2|E(S,Gt)|

|S| ,

on average the average degree of each node in S is high

327

BFF: A Closer Look on the Metrics

Problem

Given G = (G1, . . . ,GT), let +,− ∈ {avg ,min} and a target density f+,− find a subset of vertices
S∗ ⊆ V maximizing the objective f+,−(S ,G) over all communities.

Inspecting the objective values

▶ fmin,min(S ,G) = gmin(dmin(S ,G)) = mint=1,...,T minu∈S d(u,Gt [S])),
minimum degree on every snapshot of all vertices v ∈ S∗ is high

▶ fmin,avg (S ,G) = gmin(davg (S ,G)) = mint=1,...,T
2|E(S,Gt)|

|S| ,

average degree of each node in S is large on each snapshot

▶ favg ,min(S ,G) = gavg (dmin(S ,G)) = 1
T

∑
t minu∈S d(u,Gt [S])),

on average the minimum degree of each node in S is high (more flexible than fmin,min)

▶ favg ,avg (S ,G) = gavg (davg (S ,G)) = 1
T

∑
t
2|E(S,Gt)|

|S| ,

on average the average degree of each node in S is high

328

BFF: Algorithm

Computing the solution, FindBFF (Inspired by Charikar (2000))

1. iteratively and greedily peel V removing at each step v = argminv∈V score(v ,G [V])

2. compute the density target density on the remaining network where V = V \ {v}
3. return the vertex-set S ⊆ V maximizing the target density over all O(n) iterations

How is score(v ,G [V]) computed? Depends on the objective f

▶ for fmin,min(S ,G) we set score(v ,G [Vi]) = mint=1,...,T d(v ,Gt [V])

▶ for favg ,avg (S ,G) we set score(v ,G [Vi]) =
1
T

∑
t d(v ,Gt [V])

Resulting algorithms run in O(nT +
∑

t |Et |)
▶ FindBFF-MM (fmin,min), finds the optimal solution

▶ FindBFF-AA (favg ,avg), finds a
1
2 -approximation

▶ BFF-AM (favg ,min) is NP-hard, FindBFF achieves an approximation at most O(n−1)

▶ BFF-MA (fmin,avg), “complexity = ?”, FindBFF achieves an approximation at most O(n−1/2)

329

BFF: Algorithm

Computing the solution, FindBFF (Inspired by Charikar (2000))

1. iteratively and greedily peel V removing at each step v = argminv∈V score(v ,G [V])

2. compute the density target density on the remaining network where V = V \ {v}
3. return the vertex-set S ⊆ V maximizing the target density over all O(n) iterations

How is score(v ,G [V]) computed? Depends on the objective f

▶ for fmin,min(S ,G) we set score(v ,G [Vi]) = mint=1,...,T d(v ,Gt [V])

▶ for favg ,avg (S ,G) we set score(v ,G [Vi]) =
1
T

∑
t d(v ,Gt [V])

Resulting algorithms run in O(nT +
∑

t |Et |)
▶ FindBFF-MM (fmin,min), finds the optimal solution

▶ FindBFF-AA (favg ,avg), finds a
1
2 -approximation

▶ BFF-AM (favg ,min) is NP-hard, FindBFF achieves an approximation at most O(n−1)

▶ BFF-MA (fmin,avg), “complexity = ?”, FindBFF achieves an approximation at most O(n−1/2)

330

BFF: Algorithm

Computing the solution, FindBFF (Inspired by Charikar (2000))

1. iteratively and greedily peel V removing at each step v = argminv∈V score(v ,G [V])

2. compute the density target density on the remaining network where V = V \ {v}
3. return the vertex-set S ⊆ V maximizing the target density over all O(n) iterations

How is score(v ,G [V]) computed? Depends on the objective f

▶ for fmin,min(S ,G) we set score(v ,G [Vi]) = mint=1,...,T d(v ,Gt [V])

▶ for favg ,avg (S ,G) we set score(v ,G [Vi]) =
1
T

∑
t d(v ,Gt [V])

Resulting algorithms run in O(nT +
∑

t |Et |)
▶ FindBFF-MM (fmin,min), finds the optimal solution

▶ FindBFF-AA (favg ,avg), finds a
1
2 -approximation

▶ BFF-AM (favg ,min) is NP-hard, FindBFF achieves an approximation at most O(n−1)

▶ BFF-MA (fmin,avg), “complexity = ?”, FindBFF achieves an approximation at most O(n−1/2)

331

On the Complexity of BFF-MA

On this line of research Charikar et al. (2018) proved

▶ fmin,avg (S ,G) cannot be approximated within 2log
1−ε n unless NP ⊆ DTIME(npoly log(n))

▶ they give O((n logT)−1/2) and O(n−2/3) approximation algorithms

▶ suppose T is small the authors give and exact algorithm running in O(nTpoly(n,T)), and a
FPTAS that given an ε > 0 outputs a (1 + ε)-approximation in O(f (T)poly(n, ε−1)).

332

FindBFF — A Use Case

Dataset consists of publications from DBLP in years from 2006 to 2015 (each year forms a snapshot
Gi), the set of nodes V (|V | = 2625) represents authors.

BFF-MM BFF-MA BFF-AM BFF-AA

Wei Fan, Philip S. Yu,
Jiawei Han, Charu C. Aggarwal

Wei Fan, Jing Gao,
Philip S. Yu, Jiawei Han, Charu C. Aggarwal

Wei Fan, Jing Gao,
Philip S. Yu, Jiawei Han

Wei Fan, Jing Gao, Philip S. Yu, Jiawei Han, Charu C. Aggarwal,
Mohammad M. Masud, Latifur Khan, Bhavani M. Thuraisingham

Lu Qin, Jeffrey Xu Yu, Xuemin Lin Jeffrey Xu Yu, Xuemin Lin, Ying Zhang

Craig Macdonald, Iadh Ounis

Some observations

▶ Not all authors appearing in a dense subset coauthored many papers together, e.g., “Wei Fan”,
“Philip S. Yu”, and “Jiawei Han” coauthored only two papers together but many pairwise.

▶ Some solutions are not connected, e.g., BFF-MM.

333

FindBFF — A Use Case

Dataset consists of publications from DBLP in years from 2006 to 2015 (each year forms a snapshot
Gi), the set of nodes V (|V | = 2625) represents authors.

BFF-MM BFF-MA BFF-AM BFF-AA

Wei Fan, Philip S. Yu,
Jiawei Han, Charu C. Aggarwal

Wei Fan, Jing Gao,
Philip S. Yu, Jiawei Han, Charu C. Aggarwal

Wei Fan, Jing Gao,
Philip S. Yu, Jiawei Han

Wei Fan, Jing Gao, Philip S. Yu, Jiawei Han, Charu C. Aggarwal,
Mohammad M. Masud, Latifur Khan, Bhavani M. Thuraisingham

Lu Qin, Jeffrey Xu Yu, Xuemin Lin Jeffrey Xu Yu, Xuemin Lin, Ying Zhang

Craig Macdonald, Iadh Ounis

Some observations

▶ Not all authors appearing in a dense subset coauthored many papers together, e.g., “Wei Fan”,
“Philip S. Yu”, and “Jiawei Han” coauthored only two papers together but many pairwise.

▶ Some solutions are not connected, e.g., BFF-MM.

334

Pros and Cons

Strengths

▶ computes dense communities based on degree scores

▶ it is efficient for certain formulations

▶ works well for sufficiently temporal course-grained data

What is missing

▶ not optimizing for specific time-frames of the time-span

▶ cannot adapt well for fine-grained data

▶ theoretical gaps may prevent (close to) optimal solutions

Lets see another formulation!

335

Communities as Episodes (Rozenshtein et al., 2019)

Data. Let G = (V ,E) be an undirected temporal graph with E = {(ui , vi , ti) : i = 1, . . . ,m}.

Setting. Find a multiple dense communities covering the timespan [t1, tm]

Metrics and temporal properties.
Given an interval I = [ts , te] ⊆ [t1, tm] let G [I] = (V [I],E [I]) be the induced subgraph in I

An episode is a pair (I = [ts , te],H ⊆ G [I]) where H is a subgraph of G [I]

Given a static subgraph H = (VH ,EH) its density is d(H) = |EH |
|VH |

Problem

Given a temporal network G and an integer k find a set of k episodes (Ii ,Hi), i = 1, . . . , k such that
Ii ∩ Ij = ∅, i ̸= j are disjoint while maximizing

k∑
i=1

d(Hi)

336

Communities as Episodes (Rozenshtein et al., 2019)

Data. Let G = (V ,E) be an undirected temporal graph with E = {(ui , vi , ti) : i = 1, . . . ,m}.

Setting. Find a multiple dense communities covering the timespan [t1, tm]

Metrics and temporal properties.
Given an interval I = [ts , te] ⊆ [t1, tm] let G [I] = (V [I],E [I]) be the induced subgraph in I

An episode is a pair (I = [ts , te],H ⊆ G [I]) where H is a subgraph of G [I]

Given a static subgraph H = (VH ,EH) its density is d(H) = |EH |
|VH |

Problem

Given a temporal network G and an integer k find a set of k episodes (Ii ,Hi), i = 1, . . . , k such that
Ii ∩ Ij = ∅, i ̸= j are disjoint while maximizing

k∑
i=1

d(Hi)

337

Communities as Episodes (Rozenshtein et al., 2019)

Data. Let G = (V ,E) be an undirected temporal graph with E = {(ui , vi , ti) : i = 1, . . . ,m}.

Setting. Find a multiple dense communities covering the timespan [t1, tm]

Metrics and temporal properties.
Given an interval I = [ts , te] ⊆ [t1, tm] let G [I] = (V [I],E [I]) be the induced subgraph in I

An episode is a pair (I = [ts , te],H ⊆ G [I]) where H is a subgraph of G [I]

Given a static subgraph H = (VH ,EH) its density is d(H) = |EH |
|VH |

Problem

Given a temporal network G and an integer k find a set of k episodes (Ii ,Hi), i = 1, . . . , k such that
Ii ∩ Ij = ∅, i ̸= j are disjoint while maximizing

k∑
i=1

d(Hi)

338

Solving the Problem trough Segmentation

Computing the solution

▶ Note! in an optimal solution ∪i Ii covers [t1, tm].

▶ given interval I use result in (Goldberg, 1984) in O(nmst log n) to obtain
H∗ = argmaxH⊆G [I] d(H), and mst is the max edges in an interval

▶ it suffices to find an optimal segmentation I1, . . . , Ik , (with dyn. prog. in O(kT 2))

Such algorithm has runtime O(kT 2nmst log n)

As this can be prohibitive an approximate approach is proposed

▶ approximate dyn. prog. approach controlled ε1 pruning candidates in segmentation

▶ avoiding recomputing densest subgraph, use evolving solution, controlled by ε2

Leading to 2(1 + ε1)(1 + ε2)-approximation algorithm running in O(k2

ε1ε2
TmT ,max log

2(n)) where
mT ,max is the maximum number of edges with the same time-stamp.

339

Solving the Problem trough Segmentation

Computing the solution

▶ Note! in an optimal solution ∪i Ii covers [t1, tm].

▶ given interval I use result in (Goldberg, 1984) in O(nmst log n) to obtain
H∗ = argmaxH⊆G [I] d(H), and mst is the max edges in an interval

▶ it suffices to find an optimal segmentation I1, . . . , Ik , (with dyn. prog. in O(kT 2))

Such algorithm has runtime O(kT 2nmst log n)

As this can be prohibitive an approximate approach is proposed

▶ approximate dyn. prog. approach controlled ε1 pruning candidates in segmentation

▶ avoiding recomputing densest subgraph, use evolving solution, controlled by ε2

Leading to 2(1 + ε1)(1 + ε2)-approximation algorithm running in O(k2

ε1ε2
TmT ,max log

2(n)) where
mT ,max is the maximum number of edges with the same time-stamp.

340

Communities as Episodes — Analyzing Twitter Data

Tweets in Helsinki region, V are hashtags and (u, v , t) is added if a message contains both hashtags
u, v , data gathered from Nov 2013 containing 4758 tweets and 917 nodes. (Parameters, k = 4 and
ε1 = ε2 = 0.1)

▶ both episodes are related to events occurring in that period in Helsinki and globally, e.g., on the
left the Digiexpo and Halloween events, while on the right the MTV Europe music awards that
was on November 10.

341

Communities as Episodes — Analyzing Twitter Data

Tweets in Helsinki region, V are hashtags and (u, v , t) is added if a message contains both hashtags
u, v , data gathered from Nov 2013 containing 4758 tweets and 917 nodes. (Parameters, k = 4 and
ε1 = ε2 = 0.1)

▶ both episodes are related to events occurring in that period in Helsinki and globally, e.g., on the
left the Digiexpo and Halloween events, while on the right the MTV Europe music awards that
was on November 10.

342

Communities as Episodes — Analyzing Twitter Data

Tweets in Helsinki region, V are hashtags and (u, v , t) is added if a message contains both hashtags
u, v , data gathered from Nov 2013 containing 4758 tweets and 917 nodes. (Parameters, k = 4 and
ε1 = ε2 = 0.1)

▶ both episodes are related to events occurring in that period in Helsinki and globally, e.g., on the
left the Digiexpo and Halloween events, while on the right the MTV Europe music awards that
was on November 10.

343

Pros and Cons

Strengths

▶ it adapts in a flexible way to the timespan of the network

▶ in general it is efficient to compute

▶ identifies dense communities (w.r.t., average degree)

What is missing

▶ when aggregation is performed may lose some information

▶ not accounting for temporal behaviors, e.g., periodicity or burstiness

▶ may not be informative with small timespan (i.e, G has not few
dense structures)

Lets see another formulation!

344

345

Discovering Buzzing Stories (Bonchi et al., 2019)

Data. Given a temporal network G = (V , {Et , ft}t=1,...,T).

Setting. Find multiple dense and unexpected stories, i.e., communities.

Metrics and temporal properties.

Transform G → GA = (V , {Et , ϕt}t=1,...,T) by mapping ft → ϕt where ϕt(·) captures how anomalous
or unexpected is e based on past data.

Given a discrete-time interval I = [ts , te] and S ⊆ GA then “δ(S , I) = density of S in I”

Given a set of subgraphs S then ∆(S, I) =
∑

S∈S δ(S , I).

Problem

Given the temporal (anomalous) graph GA, an interval I ⊆ [t1, tm] and two integers K ,N ≥ 1 find
S∗ = {S1, . . . ,SK} of disjoint subgraphs of GA such that

▶ |Si | ≤ N, that is the number of nodes in each subgraph is bounded by N

▶ ∆(S∗, I) is maximized.

346

Discovering Buzzing Stories (Bonchi et al., 2019)
Data. Given a temporal network G = (V , {Et , ft}t=1,...,T).

– V is a set of objects, e.g., messages or words from chat apps or posts on socials.

– Et edges at time t and ft : Et 7→ R+ is a weighting function capturing the strength between
two objects at t, e.g., ft(cream, carbonara)

Setting. Find multiple dense and unexpected stories, i.e., communities.

Metrics and temporal properties.

Transform G → GA = (V , {Et , ϕt}t=1,...,T) by mapping ft → ϕt where ϕt(·) captures how anomalous
or unexpected is e based on past data.

Given a discrete-time interval I = [ts , te] and S ⊆ GA then “δ(S , I) = density of S in I”

Given a set of subgraphs S then ∆(S, I) =
∑

S∈S δ(S , I).

Problem

Given the temporal (anomalous) graph GA, an interval I ⊆ [t1, tm] and two integers K ,N ≥ 1 find
S∗ = {S1, . . . ,SK} of disjoint subgraphs of GA such that

▶ |Si | ≤ N, that is the number of nodes in each subgraph is bounded by N

▶ ∆(S∗, I) is maximized.

347

Discovering Buzzing Stories (Bonchi et al., 2019)

Data. Given a temporal network G = (V , {Et , ft}t=1,...,T).

Setting. Find multiple dense and unexpected stories, i.e., communities.

Metrics and temporal properties.

Transform G → GA = (V , {Et , ϕt}t=1,...,T) by mapping ft → ϕt where ϕt(·) captures how anomalous
or unexpected is e based on past data.

Given a discrete-time interval I = [ts , te] and S ⊆ GA then “δ(S , I) = density of S in I”

Given a set of subgraphs S then ∆(S, I) =
∑

S∈S δ(S , I).

Problem

Given the temporal (anomalous) graph GA, an interval I ⊆ [t1, tm] and two integers K ,N ≥ 1 find
S∗ = {S1, . . . ,SK} of disjoint subgraphs of GA such that

▶ |Si | ≤ N, that is the number of nodes in each subgraph is bounded by N

▶ ∆(S∗, I) is maximized.

348

Discovering Buzzing Stories (Bonchi et al., 2019)

Data. Given a temporal network G = (V , {Et , ft}t=1,...,T).

Setting. Find multiple dense and unexpected stories, i.e., communities.

Metrics and temporal properties.

Transform G → GA = (V , {Et , ϕt}t=1,...,T) by mapping ft → ϕt where ϕt(·) captures how anomalous
or unexpected is e based on past data.

Given a discrete-time interval I = [ts , te] and S ⊆ GA then “δ(S , I) = density of S in I”

Given a set of subgraphs S then ∆(S, I) =
∑

S∈S δ(S , I).

Problem

Given the temporal (anomalous) graph GA, an interval I ⊆ [t1, tm] and two integers K ,N ≥ 1 find
S∗ = {S1, . . . ,SK} of disjoint subgraphs of GA such that

▶ |Si | ≤ N, that is the number of nodes in each subgraph is bounded by N

▶ ∆(S∗, I) is maximized.

349

Discovering Buzzing Stories — Algorithm

The decision problem is NP-hard

Computing a solution

▶ develop an exact algorithm A running in O(|I |m log n) for K = 1 and N = ∞ based on a
“peeling” the minimum degree vertices.

Note! This needs to be accounting for time-points (updating the vertex degrees).

▶ algorithm for general case using A as subroutine by

– imposing further constraints on the size (i.e., bounding N) of the reported solutions

– iteratively remove identified communities to guarantee disjoint output.

The resulting algorithms runs in O(K |I |m log n) and comes without guarantees.

350

Discovering Buzzing Stories — Algorithm

The decision problem is NP-hard

Computing a solution

▶ develop an exact algorithm A running in O(|I |m log n) for K = 1 and N = ∞ based on a
“peeling” the minimum degree vertices.

Note! This needs to be accounting for time-points (updating the vertex degrees).

▶ algorithm for general case using A as subroutine by

– imposing further constraints on the size (i.e., bounding N) of the reported solutions

– iteratively remove identified communities to guarantee disjoint output.

The resulting algorithms runs in O(K |I |m log n) and comes without guarantees.

351

Discovering Buzzing Stories – A Use Case

Dataset. Yahoo searches during 2013-2014

Assumption. If there is an anomaly people will search it on the web!

Processing.

▶ dataset spans 558 days, is build on user queries (appearing at least 50 times per day)

▶ map queries e.g., ”How to put pineapple on pizza” → ”(pineapple,pizza)” is generated

▶ ft accounts for frequency

Date |I | N Story Related Event

13/01/2014 1 10 “cristiano dor wins ronaldo fifa ballon” Cristiano Ronaldo won the Ballon d’Or in 2014

09/02/2014 3 10 “day figure russia julia skating medal ceremony” Yulia Lipnitskaya, a Russian prodigy won gold medal in Sochi

27/02/2014 2 30 “captains costa wreck concordia” Legal process for the Costa Concordia disaster

352

Discovering Buzzing Stories – A Use Case

Dataset. Yahoo searches during 2013-2014

Assumption. If there is an anomaly people will search it on the web!

Processing.

▶ dataset spans 558 days, is build on user queries (appearing at least 50 times per day)

▶ map queries e.g., ”How to put pineapple on pizza” → ”(pineapple,pizza)” is generated

▶ ft accounts for frequency

Date |I | N Story Related Event

13/01/2014 1 10 “cristiano dor wins ronaldo fifa ballon” Cristiano Ronaldo won the Ballon d’Or in 2014

09/02/2014 3 10 “day figure russia julia skating medal ceremony” Yulia Lipnitskaya, a Russian prodigy won gold medal in Sochi

27/02/2014 2 30 “captains costa wreck concordia” Legal process for the Costa Concordia disaster

353

Pros and Cons

Strengths

▶ tailored to a specific application

▶ interesting analyses

▶ efficient algorithm in practice

What is missing

▶ no guarantees

▶ a lot of preprocessing is needed and identifying ϕ(·) may be
non-trivial

▶ not much used in practice

354

355

Significant Engagement Based Community (Zhang et al., 2022)

Dataset. Undirected temporal network G = (V ,E),E = {(ui , vi , ti) : i = 1, . . . ,m}

Setting. Find the community where a given user has highest engagement, local formulation!

Metrics and temporal properties.
Let H ⊆ G , the degree of v ∈ V [H] is du,H =

∑
e:E [H] 1[v ∈ e].

Given H ⊆ G the engagement of v ∈ V [H] is γ(u,H) =
du,H∑

v∈V [H] dv,H
.

Problem

Given a temporal graph G , a parameter k ≥ 1, and a vertex u ∈ V find H such that

▶ u ∈ V [H]

▶ the static network of H is a k-core (Guarantees cohesiveness)

▶ γ(u,H) ≥ γ(u,H ′) for any other H ′ ⊆ G (Guarantees max-engagement)

356

Significant Engagement Based Community (Zhang et al., 2022)

Dataset. Undirected temporal network G = (V ,E),E = {(ui , vi , ti) : i = 1, . . . ,m}

Setting. Find the community where a given user has highest engagement, local formulation!

Metrics and temporal properties.
Let H ⊆ G , the degree of v ∈ V [H] is du,H =

∑
e:E [H] 1[v ∈ e].

Given H ⊆ G the engagement of v ∈ V [H] is γ(u,H) =
du,H∑

v∈V [H] dv,H
.

Problem

Given a temporal graph G , a parameter k ≥ 1, and a vertex u ∈ V find H such that

▶ u ∈ V [H]

▶ the static network of H is a k-core (Guarantees cohesiveness)

▶ γ(u,H) ≥ γ(u,H ′) for any other H ′ ⊆ G (Guarantees max-engagement)

357

Significant Engagement Based Community (Zhang et al., 2022)

Dataset. Undirected temporal network G = (V ,E),E = {(ui , vi , ti) : i = 1, . . . ,m}

Setting. Find the community where a given user has highest engagement, local formulation!

Metrics and temporal properties.
Let H ⊆ G , the degree of v ∈ V [H] is du,H =

∑
e:E [H] 1[v ∈ e].

Given H ⊆ G the engagement of v ∈ V [H] is γ(u,H) =
du,H∑

v∈V [H] dv,H
.

Problem

Given a temporal graph G , a parameter k ≥ 1, and a vertex u ∈ V find H such that

▶ u ∈ V [H]

▶ the static network of H is a k-core (Guarantees cohesiveness)

▶ γ(u,H) ≥ γ(u,H ′) for any other H ′ ⊆ G (Guarantees max-engagement)

358

A Case Study on DBLP (Zhang et al., 2022)

Computing a solution

Greedy peeling algorithms + local search running in O(m2(n +m))

Insights on DBLP data

As desired seed nodes are well centered in the identified communities

359

A Case Study on DBLP (Zhang et al., 2022)

Computing a solution

Greedy peeling algorithms + local search running in O(m2(n +m))

Insights on DBLP data

As desired seed nodes are well centered in the identified communities

360

Pros and Cons

Strengths

▶ local formulation

▶ proposed algorithm is polynomial

▶ output has desired properties

What is missing

▶ no guarantees

▶ may need additional assumptions to better model engagement

▶ engagement is not time-dependent

361

You showed us only degree-based metrics!

362

Local Motif Clustering (Fu et al., 2020)

Data. Undirected temporal network G = {G1, . . . ,GT}.

Setting. Find a good local “tight cluster → motifs” to a seed node at each time point 1, . . . ,T .

Metrics and temporal properties.

H: a small subgraph pattern (e.g., edge, triangle, star etc).

C ⊆ V : is cluster, and motif-conductance is Φ(C ,H) = ∂(C ,H)

min{vol(C ,H), vol(C̄ ,H)}
where,

▶ ∂(C ,H): # of subgraphs cut by the cluster (i.e., “cut = at least one node not in C”)

▶ vol(A,H): # of occurrences of H in A

Problem

Given G = {G1, . . . ,GT}, a static motif H, a seed node v ∈ V , an upper-bound on the motif
conductance ϕ, compute,

C t containing v ∈ V such that Φ(C t ,H) ≤ ϕ, for each t = 1, . . . ,T .

363

Local Motif Clustering (Fu et al., 2020)

Data. Undirected temporal network G = {G1, . . . ,GT}.

Setting. Find a good local “tight cluster → motifs” to a seed node at each time point 1, . . . ,T .

Metrics and temporal properties.

H: a small subgraph pattern (e.g., edge, triangle, star etc).

C ⊆ V : is cluster, and motif-conductance is Φ(C ,H) = ∂(C ,H)

min{vol(C ,H), vol(C̄ ,H)}
where,

▶ ∂(C ,H): # of subgraphs cut by the cluster (i.e., “cut = at least one node not in C”)

▶ vol(A,H): # of occurrences of H in A

Problem

Given G = {G1, . . . ,GT}, a static motif H, a seed node v ∈ V , an upper-bound on the motif
conductance ϕ, compute,

C t containing v ∈ V such that Φ(C t ,H) ≤ ϕ, for each t = 1, . . . ,T .

364

Local Motif Clustering (Fu et al., 2020)

Data. Undirected temporal network G = {G1, . . . ,GT}.

Setting. Find a good local “tight cluster → motifs” to a seed node at each time point 1, . . . ,T .

Metrics and temporal properties.

H: a small subgraph pattern (e.g., edge, triangle, star etc).

C ⊆ V : is cluster, and motif-conductance is Φ(C ,H) = ∂(C ,H)

min{vol(C ,H), vol(C̄ ,H)}
where,

▶ ∂(C ,H): # of subgraphs cut by the cluster (i.e., “cut = at least one node not in C”)

▶ vol(A,H): # of occurrences of H in A

Problem

Given G = {G1, . . . ,GT}, a static motif H, a seed node v ∈ V , an upper-bound on the motif
conductance ϕ, compute,

C t containing v ∈ V such that Φ(C t ,H) ≤ ϕ, for each t = 1, . . . ,T .

365

Local Motif Clustering – Example

Example

Let us fix H to be a triangle

Notation. Blue edges denote insertions and green edges denote removals.

(a) t = 1

(b) t = 2 (c) t = 3

366

Local Motif Clustering – Example

Example

Let us fix H to be a triangle

Notation. Blue edges denote insertions and green edges denote removals.

(a) t = 1 (b) t = 2

(c) t = 3

367

Local Motif Clustering – Example

Example

Let us fix H to be a triangle

Notation. Blue edges denote insertions and green edges denote removals.

(a) t = 1 (b) t = 2 (c) t = 3

368

Proposed Solution by Fu et al. (2020)

The problem is already for static graphs NP-hard

Computing a solution

▶ fix t = 1, . . . ,T , let k be # nodes in H

▶ define a multilinear page-rank vector xt , that accounts for the high-order motifs,

xt = αP t(xt ⊗ · · · ⊗ xt) + (1− α)u

where P t encodes transitions over motifs, u is the vector encoding user preferences.

▶ a good-approximate obtained through sweep cut on vector xt ,

– sort (from largest to smallest) the entries in xt

– pick the prefix 1, . . . , j with j = 1, . . . , n optimizing the induced cut

Idea! For varying t, graph is evolving avoid repeating such steps by 1. avoid considering distant edges
that cannot impact cluster 2. avoid scratch re computation of xt

Runtime O(
∑

t [f (mi , n
O(k)
i , kk)], P1 is assumed in input!

369

Proposed Solution by Fu et al. (2020)

The problem is already for static graphs NP-hard

We will be looking for an approximate solution

Computing a solution

▶ fix t = 1, . . . ,T , let k be # nodes in H

▶ define a multilinear page-rank vector xt , that accounts for the high-order motifs,

xt = αP t(xt ⊗ · · · ⊗ xt) + (1− α)u

where P t encodes transitions over motifs, u is the vector encoding user preferences.

▶ a good-approximate obtained through sweep cut on vector xt ,

– sort (from largest to smallest) the entries in xt

– pick the prefix 1, . . . , j with j = 1, . . . , n optimizing the induced cut

Idea! For varying t, graph is evolving avoid repeating such steps by 1. avoid considering distant edges
that cannot impact cluster 2. avoid scratch re computation of xt

Runtime O(
∑

t [f (mi , n
O(k)
i , kk)], P1 is assumed in input!

370

Proposed Solution by Fu et al. (2020)

The problem is already for static graphs NP-hard

Computing a solution

▶ fix t = 1, . . . ,T , let k be # nodes in H
▶ define a multilinear page-rank vector xt , that accounts for the high-order motifs,

xt = αP t(xt ⊗ · · · ⊗ xt︸ ︷︷ ︸
k−1 times

) + (1− α)u

where P t encodes transitions over motifs, u is the vector encoding user preferences.

xt = αP t(xt ⊗ · · · ⊗ xt) + (1− α)u

where P t encodes transitions over motifs, u is the vector encoding user preferences.
▶ a good-approximate obtained through sweep cut on vector xt ,

– sort (from largest to smallest) the entries in xt

– pick the prefix 1, . . . , j with j = 1, . . . , n optimizing the induced cut

Idea! For varying t, graph is evolving avoid repeating such steps by 1. avoid considering distant edges
that cannot impact cluster 2. avoid scratch re computation of xt

Runtime O(
∑

t [f (mi , n
O(k)
i , kk)], P1 is assumed in input!

371

Proposed Solution by Fu et al. (2020)

The problem is already for static graphs NP-hard

Computing a solution

▶ fix t = 1, . . . ,T , let k be # nodes in H

▶ define a multilinear page-rank vector xt , that accounts for the high-order motifs,

xt = αP t(xt ⊗ · · · ⊗ xt) + (1− α)u

where P t encodes transitions over motifs, u is the vector encoding user preferences.

▶ a good-approximate obtained through sweep cut on vector xt ,

– sort (from largest to smallest) the entries in xt

– pick the prefix 1, . . . , j with j = 1, . . . , n optimizing the induced cut

Idea! For varying t, graph is evolving avoid repeating such steps by 1. avoid considering distant edges
that cannot impact cluster 2. avoid scratch re computation of xt

Runtime O(
∑

t [f (mi , n
O(k)
i , kk)], P1 is assumed in input!

372

Proposed Solution by Fu et al. (2020)

The problem is already for static graphs NP-hard

Computing a solution

▶ fix t = 1, . . . ,T , let k be # nodes in H

▶ define a multilinear page-rank vector xt , that accounts for the high-order motifs,

xt = αP t(xt ⊗ · · · ⊗ xt) + (1− α)u

where P t encodes transitions over motifs, u is the vector encoding user preferences.

▶ a good-approximate obtained through sweep cut on vector xt ,

– sort (from largest to smallest) the entries in xt

– pick the prefix 1, . . . , j with j = 1, . . . , n optimizing the induced cut

Idea! For varying t, graph is evolving avoid repeating such steps by 1. avoid considering distant edges
that cannot impact cluster 2. avoid scratch re computation of xt

Runtime O(
∑

t [f (mi , n
O(k)
i , kk)], P1 is assumed in input!

373

Pros and Cons

Strengths

▶ local formulation

▶ uses high order information

▶ versatile according to the pattern

What is missing

▶ no guarantees

▶ problem is already hard on a single snapshot

▶ not very practical computing P i , i = 1, . . .

374

Fairness-Aware Clique Preserving Clustering (Fu et al., 2023)
Fairness definition demographic fairness

Data. G = {G1, . . . ,GT}, where V has h different groups

Setting. Find q clusters at each time-point cutting few k-cliques and that are fair.

Problem

Given G parameters k and q, find a q-clustering C t
1 , . . . ,C

t
q for t = 1, . . . ,T such that

▶ minC t
i

∑T
t=1

∑q
j=1

∂(C t
i ,k)

vol(C t
i ,k)

(∂(C t
i , k): # of k-cliques cut by C t

i)

▶ |VS∩C t
i |

|C t
i |

= |Vs |
|V | for each time t = 1, . . . ,T and cluster s = 1, . . . , q

Computing a solution

The problem is NP-hard

At fixed t solution is based on spectral techniques: trace minimization problem + K -means.

Avoid re computation at each time t, accounting for edge additions and deletions.

Runtime is O(T (q4 + q2n) +
∑

t ka
k−2mt), a is arboricity at time t, no guarantees on the solution.

375

Fairness-Aware Clique Preserving Clustering (Fu et al., 2023)
Fairness definition demographic fairness

Data. G = {G1, . . . ,GT}, where V has h different groups

Setting. Find q clusters at each time-point cutting few k-cliques and that are fair.

Problem

Given G parameters k and q, find a q-clustering C t
1 , . . . ,C

t
q for t = 1, . . . ,T such that

▶ minC t
i

∑T
t=1

∑q
j=1

∂(C t
i ,k)

vol(C t
i ,k)

(∂(C t
i , k): # of k-cliques cut by C t

i)

▶ |VS∩C t
i |

|C t
i |

= |Vs |
|V | for each time t = 1, . . . ,T and cluster s = 1, . . . , q

Computing a solution

The problem is NP-hard

At fixed t solution is based on spectral techniques: trace minimization problem + K -means.

Avoid re computation at each time t, accounting for edge additions and deletions.

Runtime is O(T (q4 + q2n) +
∑

t ka
k−2mt), a is arboricity at time t, no guarantees on the solution.

376

Fairness-Aware Clique Preserving Clustering (Fu et al., 2023)

Data. G = {G1, . . . ,GT}, where V has h different groups

Setting. Find q clusters at each time-point cutting few k-cliques and that are fair.

Problem

Given G parameters k and q, find a q-clustering C t
1 , . . . ,C

t
q for t = 1, . . . ,T such that

▶ minC t
i

∑T
t=1

∑q
j=1

∂(C t
i ,k)

vol(C t
i ,k)

(∂(C t
i , k): # of k-cliques cut by C t

i)

▶ |VS∩C t
i |

|C t
i |

= |Vs |
|V | for each time t = 1, . . . ,T and cluster s = 1, . . . , q

Computing a solution

The problem is NP-hard

At fixed t solution is based on spectral techniques: trace minimization problem + K -means.

Avoid re computation at each time t, accounting for edge additions and deletions.

Runtime is O(T (q4 + q2n) +
∑

t ka
k−2mt), a is arboricity at time t, no guarantees on the solution.

377

Fairness-Aware Clique Preserving Clustering (Fu et al., 2023)

Data. G = {G1, . . . ,GT}, where V has h different groups

Setting. Find q clusters at each time-point cutting few k-cliques and that are fair.

Problem

Given G parameters k and q, find a q-clustering C t
1 , . . . ,C

t
q for t = 1, . . . ,T such that

▶ minC t
i

∑T
t=1

∑q
j=1

∂(C t
i ,k)

vol(C t
i ,k)

(∂(C t
i , k): # of k-cliques cut by C t

i)

▶ |VS∩C t
i |

|C t
i |

= |Vs |
|V | for each time t = 1, . . . ,T and cluster s = 1, . . . , q

Computing a solution

The problem is NP-hard

At fixed t solution is based on spectral techniques: trace minimization problem + K -means.

Avoid re computation at each time t, accounting for edge additions and deletions.

Runtime is O(T (q4 + q2n) +
∑

t ka
k−2mt), a is arboricity at time t, no guarantees on the solution.

378

Visualizing the Desired Behavior

Example

Let q = 2 and k = 3 (k-clique is a triangle). Green edges are insertions and yellow edges are
removals

379

Visualizing the Desired Behavior

Example

Let q = 2 and k = 3 (k-clique is a triangle). Green edges are insertions and yellow edges are
removals

380

Pros and Cons

Strengths

▶ fairness + evolving networks

▶ global dense clusters

▶ can have different applications

What is missing

▶ no guarantees

▶ problem is already hard on a single snapshot

▶ not very practical enumerating k-cliques

381

Let us do a summary.

382

Let us do a summary.

383

Community Detection in Temporal Networks – Summary

▶ community detection in temporal networks is a very wide research area

▶ do not panic and follow a principled approach (start from data!)

– identify properties of the communities you are looking (global vs. local, etc..)

– search formulations with desired properties (much work has been done!)

– if nothing works you found a gap in literature (novel algorithms are needed!)

▶ use/develop proper algorithms to analyze temporal communities

Keep in mind. There is a gap between formulations and applications

384

Temporal communities – Other Formulations

Some other existing formulations

▶ (Lin et al., 2022) find multiple maximal quasi-clique based communities, stable overall and with
interval-based edges

▶ (Qin et al., 2023) find single and dense community that is periodic over time

▶ (Preti et al., 2021) discovering a set of diverse and correlated communities in dynamic setting

▶ (Ma et al., 2020) finding dense subgraphs in temporal networks with time-varying edge weight

▶ (Banerjee and Pal, 2022) online algorithm for temporal clique identification

▶ (Chu et al., 2019) bursty and dense community identification

▶ . . .

385

386

Temporal Motifs and Events

387

Subgraph Motifs

Motifs are small subgraph patterns with a plethora of applications in various domains

▶ databases

▶ social networks

▶ biology

▶ e-commerce

But how?

388

Subgraph Motifs

Motifs are small subgraph patterns with a plethora of applications in various domains

▶ databases

▶ social networks

▶ biology

▶ e-commerce

But how?

389

Short Primer on Subgraph Isomorphism

Given a simple static graph G = (V ,E) and small target graph H = (VH ,EH) we say that,

▶ G ′ ⊆ G is a subgraph that is isomorphic to H if there exists a bijection f : VH 7→ VG ′ with

(x , y) ∈ EH =⇒ (f (x), f (y)) ∈ EG ′ (G ′ ∼ H)

Example

C B

A

D E

(a) G

z y

x

(b) H

390

Short Primer on Subgraph Isomorphism

Given a simple static graph G = (V ,E) and small target graph H = (VH ,EH) we say that,

▶ G ′ ⊆ G is a subgraph that is isomorphic to H if there exists a bijection f : VH 7→ VG ′ with

(x , y) ∈ EH =⇒ (f (x), f (y)) ∈ EG ′ (G ′ ∼ H)

Example

C B

A

D E

(a) G

z y

x

(b) H

Is “V [C ,D,E]” isomorphic to H?

C B

A

D E

391

Short Primer on Subgraph Isomorphism

Given a simple static graph G = (V ,E) and small target graph H = (VH ,EH) we say that,

▶ G ′ ⊆ G is a subgraph that is isomorphic to H if there exists a bijection f : VH 7→ VG ′ with

(x , y) ∈ EH =⇒ (f (x), f (y)) ∈ EG ′ (G ′ ∼ H)

Example

C B

A

D E

(a) G

z y

x

(b) H

Is “V [C ,D,E]” isomorphic to H? Yes!

C B

A

D E

392

Short Primer on Subgraph Isomorphism

Given a simple static graph G = (V ,E) and small target graph H = (VH ,EH) we say that,

▶ G ′ ⊆ G is a subgraph that is isomorphic to H if there exists a bijection f : VH 7→ VG ′ with

(x , y) ∈ EH =⇒ (f (x), f (y)) ∈ EG ′ (G ′ ∼ H)

Example

C B

A

D E

(a) G

z y

x

(b) H

Is “V [A,C ,B]” isomorphic to H?

C B

A

D E

393

Short Primer on Subgraph Isomorphism

Given a simple static graph G = (V ,E) and small target graph H = (VH ,EH) we say that,

▶ G ′ ⊆ G is a subgraph that is isomorphic to H if there exists a bijection f : VH 7→ VG ′ with

(x , y) ∈ EH =⇒ (f (x), f (y)) ∈ EG ′ (G ′ ∼ H)

Example

C B

A

D E

(a) G

z y

x

(b) H

Is “V [A,C ,B]” isomorphic to H? Yes!

C B

A

D E

394

Short Primer on Subgraph Isomorphism
Given a simple static graph G = (V ,E) and small target graph H = (VH ,EH) we say that,

▶ G ′ ⊆ G is a subgraph that is isomorphic to H if there exists a bijection f : VH 7→ VG ′ with

(x , y) ∈ EH =⇒ (f (x), f (y)) ∈ EG ′ (G ′ ∼ H)

▶ the isomorphism is called induced if it also holds

(x , y) ∈ EH ⇐⇒ (f (x), f (y)) ∈ EG ′

Example

C B

A

D E

(a) G

z y

x

(b) H

Is “V [A,C ,B]” isomorphic to H?

C B

A

D E

395

Short Primer on Subgraph Isomorphism
Given a simple static graph G = (V ,E) and small target graph H = (VH ,EH) we say that,

▶ G ′ ⊆ G is a subgraph that is isomorphic to H if there exists a bijection f : VH 7→ VG ′ with

(x , y) ∈ EH =⇒ (f (x), f (y)) ∈ EG ′ (G ′ ∼ H)

▶ the isomorphism is called induced if it also holds

(x , y) ∈ EH ⇐⇒ (f (x), f (y)) ∈ EG ′

Example

C B

A

D E

(a) G

z y

x

(b) H

Is “V [A,C ,B]” isomorphic to H? No!

C B

A

D E

(f −1(A), f −1(B)) not in H!

396

Short primer on Subgraph Isomorphism

Given a simple static graph G = (V ,E) and small target graph H = (VH ,EH) we say that,

▶ G ′ ⊆ G is a subgraph that is isomorphic to H if there exists a bijection f : VH 7→ VG ′ with

(x , y) ∈ EH =⇒ (f (x), f (y)) ∈ EG ′ (G ′ ∼ H)

▶ the isomorphism is called induced if it also holds

(x , y) ∈ EH ⇐⇒ (f (x), f (y)) ∈ EG ′

Given a graph G , count of H meaning: # of distinct subgraphs G ′ ⊆ G with G ′ ∼ H.

If G ′ ∼ H we say G ′ is an occurrence of H

Problem

Given a graph G and a small subgraph pattern H

▶ obtain the count of H (counting problem)

▶ list all occurrences of H

397

Subgraph Counts

The problem is NP-hard and extremely challenging

Many applications, in computer science, network science and more...

(a) Node embeddings

(b) Malware detection (c) Spreading processes

Some material

▶ (Ribeiro et al., 2021) survey on algorithms and applications

▶ (Seshadhri and Tirthapura, 2019) tutorial in WWW 2019 on subgraph counting

What about temporal motifs?

398

Subgraph Counts

The problem is NP-hard and extremely challenging

Many applications, in computer science, network science and more...

(a) Node embeddings (b) Malware detection

(c) Spreading processes

Some material

▶ (Ribeiro et al., 2021) survey on algorithms and applications

▶ (Seshadhri and Tirthapura, 2019) tutorial in WWW 2019 on subgraph counting

What about temporal motifs?

399

Subgraph Counts

The problem is NP-hard and extremely challenging

Many applications, in computer science, network science and more...

(a) Node embeddings (b) Malware detection (c) Spreading processes

Some material

▶ (Ribeiro et al., 2021) survey on algorithms and applications

▶ (Seshadhri and Tirthapura, 2019) tutorial in WWW 2019 on subgraph counting

What about temporal motifs?

400

Temporal Motifs

As for temporal communities many definitions exist

Temporal motifs = static subgraphs + temporal dynamics (+ additional information)

Where

▶ static subgraph may be (non)induced

▶ temporal dynamics time over the static subgraph, in many ways

▶ additional information is any available metadata on nodes or edges, e.g., f : {V ,E} → D

Let us see some of most used definitions

401

Temporal Motifs

As for temporal communities many definitions exist

Temporal motifs = static subgraphs + temporal dynamics (+ additional information)

Where

▶ static subgraph may be (non)induced

▶ temporal dynamics time over the static subgraph, in many ways

▶ additional information is any available metadata on nodes or edges, e.g., f : {V ,E} → D

Let us see some of most used definitions

402

Temporal Motifs

As for temporal communities many definitions exist

Temporal motifs = static subgraphs + temporal dynamics (+ additional information)

Where

▶ static subgraph may be (non)induced

▶ temporal dynamics time over the static subgraph, in many ways

▶ additional information is any available metadata on nodes or edges, e.g., f : {V ,E} → D

Let us see some of most used definitions

403

Temporal Motifs by Kovanen et al. (2011)

Data. G = (V ,E),E = {(u, v , t)} be a directed temporal network

Modeling temporal dynamics

Some definitions

– two edges (e1, e2 ∈ E) are ∆t-adjacent they share at least one node and |te1 − te2 | ≤ ∆t.

– two edges (e1, e2 ∈ E) are ∆t-connected if there is a sequence ∆t-adj. edges from e1 to e2
(no time ordering!)

Further, a connected temporal subgraph G ′ ⊆ G constitutes of pairwise ∆t-conn. edges

– a conn. temporal subgraph G ′ is valid if for each two events that are incident to a node no
other edges are skipped (temporally induced G ′)

404

Temporal Motifs by Kovanen et al. (2011)
Data. G = (V ,E),E = {(u, v , t)} be a directed temporal network

Modeling temporal dynamics

Some definitions

– two edges (e1, e2 ∈ E) are ∆t-adjacent they share at least one node and |te1 − te2 | ≤ ∆t.

Example. Fix ∆t = 10

(a) Temporal Network G (b) ∆t-adjacent edges (c) Not ∆t-adjacent

– two edges (e1, e2 ∈ E) are ∆t-connected if there is a sequence ∆t-adj. edges from e1 to e2
(no time ordering!)

Further, a connected temporal subgraph G ′ ⊆ G constitutes of pairwise ∆t-conn. edges

– a conn. temporal subgraph G ′ is valid if for each two events that are incident to a node no
other edges are skipped (temporally induced G ′)

405

Temporal Motifs by Kovanen et al. (2011)

Data. G = (V ,E),E = {(u, v , t)} be a directed temporal network

Modeling temporal dynamics

Some definitions

– two edges (e1, e2 ∈ E) are ∆t-adjacent they share at least one node and |te1 − te2 | ≤ ∆t.

– two edges (e1, e2 ∈ E) are ∆t-connected if there is a sequence ∆t-adj. edges from e1 to e2
(no time ordering!)

Further, a connected temporal subgraph G ′ ⊆ G constitutes of pairwise ∆t-conn. edges

– a conn. temporal subgraph G ′ is valid if for each two events that are incident to a node no
other edges are skipped (temporally induced G ′)

406

Temporal Motifs by Kovanen et al. (2011)
Data. G = (V ,E),E = {(u, v , t)} be a directed temporal network

Modeling temporal dynamics

Some definitions

– two edges (e1, e2 ∈ E) are ∆t-adjacent they share at least one node and |te1 − te2 | ≤ ∆t.
– two edges (e1, e2 ∈ E) are ∆t-connected if there is a sequence ∆t-adj. edges from e1 to e2

(no time ordering!)

Example. Fix ∆t = 10

(a) Temporal Network G (b) ∆t-connected edges

Further, a connected temporal subgraph G ′ ⊆ G constitutes of pairwise ∆t-conn. edges
– a conn. temporal subgraph G ′ is valid if for each two events that are incident to a node no

other edges are skipped (temporally induced G ′)

407

Temporal Motifs by Kovanen et al. (2011)

Data. G = (V ,E),E = {(u, v , t)} be a directed temporal network

Modeling temporal dynamics

Some definitions

– two edges (e1, e2 ∈ E) are ∆t-adjacent they share at least one node and |te1 − te2 | ≤ ∆t.

– two edges (e1, e2 ∈ E) are ∆t-connected if there is a sequence ∆t-adj. edges from e1 to e2
(no time ordering!)

Further, a connected temporal subgraph G ′ ⊆ G constitutes of pairwise ∆t-conn. edges

– a conn. temporal subgraph G ′ is valid if for each two events that are incident to a node no
other edges are skipped (temporally induced G ′)

408

Temporal Motifs by Kovanen et al. (2011)
Data. G = (V ,E),E = {(u, v , t)} be a directed temporal network

Modeling temporal dynamics

Some definitions

– two edges (e1, e2 ∈ E) are ∆t-adjacent they share at least one node and |te1 − te2 | ≤ ∆t.

– two edges (e1, e2 ∈ E) are ∆t-connected if there is a sequence ∆t-adj. edges from e1 to e2
(no time ordering!)

Further, a connected temporal subgraph G ′ ⊆ G constitutes of pairwise ∆t-conn. edges

– a conn. temporal subgraph G ′ is valid if for each two events that are incident to a node no
other edges are skipped (temporally induced G ′)

Example. Fix ∆t = 10

(a) Temporal
Network G

(b) Valid (c) Not valid

409

Temporal Motifs by (Kovanen et al., 2011)
Definition

Temporal motifs are non-isomorphic classes of subgraphs, where the isomorphism takes into account
edge ordering.

Example.

(a) Motif occurrence (b) Class 1? (c) Class 2?

Problem

Given G , ∆t and a bound k obtain the count of temporal motifs on k nodes.

Solving the counting problem for specific classes
▶ pre-process G and identify maximal components O(|E |)
▶ in each component find valid subgraphs of bounded size k , O(nk)
▶ map each valid subgraph G ′ with k-edges on its class (canonical labeling is used, exponential in

|G ′|).

A real use case?

410

Temporal Motifs by (Kovanen et al., 2011)
Definition

Temporal motifs are non-isomorphic classes of subgraphs, where the isomorphism takes into account
edge ordering.

Example.

(a) Motif occurrence (b) Class 1? ✓ (c) Class 2? ✗

Problem

Given G , ∆t and a bound k obtain the count of temporal motifs on k nodes.

Solving the counting problem for specific classes
▶ pre-process G and identify maximal components O(|E |)
▶ in each component find valid subgraphs of bounded size k , O(nk)
▶ map each valid subgraph G ′ with k-edges on its class (canonical labeling is used, exponential in

|G ′|).

A real use case?

411

Temporal Motifs by (Kovanen et al., 2011)

Definition

Temporal motifs are non-isomorphic classes of subgraphs, where the isomorphism takes into account
edge ordering.

Problem

Given G , ∆t and a bound k obtain the count of temporal motifs on k nodes.

Solving the counting problem for specific classes

▶ pre-process G and identify maximal components O(|E |)
▶ in each component find valid subgraphs of bounded size k , O(nk)

▶ map each valid subgraph G ′ with k-edges on its class (canonical labeling is used, exponential in
|G ′|).

A real use case?

412

Homophily in Phone Call Networks (Kovanen et al., 2013)
Data. Record of 6 months data of mobile phone calls (625million calls) and SMS (207 million). In total
> 6 million users.

Additional metadata. Sex, age and payment type, combined to obtain 24 different node colors

Insights. Temporal homophily occurs at gender level, i.e., temporal phone call patterns tend to be
different in males and females

Temporal motifs.

The score denotes how strong is data with respect to a random-model. F : female, M: male, F − F : all
nodes are of F class, F − ∗: there exist at least one node of M class in the motif.

Motif F − F F − ∗ M −M M − ∗

Repeated calls 1.11 1.11 1.13 1.10

Noncausal chain 1.08 1.02 1.01 1.04

Causal chain 1.08 1.01 0.98 1.02

Out-star 1.10 1.03 1.01 1.04

413

Homophily in Phone Call Networks (Kovanen et al., 2013)
Data. Record of 6 months data of mobile phone calls (625million calls) and SMS (207 million). In total
> 6 million users.

Additional metadata. Sex, age and payment type, combined to obtain 24 different node colors

Insights. Temporal homophily occurs at gender level, i.e., temporal phone call patterns tend to be
different in males and females

Temporal motifs.

The score denotes how strong is data with respect to a random-model. F : female, M: male, F − F : all
nodes are of F class, F − ∗: there exist at least one node of M class in the motif.

Motif F − F F − ∗ M −M M − ∗

Repeated calls 1.11 1.11 1.13 1.10

Noncausal chain 1.08 1.02 1.01 1.04

Causal chain 1.08 1.01 0.98 1.02

Out-star 1.10 1.03 1.01 1.04

414

Homophily in Phone Call Networks (Kovanen et al., 2013)
Data. Record of 6 months data of mobile phone calls (625million calls) and SMS (207 million). In total
> 6 million users.

Additional metadata. Sex, age and payment type, combined to obtain 24 different node colors

Insights. Temporal homophily occurs at gender level, i.e., temporal phone call patterns tend to be
different in males and females

Temporal motifs.

The score denotes how strong is data with respect to a random-model. F : female, M: male, F − F : all
nodes are of F class, F − ∗: there exist at least one node of M class in the motif.

Motif F − F F − ∗ M −M M − ∗

Repeated calls 1.11 1.11 1.13 1.10

Noncausal chain 1.08 1.02 1.01 1.04

Causal chain 1.08 1.01 0.98 1.02

Out-star 1.10 1.03 1.01 1.04

415

An Issue with Kovanen et al. (2011)’s Definition
Example. Fix ∆t = 10

(a) Temporal
Network G

(b) Not valid

(a) Temporal
Network G

(b) Not valid

Considering only valid subgraphs may be too strict!

Which can lead to information loss, as this can be important for many applications.

How to fix this?

416

An Issue with Kovanen et al. (2011)’s Definition

Example. Fix ∆t = 10

(a) Temporal
Network G

(b) Not valid

Considering only valid subgraphs may be too strict!

Which can lead to information loss, as this can be important for many applications.

How to fix this?

417

Temporal Motifs by Paranjape et al. (2017)

This model aims at providing a more general and flexible definition of temporal motifs.
Data. G = (V ,E),E = {(u, v , t)} be a directed temporal network

A temporal motif is a pair M = (K , σ) (Liu et al., 2019) where

▶ K is a directed and (weakly)connected multigraph with k-nodes and ℓ-edges.

v2 v3v1

(a) K1

v2 v3v1

(b) K2

▶ σ is an ordering of the edges of K (modelling temporal dynamics of K)

Example. Fixing K = K1 then

v2 v3v1
σ2σ1

(a) σL = ⟨(v1, v2), (v2, v3)⟩

v2 v3v1
σ1σ2

(b) σR = ⟨(v2, v3), (v1, v2)⟩

Note. σL is time respecting while σR not!

418

Temporal Motifs by Paranjape et al. (2017)

This model aims at providing a more general and flexible definition of temporal motifs.
Data. G = (V ,E),E = {(u, v , t)} be a directed temporal network

A temporal motif is a pair M = (K , σ) (Liu et al., 2019) where

▶ K is a directed and (weakly)connected multigraph with k-nodes and ℓ-edges.

v2 v3v1

(a) K1

v2 v3v1

(b) K2

▶ σ is an ordering of the edges of K (modelling temporal dynamics of K)

Example. Fixing K = K1 then

v2 v3v1
σ2σ1

(a) σL = ⟨(v1, v2), (v2, v3)⟩

v2 v3v1
σ1σ2

(b) σR = ⟨(v2, v3), (v1, v2)⟩

Note. σL is time respecting while σR not!

419

Temporal Motif Counting Problem (Paranjape et al., 2017)
Given G and a value δ ∈ R+, a time-ordered sequence S = ⟨(x ′1, y ′

1, t
′
1), . . . , (x

′
ℓ, y

′
ℓ, t

′
ℓ)⟩ of ℓ unique

edges from G is a δ-instance of M = ⟨(x1, y1), . . . , (xℓ, yℓ)⟩ if
1. there exists a bijection h from the vertices appearing in S to the vertices of M, with h(x ′i) = xi

and h(y ′
i) = yi , and i ∈ [ℓ];

2. the edges of S occur within δ time; i.e., t ′ℓ − t ′1 ≤ δ.

3

5

2

6

1

4

10, 15

13

20, 35

19

2, 22, 36

9
1

3, 24

(a) Temporal graph G (b) Temporal motif, ti gives
ordering in σ

Fix δ = 10

3

5

2

6

15
13

20
19

(a) ? ✗

3

5

2

6

10
13

35
19

(b) ? ✗

3

5

2

6

10
13

20
19

(c) ? ✓

3

5

2

6

15
13

35
19

(d) ? ✗

420

Temporal Motif Counting Problem (Paranjape et al., 2017)
Given G and a value δ ∈ R+, a time-ordered sequence S = ⟨(x ′1, y ′

1, t
′
1), . . . , (x

′
ℓ, y

′
ℓ, t

′
ℓ)⟩ of ℓ unique

edges from G is a δ-instance of M = ⟨(x1, y1), . . . , (xℓ, yℓ)⟩ if
1. there exists a bijection h from the vertices appearing in S to the vertices of M, with h(x ′i) = xi

and h(y ′
i) = yi , and i ∈ [ℓ];

2. the edges of S occur within δ time; i.e., t ′ℓ − t ′1 ≤ δ.

3

5

2

6

1

4

10, 15

13

20, 35

19

2, 22, 36

9
1

3, 24

(a) Temporal graph G (b) Temporal motif, ti gives
ordering in σ

Fix δ = 10

3

5

2

6

15
13

20
19

(a) ?

3

5

2

6

10
13

35
19

(b) ?

3

5

2

6

10
13

20
19

(c) ?

3

5

2

6

15
13

35
19

(d) ?

3

5

2

6

15
13

20
19

(a) ? ✗

3

5

2

6

10
13

35
19

(b) ? ✗

3

5

2

6

10
13

20
19

(c) ? ✓

3

5

2

6

15
13

35
19

(d) ? ✗

421

Temporal Motif Counting Problem (Paranjape et al., 2017)
Given G and a value δ ∈ R+, a time-ordered sequence S = ⟨(x ′1, y ′

1, t
′
1), . . . , (x

′
ℓ, y

′
ℓ, t

′
ℓ)⟩ of ℓ unique

edges from G is a δ-instance of M = ⟨(x1, y1), . . . , (xℓ, yℓ)⟩ if
1. there exists a bijection h from the vertices appearing in S to the vertices of M, with h(x ′i) = xi

and h(y ′
i) = yi , and i ∈ [ℓ];

2. the edges of S occur within δ time; i.e., t ′ℓ − t ′1 ≤ δ.

3

5

2

6

1

4

10, 15

13

20, 35

19

2, 22, 36

9
1

3, 24

(a) Temporal graph G (b) Temporal motif, ti gives
ordering in σ

Fix δ = 10

3

5

2

6

15
13

20
19

(a) ? ✗

3

5

2

6

10
13

35
19

(b) ? ✗

3

5

2

6

10
13

20
19

(c) ? ✓

3

5

2

6

15
13

35
19

(d) ? ✗

422

Temporal Motif Counting Problem – cont.

Count of a temporal motif M is: # of δ-instances of M in G

Problem

Given a temporal network G , a temporal motif M and a parameter δ ∈ R+ obtain the count of the
temporal motif M

The problem is NP-hard

The problem is NP-hard even for motifs in P for static networks (Liu et al., 2019)!

Lets look at existing algorithms

423

Temporal Motif Counting Problem – cont.

Count of a temporal motif M is: # of δ-instances of M in G

Problem

Given a temporal network G , a temporal motif M and a parameter δ ∈ R+ obtain the count of the
temporal motif M

The problem is NP-hard

The problem is NP-hard even for motifs in P for static networks (Liu et al., 2019)!

Lets look at existing algorithms

424

Exact Algorithm by Paranjape et al. (2017)
The proposed algorithm computes the counts of all {2, 3}-node 3-edge temporal motifs.

General framework

▶ computes the aggregate graph GA of G

▶ enumerates all subgraphs H ⊆ GA isomorphic to K (i.e., H ∼ K)

▶ for each H gathers the corresponding temporal networks GH and sorts edges by timestamps
▶ applies dynamic-programming to obtain the counts of all the sequences of length ℓ in a window of

size δ

Runtime. O(|E |+ nk +
∑

H∼K |EGH
|(log(|EGH

|) + |EH |ℓ)
Specialized routines for specific motif classes through dynamic programming

425

Exact Algorithm by Paranjape et al. (2017)

The proposed algorithm computes the counts of all {2, 3}-node 3-edge temporal motifs.

General framework

▶ computes the aggregate graph GA of G

▶ enumerates all subgraphs H ⊆ GA isomorphic to K (i.e., H ∼ K)

▶ for each H gathers the corresponding temporal networks GH and sorts edges by timestamps

▶ applies dynamic-programming to obtain the counts of all the sequences of length ℓ in a window of
size δ

Runtime. O(|E |+ nk +
∑

H∼K |EGH
|(log(|EGH

|) + |EH |ℓ)

Specialized routines for specific motif classes through dynamic programming

426

Exact Algorithm by Paranjape et al. (2017)

The proposed algorithm computes the counts of all {2, 3}-node 3-edge temporal motifs.

General framework

▶ computes the aggregate graph GA of G

▶ enumerates all subgraphs H ⊆ GA isomorphic to K (i.e., H ∼ K)

▶ for each H gathers the corresponding temporal networks GH and sorts edges by timestamps

▶ applies dynamic-programming to obtain the counts of all the sequences of length ℓ in a window of
size δ

Runtime. O(|E |+ nk +
∑

H∼K |EGH
|(log(|EGH

|) + |EH |ℓ)

Specialized routines for specific motif classes through dynamic programming

427

Other Exact Algorithms

Other exact approaches

(Mackey et al., 2018) enumerates all δ-instances of a fixed temporal motif M without constrains

(Pashanasangi and Seshadhri, 2021) Fast algorithms for temporal triangle counting based on
degeneracy ordering

(Gao et al., 2022) improved algorithms for counting {2, 3}-node 3-edge temporal motifs

(Sarpe, 2023) improved (Mackey et al., 2018) by different matching criteria and timeline partition

(Yuan et al., 2023) dedicated hardware for counting temporal motifs

(Cai et al., 2023) exact algorithms for counting butterflies in temporal bipartite networks

...

As the problem is hard, often better rely on approximate counting!

428

Motif Approximation Problem
Problem

Given a temporal network G , a temporal motif M and a parameter δ ∈ R+, and two additional
parameters ε, η ∈ (0, 1)2 obtain C ′ an estimate of the count C of the temporal motif M with

P[|C ′ − C | ≥ εC] ≤ η

Why approximate counts?

▶ often efficient and practical to compute on massive data

▶ approximations are robust to noisy data

▶ guarantees on the quality of estimate

429

Motif Approximation Problem
Problem

Given a temporal network G , a temporal motif M and a parameter δ ∈ R+, and two additional
parameters ε, η ∈ (0, 1)2 obtain C ′ an estimate of the count C of the temporal motif M with

P[|C ′ − C | ≥ εC] ≤ η

Why approximate counts?

▶ often efficient and practical to compute on massive data

▶ approximations are robust to noisy data

▶ guarantees on the quality of estimate

430

Approximation Algorithms

Most of approximate algorithm are based on randomized sampling

(Liu et al., 2019): partitioning time-span of G in non-overlapping windows and uses importance
sampling to decide windows to explore

(Wang et al., 2020): sampling temporal edges with fixed probability, specialized estimators for
triangles, and streaming

(Sarpe and Vandin, 2021b; Sarpe, 2023): interval based algorithms performing uniform sampling
without partitioning

(Pu et al., 2023): edges sampling techniques for counting temporal butterflies on undirected bipartite
temporal networks

. . .

431

On the Selection of σ (Sarpe and Vandin, 2021a)
A temporal motif is a pair (K , σ), how to properly pick σ?

v2

v3

v1

v4

σ3

σ1

σ2 v2

v3

v1

v4

σ1

σ2

σ3

Multiple values of σ may need to be tested!

Problem

Given a temporal network G , a parameter δ ∈ R+, a static undirected subgraph H and a value ℓ ≥ |EH |
compute the count of all temporal motifs “mapping” on H and having ℓ temporal edges

Example. Fix ℓ = 3 then

(a) H

t1

t2

t3 t1

t2

t3 t1

t2

t3 t1

t2

t3

t1

t3

t2 t1

t3

t2 t1

t3

t2 t1

t3

t2

(b) motifs to “count”

432

On the Selection of σ (Sarpe and Vandin, 2021a)

A temporal motif is a pair (K , σ), how to properly pick σ?

Multiple values of σ may need to be tested!

Problem

Given a temporal network G , a parameter δ ∈ R+, a static undirected subgraph H and a value ℓ ≥ |EH |
compute the count of all temporal motifs “mapping” on H and having ℓ temporal edges

Example. Fix ℓ = 3 then

(a) H

t1

t2

t3 t1

t2

t3 t1

t2

t3 t1

t2

t3

t1

t3

t2 t1

t3

t2 t1

t3

t2 t1

t3

t2

(b) motifs to “count”

433

On the Selection of σ (Sarpe and Vandin, 2021a)

A temporal motif is a pair (K , σ), how to properly pick σ?

Multiple values of σ may need to be tested!

Problem

Given a temporal network G , a parameter δ ∈ R+, a static undirected subgraph H and a value ℓ ≥ |EH |
compute the count of all temporal motifs “mapping” on H and having ℓ temporal edges

Example. Fix ℓ = 3 then

(a) H

t1

t2

t3 t1

t2

t3 t1

t2

t3 t1

t2

t3

t1

t3

t2 t1

t3

t2 t1

t3

t2 t1

t3

t2

(b) motifs to “count”

434

odeN (Sarpe and Vandin, 2021a)

Proposed algorithm odeN: randomized sampling algorithm + theoretical guarantees

435

odeN (Sarpe and Vandin, 2021a)

Proposed algorithm odeN: randomized sampling algorithm + theoretical guarantees

Efficiently estimates multiple temporal motifs counts simultaneously. H: triangle and data comes from
Facebook posts, varying ℓ.

436

Are there applications?

Temporal motifs enabled both novel algorithmic problems and more nuanced applications

437

Are there applications?

Temporal motifs enabled both novel algorithmic problems and more nuanced applications

438

Stochastic Block Models (Porter et al., 2022)

Goal. Obtain highly accurate stochastic block models (SBM) to capture temporal motif δ-instances

Proposed solution. Temporal Activity SBM

1. partition nodes according to their activity level {in, out}-edges (resp. C in, cout groups)

2. model temporal edges according

θ =

θ1,1θ1,2
θ2,1θ2,2

where θ ∈ RC in×C out

models edge occurrence

3. analytical computation of motif counts according to such model

439

Stochastic Block Models (Porter et al., 2022)

Goal. Obtain highly accurate stochastic block models (SBM) to capture temporal motif δ-instances

Proposed solution. Temporal Activity SBM
1. partition nodes according to their activity level {in, out}-edges (resp. C in, cout groups)
2. model temporal edges according

θ =

θ1,1θ1,2
θ2,1θ2,2

where θ ∈ RC in×C out

models edge occurrence
3. analytical computation of motif counts according to such model

The model accurately tracks temporal motif counts. Financial dataset recorded over 10 years,
δ = 90 days, left M1 = ⟨(v1, v2), (v3, v2), (v1, v2)⟩, right M2 = ⟨(v1, v2), (v2, v1), (v2, v1)⟩

440

Synthetic Network Generators (Liu and Sariyüce, 2023)

Goal. Obtain a synthetic temporal network, similar to the one in input for temporal motifs

Proposed solution. Motif Transition Model

Cold event (CE): first event on a temporal motif instance

1. compute temporal network statistics

– static degree distribution (KCE) and timestamps (TCE) of cold events

– P motif-transition properties (how likely are motifs to evolve from one to another)

– Λ motif transition rated (how often they transition)

– µ number of static edges involved in transitions.

2. generate static network from KCE and assign (TCE)

3. simulate transition process according to computed metrics

441

Synthetic Network Generators (Liu and Sariyüce, 2023)
Goal. Obtain a synthetic temporal network, similar to the one in input for temporal motifs

Proposed solution. Motif Transition Model

Cold event (CE): first event on a temporal motif instance

1. compute temporal network statistics

– static degree distribution (KCE) and timestamps (TCE) of cold events

– P motif-transition properties (how likely are motifs to evolve from one to another)

– Λ motif transition rated (how often they transition)

– µ number of static edges involved in transitions.

2. generate static network from KCE and assign (TCE)

3. simulate transition process according to computed metrics

442

Mining Persistent Events (Belth et al., 2020)

Goal. Distinguish between how motif occur over time streams

Proposed solution. Assign persistence score and algorithms to compute it

Let x be an event (e.g., temporal motif instance) then the persistence P(·)

P(x) = f

W (x)︸ ︷︷ ︸
width

, F (x)︸︷︷︸
frequency

, S(x)︸︷︷︸
uniformity

Online and offline streaming algorithms are developed, efficient for small size of events (small ℓ)

The score allows to distinguish between frequent/infrequence and bursty/persistent

443

Mining Persistent Events (Belth et al., 2020)
Goal. Distinguish between how motif occur over time streams

Proposed solution. Assign persistence score and algorithms to compute it

Let x be an event (e.g., temporal motif instance) then the persistence P(·)

P(x) = f

W (x)︸ ︷︷ ︸
width

, F (x)︸︷︷︸
frequency

, S(x)︸︷︷︸
uniformity

Online and offline streaming algorithms are developed, efficient for small size of events (small ℓ)

The score allows to distinguish between frequent/infrequence and bursty/persistent

444

Some Practical Applications (Liu et al., 2024)

▶ capturing high-order patterns for phishing gang identification on cryptocurrency networks

445

Some Practical Applications (Lei et al., 2020)

▶ analyzing different temporal travel patterns in people commuting (metro vs bike sharing)

(a) using metro (b) using bikesharing

446

Other Temporal Motif Definitions

Several other definitions exist in literature

▶ (Boekhout et al., 2019): studied temporal multilayer motifs

▶ (Lee and Shin, 2023): studied temporal hypergraph motifs

▶ (Longa et al., 2021): studied motifs based ego-networks

▶ (Kosyfaki et al., 2018): defined motifs for temporal networks with flows

▶ ...

If you want to know more, check the survey by Liu et al. (2021)

447

448

Diffusion and Random Networks

449

Diffusion Analysis and Spreading

▶ propagation models

– used to study disease spreading or information
cascade in the network

▶ activity spreading: virus, information, idea, rumor

▶ applications: epidemiology, information security,
marketing

▶ why use models?

– facilitate mathematical analysis of propagation
– processes

– have intuitive interpretation

– proven to be realistic by empirical studies

▶ extensive survey in the book (Shakarian et al., 2015)

(a) t = 1

(b) t = 2

450

Standard Models

Most used models are

▶ susceptible-infected (SI) model

– SIR, SIRS, other variants

▶ independent cascade (IC) model

▶ linear threshold (LT) model

Such models are important building blocks for many data mining formulations!

451

Susceptible-Infectious (SI) Model

▶ beginning

– time step t0

– one or several infected nodes in It0 (seeds of infection)

▶ subsequent timestamp t

– all infected nodes try to infect each of their susceptible neighbors

– with probability p infection is passed through an edge

– if a node receives infection becomes infected

▶ the process continues until all nodes are infected.

Some other node types, recovered (nodes that were infectious and now cannot spread), and exposed
(infected that cannot spread)

452

Independent Cascade (IC) Model

▶ nodes can be in either susceptible or infectious

▶ each edge (u, v) has an individual infection probability (based on proximity, frequency, etc..)

▶ infected node u has a single chance to infect its neighbors

Used to study new propagation of ideas, concepts, or products (Kempe et al., 2003; Wang et al., 2012)

453

Linear Threshold (LT) Model

▶ every edge (u, v) has a probability p(u, v)

▶ at the time step t, u: susceptible → infectious, if the total weight from its infectious neighbors is
larger than a random propagation threshold θu∑

v∈N(u)

p(v , u)1[v is infectious at t] ≥ θu

▶ conditional on thresholds and the initially infected nodes the process is deterministic.

LT model has applications in viral-marketing (Chen et al., 2010; Goyal et al., 2011)

454

Mining Applications

Powerful modeling for many mining primitives

1. immunization strategies, e.g., find smallest set of nodes to stop a spreading process. (Lee et al.,
2012; Yu et al., 2010; Starnini et al., 2013; Génois et al., 2015; Mantzaris and Higham, 2016;
Valdano et al., 2015; Gauvin et al., 2015)

2. influence maximization, e.g., select the initial set of seeds, to optimize diffusion, applications in
marketing and network design. (Aggarwal et al., 2012; Zhuang et al., 2013; Gayraud et al., 2015;
Rodriguez et al., 2011; Gomez-Rodriguez et al., 2016; Chen et al., 2012; Liu et al., 2012;
Rodriguez and Schölkopf, 2012; Du et al., 2013)

3. seed and cascade reconstruction, e.g., given some observed data of a spreading phenomenon,
find the most probable seed nodes or cascades, applications in epidemiology and nfluencer
discovery. (Shah and Zaman, 2011; Lappas et al., 2010; Prakash et al., 2012)

455

Random Models

Common questions in temporal data analysis

▶ how novel is this result?

▶ is this only due to random chance?

▶ are there properties in the data explaining the results?

To find an answer → use a statistical test (Pellegrina et al., 2019)

▶ start from a temporal network G

▶ formulate an hypothesis (H0) about data (e.g., time does not matter for f (G))

▶ perform a test to reject H0, usually

– generate multiple datasets GH0
1 , . . . ,GH0

L for some large L according to H0

– compute some function g(GH0
1 , . . . ,GH0

L) to reject H0 (e.g., g(·) not explains f (G)).

456

Random Models

Common questions in temporal data analysis

▶ how novel is this result?

▶ is this only due to random chance?

▶ are there properties in the data explaining the results?

To find an answer → use a statistical test (Pellegrina et al., 2019)

▶ start from a temporal network G

▶ formulate an hypothesis (H0) about data (e.g., time does not matter for f (G))

▶ perform a test to reject H0, usually

– generate multiple datasets GH0
1 , . . . ,GH0

L for some large L according to H0

– compute some function g(GH0
1 , . . . ,GH0

L) to reject H0 (e.g., g(·) not explains f (G)).

457

Random Models Gauvin et al. (2022)

Randomized models are used to test temporal/static properties in data
A temporal network as time-line of events

We have

1. static structure (SS)

2. timeline associated to its links (TL)

To obtain random models → use these two properties or combinations of the two

Let us see some examples

458

Random Models Gauvin et al. (2022)

Randomized models are used to test temporal/static properties in data
A temporal network as time-line of events

We have

1. static structure (SS)

2. timeline associated to its links (TL)

To obtain random models → use these two properties or combinations of the two

Let us see some examples

459

Random Models Gauvin et al. (2022)

Shuffling only static properties while fixing the temporal ones

(a) link shuffling

(b) (conn.) constrained degree link shuffling

460

Random Models Gauvin et al. (2022)

timeline shuffling

This model retains static properties and conditions on the observed temporal ones

461

Random Models Gauvin et al. (2022)

Other models retaining static properties

(a) shuffling events over each timeline

(b) shuffling events and retaining gaps

... and much more such combinations (static + temporal) ...

462

Random Models Gauvin et al. (2022)

Some random models for snapshot-based temporal networks

(a) snapshot shuffling

(b) isomorphism based

463

Random Models

Summary.

▶ random models can be of fundamental importance for testing significance/generating additional
data

▶ they can be applied for most of the mining problems that we discussed

▶ some of them may be hard to compute and new methods may be required

464

Agenda

Part I : Introduction and Motivation

▶ models of temporal networks

▶ algorithmic approaches

Part II : Mining Temporal Networks A:

▶ connectivity, temporal properties

▶ centrality, cores

Part III : Mining Temporal Networks B:

▶ communities, patterns and events

▶ diffusion and random networks

Part IV : Tools and Code Libraries

Part V : Challenges, Open Problems, and Trends

465

Part IV

Tools and Code Libraries

466

Tools Overview

Tool Name Language Functionalities

SNAP C++/Python Temporal motifs

Graph-tool Python/C++ Simulate network dynamics (e.g., spreading)

Teneto Python Temporal network measures (centrality, reachability, etc..), community detection, visualization

Phasik Python Infer temporal networks from time series data

Reticula C++/Python Random networks, random models, temporal reachability, events...

Tglib C++/Python Paths, centrality and other properties (cores, clustering coefficient, etc..)

Raphtory Rust/Python Centrality, communities, cores, motifs, null models, visualization and more...

https://github.com/snap-stanford/snap
https://graph-tool.skewed.de/
https://github.com/wiheto/teneto
https://phasik.readthedocs.io/en/latest/
https://docs.reticula.network/
https://gitlab.com/tgpublic/tglib
https://github.com/Pometry/Raphtory

467

Agenda

Part I : Introduction and Motivation

▶ models of temporal networks

▶ algorithmic approaches

Part II : Mining Temporal Networks A:

▶ connectivity, temporal properties

▶ centrality, cores

Part III : Mining Temporal Networks B:

▶ communities, patterns and events

▶ diffusion and random networks

Part IV : Tools and Code Libraries

Part V : Challenges, Open Problems, and Trends

468

Part V

Challenges, Open Problems, and Trends

469

Challenges in Temporal Network Mining

▶ large number of problem formulations and variants

▶ gaps fundamental theoretical treatment

– many are combinations of several ideas of static cases

– require often many parameters

▶ hard to compare methods and choose based on applications

– few datasets with ground-truth solutions

– synthetic generators are built on various assumptions

– no standards and benchmarks

– as always: lack of useful and rich datasets

▶ a large number of quality metrics to calculate and compare

▶ comparisons are misleading if methods are designed for other definitions

470

Directions in Temporal Network Mining

▶ more systematic approaches, quality guarantees

▶ interpretability of the results

▶ diversity and fairness

▶ applications and application-tailored algorithms

– encourage interdisciplinary research and collaborations

– computational social science

471

Thanks for your attention!

https://miningtemporalnetworks.github.io/

menti.com

code: 14 46 97 6

https://miningtemporalnetworks.github.io/
menti.com

472

references I

Aggarwal, C. and Subbian, K. (2014). Evolutionary network analysis: A survey. ACM Computing Surveys (CSUR),
47(1):10.

Aggarwal, C. C., Lin, S., and Yu, P. S. (2012). On influential node discovery in dynamic social networks. In Proceedings
of the 2012 SIAM International Conference on Data Mining, pages 636–647. SIAM.

Akrida, E. C., Gasieniec, L., Mertzios, G. B., and Spirakis, P. G. (2017). The complexity of optimal design of temporally
connected graphs. Theory of Computing Systems, 61:907–944.

Akrida, E. C., Mertzios, G. B., Spirakis, P. G., and Zamaraev, V. (2020). Temporal vertex cover with a sliding time
window. Journal of Computer and System Sciences, 107:108–123.

Aynaud, T., Fleury, E., Guillaume, J., Wang, Q., Ganguly, N., Mukherjee, A., Mitra, B., Peruani, F., and Choudhury, M.
(2013). Dynamics on and of complex networks.

Banerjee, S. and Pal, B. (2022). An efficient updation approach for enumerating maximal (∆, γ)-cliques of a temporal
network. Journal of Complex Networks, 10(5).

Becker, R., Crescenzi, P., Cruciani, A., and Kodric, B. (2023). Proxying betweenness centrality rankings in temporal
networks. In 21st International Symposium on Experimental Algorithms (SEA 2023). Schloss-Dagstuhl-Leibniz
Zentrum für Informatik.

Belth, C., Zheng, X., and Koutra, D. (2020). Mining persistent activity in continually evolving networks. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’20. ACM.

Berman, K. A. (1996). Vulnerability of scheduled networks and a generalization of menger’s theorem. Networks: An
International Journal, 28(3):125–134.

Bhadra, S. and Ferreira, A. (2003). Complexity of connected components in evolving graphs and the computation of
multicast trees in dynamic networks. In Ad-Hoc, Mobile, and Wireless Networks: Second International Conference,
ADHOC-NOW2003, Montreal, Canada, October 8-10, 2003. Proceedings 2, pages 259–270. Springer.

473

references II

Bi, J., Jin, J., Qu, C., Zhan, X., Wang, G., and Yan, G. (2021). Temporal gravity model for important node identification
in temporal networks. Chaos, Solitons & Fractals, 147:110934.

Boekhout, H. D., Kosters, W. A., and Takes, F. W. (2019). Efficiently counting complex multilayer temporal motifs in
large-scale networks. Computational Social Networks, 6(1).

Bonchi, F., Bordino, I., Gullo, F., and Stilo, G. (2019). The importance of unexpectedness: Discovering buzzing stories in
anomalous temporal graphs. Web Intelligence, 17(3):177–198.

Borgatti, S. P. and Everett, M. G. (2006). A graph-theoretic perspective on centrality. Social networks, 28(4):466–484.

Buß, S., Molter, H., Niedermeier, R., and Rymar, M. (2020). Algorithmic aspects of temporal betweenness. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages
2084–2092.

Cai, X., Ke, X., Wang, K., Chen, L., Zhang, T., Liu, Q., and Gao, Y. (2023). Efficient temporal butterfly counting and
enumeration on temporal bipartite graphs. Proceedings of the VLDB Endowment, 17(4):657–670.

Casteigts, A., Flocchini, P., Quattrociocchi, W., and Santoro, N. (2012). Time-varying graphs and dynamic networks.
International Journal of Parallel, Emergent and Distributed Systems, 27(5):387–408.

Casteigts, A., Himmel, A.-S., Molter, H., and Zschoche, P. (2021). Finding temporal paths under waiting time
constraints. Algorithmica, 83(9):2754–2802.

Cencetti, G., Battiston, F., Lepri, B., and Karsai, M. (2021). Temporal properties of higher-order interactions in social
networks. Scientific reports, 11(1):7028.

Chaintreau, A., Mtibaa, A., Massoulie, L., and Diot, C. (2007). The diameter of opportunistic mobile networks. In
Proceedings of the 2007 ACM CoNEXT conference, page 12. ACM.

Charikar, M. (2000). Greedy approximation algorithms for finding dense components in a graph. In International
Workshop on Approximation Algorithms for Combinatorial Optimization, pages 84–95. Springer.

474

references III

Charikar, M., Naamad, Y., and Wu, J. (2018). On finding dense common subgraphs.

Chen, W., Lu, W., and Zhang, N. (2012). Time-critical influence maximization in social networks with time-delayed
diffusion process. In AAAI, volume 2012, pages 1–5.

Chen, W., Yuan, Y., and Zhang, L. (2010). Scalable influence maximization in social networks under the linear threshold
model. In Data Mining (ICDM), 2010 IEEE 10th International Conference on, pages 88–97. IEEE.

Christopoulos, K. and Tsichlas, K. (2022). State-of-the-Art in Community Detection in Temporal Networks, pages
370–381. Springer International Publishing.

Chu, L., Zhang, Y., Yang, Y., Wang, L., and Pei, J. (2019). Online density bursting subgraph detection from temporal
graphs. Proceedings of the VLDB Endowment, 12(13):2353–2365.

Ciaperoni, M., Galimberti, E., Bonchi, F., Cattuto, C., Gullo, F., and Barrat, A. (2020). Relevance of temporal cores for
epidemic spread in temporal networks. Scientific reports, 10(1):12529.

Clauset, A. and Eagle, N. (2012). Persistence and periodicity in a dynamic proximity network. arXiv preprint
arXiv:1211.7343.

Crescenzi, P., Magnien, C., and Marino, A. (2020). Finding top-k nodes for temporal closeness in large temporal graphs.
Algorithms, 13(9):211.

Cruciani, A. (2023). On approximating the temporal betweenness centrality through sampling. arXiv preprint
arXiv:2304.08356.

Dakiche, N., Tayeb, F. B.-S., Slimani, Y., and Benatchba, K. (2019). Tracking community evolution in social networks: A
survey. Information Processing & Management, 56(3):1084–1102.

Du, N., Song, L., Rodriguez, M. G., and Zha, H. (2013). Scalable influence estimation in continuous-time diffusion
networks. In Advances in neural information processing systems, pages 3147–3155.

475

references IV

Elmezain, M., Othman, E. A., and Ibrahim, H. M. (2021). Temporal degree-degree and closeness-closeness: A new
centrality metrics for social network analysis. Mathematics, 9(22):2850.

Enright, J., Meeks, K., Mertzios, G. B., and Zamaraev, V. (2021). Deleting edges to restrict the size of an epidemic in
temporal networks. Journal of Computer and System Sciences, 119:60–77.

Enugala, R., Rajamani, L., Ali, K., and Kurapati, S. (2015). Community detection in dynamic social networks: a survey.
International Journal of Research and Applications, 2(6):278–285.

Fortunato, S. and Hric, D. (2016). Community detection in networks: A user guide. Physics reports, 659:1–44.

Fu, D., Zhou, D., and He, J. (2020). Local motif clustering on time-evolving graphs. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’20. ACM.

Fu, D., Zhou, D., Maciejewski, R., Croitoru, A., Boyd, M., and He, J. (2023). Fairness-aware clique-preserving
spectral clustering of temporal graphs. In Proceedings of the ACM Web Conference 2023, WWW ’23. ACM.

Galimberti, E., Ciaperoni, M., Barrat, A., Bonchi, F., Cattuto, C., and Gullo, F. (2020). Span-core decomposition for
temporal networks: Algorithms and applications. TKDD, 15(1):1–44.

Gao, Z., Cheng, C., Yu, Y., Cao, L., Huang, C., and Dong, J. (2022). Scalable motif counting for large-scale temporal
graphs. In 2022 IEEE 38th International Conference on Data Engineering (ICDE). IEEE.

Gao, Z., Shi, Y., and Chen, S. (2015). Measures of node centrality in mobile social networks. International Journal of
Modern Physics C, 26(09):1550107.

Gauvin, L., Génois, M., Karsai, M., Kivelä, M., Takaguchi, T., Valdano, E., and Vestergaard, C. L. (2022). Randomized
reference models for temporal networks. SIAM Review, 64(4):763–830.

Gauvin, L., Panisson, A., Barrat, A., and Cattuto, C. (2015). Revealing latent factors of temporal networks for mesoscale
intervention in epidemic spread. arXiv preprint arXiv:1501.02758.

476

references V

Gayraud, N. T., Pitoura, E., and Tsaparas, P. (2015). Diffusion maximization in evolving social networks. In Proceedings
of the 2015 ACM on Conference on Online Social Networks, pages 125–135. ACM.

Génois, M., Vestergaard, C. L., Fournet, J., Panisson, A., Bonmarin, I., and Barrat, A. (2015). Data on face-to-face
contacts in an office building suggest a low-cost vaccination strategy based on community linkers. Network Science,
3(3):326–347.

Goh, K.-I. and Barabási, A.-L. (2008). Burstiness and memory in complex systems. Europhysics Letters, 81(4):48002.

Goldberg, A. V. (1984). Finding a maximum density subgraph. Technical report, University of California at Berkeley.

Gomez-Rodriguez, M., Song, L., Du, N., Zha, H., and Schölkopf, B. (2016). Influence estimation and maximization in
continuous-time diffusion networks. ACM Transactions on Information Systems (TOIS), 34(2):9.

Goyal, A., Lu, W., and Lakshmanan, L. V. (2011). Simpath: An efficient algorithm for influence maximization under the
linear threshold model. In Data Mining (ICDM), 2011 IEEE 11th International Conference on, pages 211–220. IEEE.

Gupta, S. and Bedathur, S. (2022). A survey on temporal graph representation learning and generative modeling. arXiv
preprint arXiv:2208.12126.

Hamm, T., Klobas, N., Mertzios, G. B., and Spirakis, P. G. (2022). The complexity of temporal vertex cover in
small-degree graphs. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages 10193–10201.

Hanauer, K., Henzinger, M., and Schulz, C. (2021). Recent advances in fully dynamic graph algorithms. arXiv preprint
arXiv:2102.11169.

Hartmann, T., Kappes, A., and Wagner, D. (2016). Clustering evolving networks. In Algorithm Engineering, pages
280–329. Springer.

Henzinger, M. R., King, V., and King, V. (1999). Randomized fully dynamic graph algorithms with polylogarithmic time
per operation. Journal of the ACM (JACM), 46(4):502–516.

477

references VI

Himmel, A.-S., Bentert, M., Nichterlein, A., and Niedermeier, R. (2019). Efficient computation of optimal temporal walks
under waiting-time constraints. In International Conference on Complex Networks and Their Applications, pages
494–506. Springer.

Himmel, A.-S., Molter, H., Niedermeier, R., and Sorge, M. (2017). Adapting the bron–kerbosch algorithm for
enumerating maximal cliques in temporal graphs. Social Network Analysis and Mining, 7:1–16.

Holme, P. (2015). Modern temporal network theory: a colloquium. The European Physical Journal B, 88(9):234.

Hu, W., Zou, H., and Gong, Z. (2015). Temporal pagerank on social networks. In Web Information Systems
Engineering–WISE 2015: 16th International Conference, Miami, FL, USA, November 1-3, 2015, Proceedings, Part I
16, pages 262–276. Springer.

Hung, W.-C. and Tseng, C.-Y. (2021). Maximum (l, k)-lasting cores in temporal social networks. In DASFAA Intl
Workshops, pages 336–352, Cham.

Kazemi, S. M., Goel, R., Jain, K., Kobyzev, I., Sethi, A., Forsyth, P., and Poupart, P. (2020). Representation learning for
dynamic graphs: A survey. Journal of Machine Learning Research, 21(70):1–73.

Kempe, D., Kleinberg, J., and Tardos, É. (2003). Maximizing the spread of influence through a social network. In
Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pages
137–146. ACM.

Kim, H. and Anderson, R. (2012). Temporal node centrality in complex networks. Physical Review E, 85(2):026107.

Klobas, N., Mertzios, G. B., Molter, H., Niedermeier, R., and Zschoche, P. (2023). Interference-free walks in time:
Temporally disjoint paths. Autonomous Agents and Multi-Agent Systems, 37(1):1.

Klobas, N., Mertzios, G. B., Molter, H., and Spirakis, P. G. (2022). The complexity of computing optimum labelings for
temporal connectivity. arXiv preprint arXiv:2202.05880.

478

references VII

Kong, Y.-X., Shi, G.-Y., Wu, R.-J., and Zhang, Y.-C. (2019). k-core: Theories and applications. Physics Reports,
832:1–32.

Kosyfaki, C., Mamoulis, N., Pitoura, E., and Tsaparas, P. (2018). Flow motifs in interaction networks.

Kovanen, L., Karsai, M., Kaski, K., Kertész, J., and Saramäki, J. (2011). Temporal motifs in time-dependent networks.
Journal of Statistical Mechanics: Theory and Experiment, 2011(11):P11005.

Kovanen, L., Kaski, K., Kertész, J., and Saramäki, J. (2013). Temporal motifs reveal homophily, gender-specific patterns,
and group talk in call sequences. Proceedings of the National Academy of Sciences, 110(45):18070–18075.

Kujala, R., Weckström, C., Mladenović, M. N., and Saramäki, J. (2018). Travel times and transfers in public transport:
Comprehensive accessibility analysis based on pareto-optimal journeys. Computers, Environment and Urban Systems,
67:41–54.

Lappas, T., Terzi, E., Gunopulos, D., and Mannila, H. (2010). Finding effectors in social networks. In Proceedings of the
16th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 1059–1068. ACM.

Latapy, M., Viard, T., and Magnien, C. (2018). Stream graphs and link streams for the modeling of interactions over
time. Social Network Analysis and Mining, 8(1):61.

Lee, G. and Shin, K. (2023). Temporal hypergraph motifs. Knowledge and Information Systems, 65(4):1549–1586.

Lee, S., Rocha, L. E., Liljeros, F., and Holme, P. (2012). Exploiting temporal network structures of human interaction to
effectively immunize populations. PloS one, 7(5):e36439.

Lehmann, S. (2019). Fundamental structures in dynamic communication networks. arXiv preprint arXiv:1907.09966.

Lei, D., Chen, X., Cheng, L., Zhang, L., Ukkusuri, S. V., and Witlox, F. (2020). Inferring temporal motifs for travel
pattern analysis using large scale smart card data. Transportation Research Part C: Emerging Technologies,
120:102810.

479

references VIII

Li, R.-H., Su, J., Qin, L., Yu, J. X., and Dai, Q. (2018). Persistent community search in temporal networks. In 2018 IEEE
34th International Conference on Data Engineering (ICDE), pages 797–808. IEEE.

Lin, L., Yuan, P., Li, R.-H., Wang, J., Liu, L., and Jin, H. (2022). Mining stable quasi-cliques on temporal networks.
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52(6):3731–3745.

Liu, B., Cong, G., Xu, D., and Zeng, Y. (2012). Time constrained influence maximization in social networks. In Data
Mining (ICDM), 2012 IEEE 12th International Conference on, pages 439–448. IEEE.

Liu, J., Chen, J., Wu, J., Wu, Z., Fang, J., and Zheng, Z. (2024). Fishing for fraudsters: Uncovering ethereum phishing
gangs with blockchain data. IEEE Transactions on Information Forensics and Security, 19:3038–3050.

Liu, P., Benson, A. R., and Charikar, M. (2019). Sampling methods for counting temporal motifs. In Proceedings of the
Twelfth ACM International Conference on Web Search and Data Mining, WSDM ’19. ACM.

Liu, P., Guarrasi, V., and Sariyuce, A. E. (2021). Temporal network motifs: Models, limitations, evaluation. IEEE
Transactions on Knowledge and Data Engineering, pages 1–1.

Liu, P. and Sariyüce, A. E. (2023). Using motif transitions for temporal graph generation. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’23. ACM.

Longa, A., Cencetti, G., Lepri, B., and Passerini, A. (2021). An efficient procedure for mining egocentric temporal motifs.
Data Mining and Knowledge Discovery, 36(1):355–378.

Longa, A., Lachi, V., Santin, G., Bianchini, M., Lepri, B., Lio, P., Scarselli, F., and Passerini, A. (2023). Graph neural
networks for temporal graphs: State of the art, open challenges, and opportunities. arXiv preprint arXiv:2302.01018.

Lotito, Q. F. and Montresor, A. (2020). Efficient algorithms to mine maximal span-trusses from temporal graphs. arXiv
preprint arXiv:2009.01928.

Lü, L., Zhou, T., Zhang, Q.-M., and Stanley, H. E. (2016). The h-index of a network node and its relation to degree and
coreness. Nature communications, 7(1):10168.

480

references IX
Ma, S., Hu, R., Wang, L., Lin, X., and Huai, J. (2020). An efficient approach to finding dense temporal subgraphs. IEEE

Transactions on Knowledge and Data Engineering, 32(4):645–658.

Mackey, P., Porterfield, K., Fitzhenry, E., Choudhury, S., and Chin, G. (2018). A chronological edge-driven approach to
temporal subgraph isomorphism. In 2018 IEEE International Conference on Big Data (Big Data). IEEE.

Malliaros, F. D., Giatsidis, C., Papadopoulos, A. N., and Vazirgiannis, M. (2020). The core decomposition of networks:
Theory, algorithms and applications. The VLDB Journal, 29(1):61–92.

Mantzaris, A. V. and Higham, D. J. (2016). Asymmetry through time dependency. The European Physical Journal B,
89(3):71.

Mertzios, G. B., Molter, H., Niedermeier, R., Zamaraev, V., and Zschoche, P. (2019). Computing maximum matchings in
temporal graphs. arXiv preprint arXiv:1905.05304.

Mertzios, G. B., Molter, H., and Zamaraev, V. (2018). Sliding window temporal graph coloring. arXiv preprint
arXiv:1811.04753.

Mertzios, G. B., Nikoletseas, S., Raptopoulos, C., and Spirakis, P. G. (2024). On the existence of δ-temporal cliques in
random simple temporal graphs. arXiv preprint arXiv:2404.07147.

Michail, O. (2016). An introduction to temporal graphs: An algorithmic perspective. Internet Mathematics,
12(4):239–280.

Michail, O. and Spirakis, P. G. (2016). Traveling salesman problems in temporal graphs. Theoretical Computer Science,
634:1–23.

Muthukrishnan, S. et al. (2005). Data streams: Algorithms and applications. Foundations and Trends® in Theoretical
Computer Science, 1(2):117–236.

Mutzel, P. and Oettershagen, L. (2019). On the enumeration of bicriteria temporal paths. In Theory and Applications of
Models of Computation: 15th Annual Conference, TAMC 2019, Kitakyushu, Japan, April 13–16, 2019, Proceedings
15, pages 518–535. Springer.

481

references X
Oettershagen, L., Konstantinidis, A. L., and Italiano, G. F. (2023a). Temporal network core decomposition and

community search. arXiv preprint arXiv:2309.11843.

Oettershagen, L., Kriege, N. M., and Mutzel, P. (2023b). A higher-order temporal h-index for evolving networks. In
Singh, A. K., Sun, Y., Akoglu, L., Gunopulos, D., Yan, X., Kumar, R., Ozcan, F., and Ye, J., editors, Proceedings of
the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2023, Long Beach, CA, USA,
August 6-10, 2023, pages 1770–1782. ACM.

Oettershagen, L. and Mutzel, P. (2022). Computing top-k temporal closeness in temporal networks. Knowledge and
Information Systems, 64(2):507–535.

Oettershagen, L. and Mutzel, P. (2023). An index for temporal closeness computation in evolving graphs. In Proceedings
of the 2023 SIAM International Conference on Data Mining (SDM), pages 280–288. SIAM.

Paranjape, A., Benson, A. R., and Leskovec, J. (2017). Motifs in temporal networks. In Proceedings of the Tenth ACM
International Conference on Web Search and Data Mining, pages 601–610. ACM.

Pashanasangi, N. and Seshadhri, C. (2021). Faster and generalized temporal triangle counting, via degeneracy ordering.
In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, KDD ’21. ACM.

Pellegrina, L., Riondato, M., and Vandin, F. (2019). Hypothesis testing and statistically-sound pattern mining. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’19.
ACM.

Porter, A., Mirzasoleiman, B., and Leskovec, J. (2022). Analytical models for motifs in temporal networks. In Companion
Proceedings of the Web Conference 2022, WWW ’22. ACM.

Prakash, B. A., Vreeken, J., and Faloutsos, C. (2012). Spotting culprits in epidemics: How many and which ones? In
Data Mining (ICDM), 2012 IEEE 12th International Conference on, pages 11–20. IEEE.

Preti, G., Rozenshtein, P., Gionis, A., and Velegrakis, Y. (2021). Discovering Dense Correlated Subgraphs in Dynamic
Networks, pages 395–407. Springer International Publishing.

482

references XI
Pu, J., Wang, Y., Li, Y., and Zhou, X. (2023). Sampling algorithms for butterfly counting on temporal bipartite graphs.

Qin, H., Li, R.-H., Wang, G., Huang, X., Yuan, Y., and Yu, J. X. (2020). Mining stable communities in temporal
networks by density-based clustering. IEEE Transactions on Big Data.

Qin, H., Li, R.-H., Yuan, Y., Dai, Y., and Wang, G. (2023). Densest periodic subgraph mining on large temporal graphs.
IEEE Transactions on Knowledge and Data Engineering, 35(11):11259–11273.

Qin, H., Li, R.-H., Yuan, Y., Wang, G., Qin, L., and Zhang, Z. (2022). Mining bursting core in large temporal graphs.
Proceedings of the VLDB Endowment.

Renaud, L. and Naoki, M. (2016). A Guide To Temporal Networks, volume 4. World Scientific.

Ribeiro, P., Paredes, P., Silva, M. E. P., Aparicio, D., and Silva, F. (2021). A survey on subgraph counting: Concepts,
algorithms, and applications to network motifs and graphlets. ACM Computing Surveys, 54(2):1–36.

Rocha, L. E. and Masuda, N. (2014). Random walk centrality for temporal networks. New Journal of Physics,
16(6):063023.

Rodriguez, M. G., Balduzzi, D., and Schölkopf, B. (2011). Uncovering the temporal dynamics of diffusion networks. arXiv
preprint arXiv:1105.0697.

Rodriguez, M. G. and Schölkopf, B. (2012). Influence maximization in continuous time diffusion networks. arXiv preprint
arXiv:1205.1682.

Rossetti, G. and Cazabet, R. (2018). Community discovery in dynamic networks: a survey. ACM computing surveys
(CSUR), 51(2):1–37.

Rozenshtein, P., Bonchi, F., Gionis, A., Sozio, M., and Tatti, N. (2019). Finding events in temporal networks:
segmentation meets densest subgraph discovery. Knowledge and Information Systems, 62(4):1611–1639.

Rozenshtein, P. and Gionis, A. (2016). Temporal pagerank. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 674–689. Springer.

483

references XII

Rymar, M., Molter, H., Nichterlein, A., and Niedermeier, R. (2021). Towards classifying the polynomial-time solvability of
temporal betweenness centrality. In Graph-Theoretic Concepts in Computer Science: 47th International Workshop, WG
2021, Warsaw, Poland, June 23–25, 2021, Revised Selected Papers 47, pages 219–231. Springer.

Santoro, D. and Sarpe, I. (2022). Onbra: Rigorous estimation of the temporal betweenness centrality in temporal
networks. In Proceedings of the ACM Web Conference 2022, pages 1579–1588.

Santoro, N., Quattrociocchi, W., Flocchini, P., Casteigts, A., and Amblard, F. (2011). Time-varying graphs and social
network analysis: Temporal indicators and metrics. arXiv preprint arXiv:1102.0629.

Sarpe, I. (2023). Efficient and Rigorous Algorithms for the Analysis of Large Temporal Networks. PhD thesis, University
of Padova.

Sarpe, I. and Vandin, F. (2021a). oden: Simultaneous approximation of multiple motif counts in large temporal networks.
In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, CIKM ’21. ACM.

Sarpe, I. and Vandin, F. (2021b). PRESTO: Simple and Scalable Sampling Techniques for the Rigorous Approximation of
Temporal Motif Counts, pages 145–153. Society for Industrial and Applied Mathematics.

Scellato, S., Leontiadis, I., Mascolo, C., Basu, P., and Zafer, M. (2011). Evaluating temporal robustness of mobile
networks. IEEE Transactions on Mobile Computing, 12(1):105–117.

Seidman, S. B. (1983). Network structure and minimum degree. Social networks, 5(3):269–287.

Semertzidis, K., Pitoura, E., Terzi, E., and Tsaparas, P. (2016). Best friends forever (bff): Finding lasting dense
subgraphs. arXiv preprint arXiv:1612.05440.

Seshadhri, C. and Tirthapura, S. (2019). Scalable subgraph counting: The methods behind the madness. In Companion
Proceedings of The 2019 World Wide Web Conference, WWW ’19. ACM.

Shah, D. and Zaman, T. (2011). Rumors in a network: Who’s the culprit? IEEE Transactions on information theory,
57(8):5163–5181.

484

references XIII

Shakarian, P., Bhatnagar, A., Aleali, A., Shaabani, E., and Guo, R. (2015). Diffusion in social networks. Springer.

Starnini, M., Machens, A., Cattuto, C., Barrat, A., and Pastor-Satorras, R. (2013). Immunization strategies for epidemic
processes in time-varying contact networks. Journal of theoretical biology, 337:89–100.

Su, X., Xue, S., Liu, F., Wu, J., Yang, J., Zhou, C., Hu, W., Paris, C., Nepal, S., Jin, D., Sheng, Q. Z., and Yu, P. S.
(2024). A comprehensive survey on community detection with deep learning. IEEE Transactions on Neural Networks
and Learning Systems, 35(4):4682–4702.

Tang, J., Musolesi, M., Mascolo, C., and Latora, V. (2009). Temporal distance metrics for social network analysis. In
Proceedings of the 2nd ACM workshop on Online social networks, pages 31–36. ACM.

Tang, J., Musolesi, M., Mascolo, C., Latora, V., and Nicosia, V. (2010a). Analysing information flows and key mediators
through temporal centrality metrics. In Proceedings of the 3rd Workshop on Social Network Systems, pages 1–6.

Tang, J., Scellato, S., Musolesi, M., Mascolo, C., and Latora, V. (2010b). Small-world behavior in time-varying graphs.
Physical Review E, 81(5):055101.

Tao, L., Kong, S., He, L., Zhang, F., Li, X., Jia, T., and Han, Z. (2022). A sequential-path tree-based centrality for
identifying influential spreaders in temporal networks. Chaos, Solitons & Fractals, 165:112766.

Taylor, D., Porter, M. A., and Mucha, P. J. (2021). Tunable eigenvector-based centralities for multiplex and temporal
networks. Multiscale Modeling & Simulation, 19(1):113–147.

Thejaswi, S., Lauri, J., and Gionis, A. (2020). Restless reachability problems in temporal graphs. arXiv preprint
arXiv:2010.08423.

Thorup, M. (2000). Near-optimal fully-dynamic graph connectivity. In Proceedings of the thirty-second annual ACM
symposium on Theory of computing, pages 343–350. Citeseer.

Tsalouchidou, I., Baeza-Yates, R., Bonchi, F., Liao, K., and Sellis, T. (2020). Temporal betweenness centrality in
dynamic graphs. International Journal of Data Science and Analytics, 9:257–272.

485

references XIV
Valdano, E., Poletto, C., Giovannini, A., Palma, D., Savini, L., and Colizza, V. (2015). Predicting epidemic risk from past

temporal contact data. PLoS computational biology, 11(3):e1004152.

Viard, J., Latapy, M., and Magnien, C. (2015). Revealing contact patterns among high-school students using maximal
cliques in link streams. In Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining 2015, pages 1517–1522.

Viard, T., Latapy, M., and Magnien, C. (2016). Computing maximal cliques in link streams. Theoretical Computer
Science, 609:245–252.

Wang, C., Chen, W., and Wang, Y. (2012). Scalable influence maximization for independent cascade model in large-scale
social networks. Data Mining and Knowledge Discovery, 25(3):545–576.

Wang, J., Wang, Y., Jiang, W., Li, Y., and Tan, K.-L. (2020). Efficient sampling algorithms for approximate temporal
motif counting. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management,
CIKM ’20. ACM.

Wen, D., Huang, Y., Zhang, Y., Qin, L., Zhang, W., and Lin, X. (2020). Efficiently answering span-reachability queries in
large temporal graphs. In 2020 IEEE 36th International Conference on Data Engineering (ICDE), pages 1153–1164.
IEEE.

Wu, H., Cheng, J., Huang, S., Ke, Y., Lu, Y., and Xu, Y. (2014). Path problems in temporal graphs. Proceedings of the
VLDB Endowment, 7(9):721–732.

Wu, H., Cheng, J., Lu, Y., Ke, Y., Huang, Y., Yan, D., and Wu, H. (2015). Core decomposition in large temporal graphs.
In Big Data, pages 649–658. IEEE.

Xie, H., Fang, Y., Xia, Y., Luo, W., and Ma, C. (2023). On querying connected components in large temporal graphs.
Proceedings of the ACM on Management of Data, 1(2):1–27.

Yang, J., Zhong, M., Zhu, Y., Qian, T., Liu, M., and Yu, J. X. (2023). Scalable time-range k-core query on temporal
graphs. arXiv preprint arXiv:2301.03770.

486

references XV

Yu, M., Wen, D., Qin, L., Zhang, Y., Zhang, W., and Lin, X. (2021). On querying historical k-cores. Proceedings of the
VLDB Endowment.

Yu, Y., Berger-Wolf, T. Y., Saia, J., et al. (2010). Finding spread blockers in dynamic networks. In Advances in Social
Network Mining and Analysis, pages 55–76. Springer.

Yuan, Y., Ye, H., Vedula, S., Kaza, W., and Talati, N. (2023). Everest: Gpu-accelerated system for mining temporal
motifs. Proceedings of the VLDB Endowment, 17(2):162–174.

Zaoli, S., Mazzarisi, P., and Lillo, F. (2019). Trip centrality: walking on a temporal multiplex with non-instantaneous link
travel time. Scientific reports, 9(1):10570.

Zhang, Y., Lin, L., Yuan, P., and Jin, H. (2022). Significant engagement community search on temporal networks:
Concepts and algorithms.

Zhuang, H., Sun, Y., Tang, J., Zhang, J., and Sun, X. (2013). Influence maximization in dynamic social networks. In
Data Mining (ICDM), 2013 IEEE 13th International Conference on, pages 1313–1318. IEEE.

	References

