

Large Language Models for Recommendation: Progresses and Future Direction

Lecture Tutorial For WWW 2024

Organizers: Jizhi Zhang, Keqin Bao, Yang Zhang, Wenjie Wang, Fuli Feng, Xiangnan He

Outline

- Introduction (Fuli Feng)
- Background: LM & LM4Rec (Fuli Feng)
- Development of LLMs (Keqin Bao)
- Progress of LLM4Rec
 - LLM4Rec (Keqin Bao & Wenjie Wang)
 - QA & Coffee Break
 - Trustworthy LLM4Rec (Jizhi Zhang)
- Open Problems (Yang Zhang)
- Future Direction & Conclusions (Fuli Feng)

□ Information explosion era

- E-commerce: 12 million items in Amazon.
- Social networks: 2.8 billion users in Facebook.
- Content sharing platforms: 720,000 hours videos uploaded to Youtube per day; 35 million videos posted on TikTok daily

□ Workflow of Recommender System

(1) Train recommender on collected interaction data to capture user preferences.

(2) Recommender genrates recommendations based on estimated preferences.

(3) User engage with the recommended tiems, forming new data, affected by open world.

(4) train recommender with new data again, either refining user interests or capturing new ones.

Core idea of personalized recommendation

Collaborative filtering (CF): •

> Making automatic predictions (filtering) about the interests of a user by collecting preferences from many users (collaborating).

□ Core idea of personalized recommendation

• Collaborative filtering (CF):

Making automatic <u>predictions</u> (filtering) about the interests of a <u>user</u> by collecting preferences from <u>many users</u> (collaborating).

□ Core idea of personalized recommendation

- Collaborative filtering (CF): collaborative information
- Content/context-aware models (CTR models): side information+context information
 - Click-Through Rate (CTR) prediction

Factorization machines: FM, NFM, DeepFM

Neural network: DIN, AutoInt

The development of LMs

Large Language Model: billions of parameters, emergent capabilities

- Rich knowledge & Language Capabilities
- Instruction following
- In-context learning
- Chain-of-thought
- Planning
- • • •

The development of LMs

LLMs such as ChatGPT and GPT4 have influenced many fields in CS and IT industry

They have eliminated a wide range of research in basic NLP and conversational system, etc.

Recommender System + LLMs?

Outline

- Introduction
- Background: LM & LM4Rec
- Development of LLMs
- Progress of LLM4Rec
- Open Problems
- Future Direction & Conclusions

and layer normalization Encoder

□ Transformer

Feed-forward network: after taking information from other tokens, take a moment to think and process this information N×

Development of LMs

Encoder self-attention: tokens look at each other

queries, keys, values are computed from

Positional

encoder states

Residual connections

Feed

Forward

Add & Norm

Multi-Head

Attention

Input Embedding

Inputs

other tokens, take a moment to Linear think and process this information Add & Norm Feed Forward Decoder-encoder attention: Add & Norm Add & Norm target token looks at the source Multi-Head Attention queries – from decoder states; keys N× and values from encoder states. Add & Norm

Positional

Encodina

Output Probabilities

Softmax

Masked

Multi-Head

Attention

Output

Embedding

Outputs

(shifted right)

Decoder self-attention (masked): tokens look at the previous tokens

Decoder

Feed-forward network:

after taking information from

queries, keys, values are computed from decoder states

□ Bert: pre-training of deep bidirectional transformers

□ Mask Language Modeling, bi-direction

□ Encoder (advantage) --> understanding

GPT2: generative pre-trained transformer

- Causal language modeling
- □ Decoder (advantage) --> Generation
- unsupervised multi-task learner

 $p(x) = \prod p(s_n | s_1, ..., s_{n-1})$

i=1

U How can recommender systems benefit from LMs

 <u>Model architecture:</u> Transformer, Self- attention 	 <u>Task formulation</u> Use language to formulate the recommendation task
 <u>Representation</u>: 	 Learning paradigm:
Textual feature,	Pretrain-finetune,
item representation,	Prompt learning
knowledge representation	

Overview of LM4rec

- LMs for recommendation
 - □ Utilizing LMs' model structure for recommendation.
 - □ ID-based: BERT4Rec, SASRec ...
 - □ Text-based: **Recformer** ...
 - □ LM as item encoder. UniSRec, VQRec, MoRec ...
 - □ Recommendation as natural language processing.
 - □ ID-based: **P5**, VIP5 ...
 - □ Text-based: **M6-Rec**, Prompt4NR ...

Utilizing LM Model Structure

(b) BERT4Rec model architecture.

Training recommender by masked item prediction as BERT.

Utilizing LM Model Structure

Recformer: text-based

- □ Text is all you need (NO item ID)
 - Only use texts to represent items.
 - Low resource, better cold-start recommendation.

Utilizing LM Model Structure

□ Recformer: text-based

□ Text is all you need (NO item ID)

(a) Recformer Model Structure

Li Jiacheng et al. "Text Is All You Need: Learning Language Representations for Sequential Recommendation" KDD 2023.

(b) Pretraining

LM as Text Encoder

□ Enhance the recommendatoin model by using LMs to

encode the natural language representation of items.

Figure 1: The overall framework of the proposed universal sequence representation learning approach (UniSRec).

Recommendation as NLP

□ P5: use natural language to describe different rec. tasks.

□ Multi-task prompts

- Sequential recommendation
- Rating prediction
- Explain generation
- Review summarization
- Direct recommendation

 NE^{++}

Recommendation as NLP

P5 Architecture:

- Autoregressive decoding
- Users and items are represented with ID information

Cui Zeyu et al. "M6-Rec: Generative Pretrained Language Models are Open-Ended Recommender Systems" arXiv 2022.

Recommendation as NLP

□ M6-Rec: represent users/item with plain texts and converting the

tasks to either language understanding or generation

Understanding (scoring) task: CTR, CVR prediction

Generation task: personalized product design, explanation generation... User description

[BOS'] December. Beijing, China. Cold weather. A male user in early twenties, searched "winter stuff" 23 minutes ago, clicked a product of category "jacket" named "men's lightweight warm winter hooded jacket" 19 minutes ago, clicked a product of category "sweatshirt" named "men's plus size sweatshirt stretchy pullover hoodies" 13 minutes ago, clicked ... [EOS'] [BOS] The user is now recommended a product of category "boots" named "waterproof hiking shoes mens outdoor". The product has a high population-level CTR in the past 14 days, among the top 5%. The user clicked the category 4 times in the last 2 years. [EOS]

Item description

M6 (~300M parameters)

Outline

- Introduction
- Background: LM & LM4Rec
- Development of LLMs
- Progress of LLM4Rec
- Open Problems
- Future Direction & Conclusions

Caling Laws

□ The greater the amount of the data and the model parameters, the better the

performance of the model

Performance can be predicted

Caling Laws

□ The greater the amount of the data and the model parameters, the better the

performance of the model

Performance can be predicted

□ Scaling Laws

The optimal model size grows smoothly

Long Ouyang et al., 2022 Training language models to follow instructions with human feedback NeurIPS 2022 Rafael Rafailov et al., 2023 Direct Preference Optimization: Your Language Model is Secretly a Reward Model NeurIPS 2023

Developments of LLMs

□ Align with human

Objec	tive Overall	Subjective Overall	Language	Knowledge		Reason	Math	Со	
	Model	Ŧ	Release	Ţ	уре 📱	Paramet	ers	Averaç	ge
1090	GPT-4-Turbo-2 Close Source · O		2024/4/9 updated: 2024/		Chat	N/A		63.1	
2	GPT-4-Turbo-' Close Source · O		2023/11/6 updated: 2024/	1/29	Chat	N/A		62	
3	Claude3-Opus Close Source · A		2024/3/4 updated: 2024/	4/2	Chat	N/A		60.5	
4	GLM-4 Close Source · Z	hipu Al	2024/1/16 updated: 2024/	4/2	Chat	N/A		57.8	
50p	abab6.5 Close Source · M	liniMax	2024/4/17 updated: 2024/		Chat	N/A		57.8	
6	Llama3-70B-Ir Open Source · M		2024/4/18 updated: 2024/	5/9	Chat	70B		57	
7	Qwen1.5-110B Open Source · Al		2024/4/25 updated: 2024/	5/9	Chat	72B		56.8	

Objective Overall Subjective Overall			Language	Knowledg	ge Reason	Math	Со	
	Model	Ŧ	Release	Тур	e 🝸 Parame	eters	Averag	е
109	GPT-4-Turbo- Close Source · C		2023/11/6 updated: 2024/		nat N/A		50 Ope	
2	Qwen-Max-04 Close Source · A		2024/3/26 updated: 2024/	4/2 CF	nat N/A		50	
3	GPT-4-Turbo- Close Source · C		2024/4/9 updated: 2024/	5/9 CI	nat N/A		49.9	
4	Claude3-Opus Close Source · A		2024/3/4 updated: 2024/	4/2 CI	nat N/A		48.1	
50p	Spark-v3.5 Close Source - If	flytek	2024/1/30 updated: 2024/		nat N/A		48.1	
6	Qwen1.5-110B Open Source · A		2024/4/25 updated: 2024/	5/9 Cł	nat 72B		47.4	
7	ERNIE-4.0-8K		2024/3/29 updated: 2024/	5/9	nat N/A		46.6	

□ More and more LLMs have shown powerful capabilities

□ Multi-model to Multi-model unified model is now developing at a rapid pace.

- **D** Emergent abilities of LLM
 - □ Sufficient world knowledge
 - **Chatting**
 - □ Incontext Learning & Instruction Following
 - □ Reasoning & Planning
 - □ Tool using
 - LLM as an Agent

•

□ In-context Learning

□ Following their example to overide the semantic prior

□ Instruction following

Reasoning & Planning

□ LLM can decompose the problem into simple sub-problems to improve their ability

□ Reasoning & Planning

LLM can break down the targe task according to the environment and develop a

NE^AT++

LLM as an Agent

Multi-Agent

□ Multi-Agent

- Group intelligence surpasses individual intelligence
- □ Cooperative for complementary / Adversarial for advancement

Zhiheng Xi et al, The Rise and Potential of Large Language Model Based Agents: A Survey

LLMs for Recommendation

□ How recommender systems benefit from LLMs

 <u>Representation</u>: 	• Interaction:	Generalization:	• Generation:
Textual feature,	Acquire user information	cross-domain, knowledge	Personalized content
item representation,	needs via dialog (chat)	compositional-	generation,
knowledge representation		generalization	explanation generation

• Learning paradigm: Pretrain-finetune, Instruction-tuning, Preference-alignment

• Model architecture: Transformer、 Self-attention,

□ Key Challenge

□ Mismatch between pretraining objective and recommendation

□ Tend to rely on semantics, and another important aspect of

recommendation tasks is collaborative information.

Outline

- Introduction
- Background: LM & LM4Rec
- The progress of LLM4Rec
 - Development of LLMs
 - LLMs for Recommendation
 - ICL
 - Tuning
 - Agent
- Open Problems
- Conclusions

Progress of LLM4Rec

Progress of LLM4Rec

ICL

☐ In-context learning

- LLMs has rich world knowledge, wonderful abilities like reasoning, instruction following, in-context learning.
- The LLMs itself could be leveraged for recommendation by in context learning.
- Existing works on in-context learning:
 - Ask LLM for recommendation
 - Serving as knowledge augmentation for traditional recsys
 - Optimize the prompt used for recommendation
 - Directly used for conversational recommender system

□ In-context learning: directly ask LLMs for recommendation

Prompt construction

Figure 1: The overall evaluation framework of LLMs for recommendation. The left part demonstrates examples of how prompts are constructed to elicit each of the three ranking capabilities. The right part outlines the process of employing LLMs to perform different ranking tasks and conduct evaluations.

Three different ways of measuring ranking abilities:

$$\hat{y}'_{i} = LLM_{\text{point}} \left(I, \mathcal{D}, f(\mathbf{h}', \mathbf{c}' \mid u) \right)$$
$$\hat{y}'_{i_{m} \succ i_{n}} = LLM_{\text{pair}} \left(I, \mathcal{D}, f(\mathbf{h}', \mathbf{c}' \mid u) \right)$$
$$\hat{y}'_{i_{1}}, \hat{y}'_{i_{2}}, \cdots, \hat{y}'_{i_{k}} = LLM_{\text{list}} \left(I, \mathcal{D}, f(\mathbf{h}', \mathbf{c}' \mid u) \right)$$

ICL: LLMRank

□ In-context learning: re-ranking given candidated items

Task formulation:

- Using historical interaction to rank items retrieved by exsiting recsys.
- Input: language instructions created with historical interactions and candidate items
- **Output:** ranking of the candidate items

ICL: LLMRank

In-context learning: ranking given candidated items
 Tree types of prompts:

• Sequential prompting: describing History using language

"I've watched the following movies in the past in order: '0. Multiplicity', '1. Jurassic Park',"

Recency-focused prompting: emphasize most recent interactions

"I've watched the following movies in the past in order: '0. Multiplicity', '1. Jurassic Park', Note

that my most recently watched movie is Dead Presidents. . . ."

• In-context learning (ICL): providing recommendation example

" If I've watched the following movies in the past in order: '0. Multiplicity', '1.

Jurassic Park', . . ., then you should recommend Dead Presidents to me and now that I've watched Dead Presidents, then . . ."

ICL: KAR

□ In-context learning: knowledge enhancement

Traditional RecSys vs ICL-based RecSys

Traditional RecSys

Inference fast but being colsed system, generating recommendations

relying on local dataset

Directly ask LLMs for recommendaiton

Given the user's historical interactions, please determine whether the user will enjoy the target new movie by answering "Yes" or "No".

Could leverage open-world knowledge, but:

1) not trained on specific recommendation task

- 2) Inference slowly
- 3) hard to correctly answer compoitional questions

Extract and inject LLM's world knowledge into traditional recommender system

ICL: KAR

□ In-context learning: knowledge enhancement

Obtain knowledge beyond local rec dataset:

1) Generate reasoning knowledge on user preference (factors affect preference)

2) Generate factual knowledge about items

Knowledge Adaptation Stage

encode the textual knowledge and maping it into recommendation space

Knowledge Utilization

Use the knowledge obtained from LLMs as additional features

ICL: LLM4Rec

ICL knowledge enhancement for Graph-based Recommendation

1) Augmenting user-item interactions

- 2) Enhancing item attributes
- 3) User profiling

Recommend user with movies based on user history that each movie with title, year, genre.

History:

[332] Heart and Souls (1993), Comedy|Fantasy [364] Men with Brooms(2002), Comedy|Drama|Romance

Candidate:

[121]The Vampire Lovers (1970), Horror [155] Billabong Odyssey (2003),Documentary [248]The Invisible Guest 2016, Crime, Drama, Mystery

Output index of user's favorite and dislike movie from candidate.Please just give the index in [].

5 248 121

(a) Implicit Feedback

Generate user profile based on the history of user, that each movie with title, year, genre.

History:

[332] Heart and Souls (1993), Comedy|Fantasy [364] Men with Brooms (2002), Comedy|Drama|Romance

Please output the following infomation of user, output format: {age: , gender: , liked genre: , disliked genre: , liked directors: , country: , language: }

{age: 50, gender: female, liked genre: Comedy|Fantasy, Comedy|Drama|Romance, disliked genre: Thriller, Horror, liked directors: Ron Underwood, country: Canada, United States, language: English}

Provide the inquired information of the given movie. [332] Heart and Souls (1993), Comedy|Fantasy

The inquired information is: director, country, language. And please output them in form of: director, country, language

🚳 Ron Underwood, USA, English

(c) Item Attribute

ICL: PO4SIR

□ ICL: Automaticaly adjust and optimize prompts for recommendation

Zhu Sun et al. Large Language Models for Intent-Driven Session Recommendations

ICL: KECRS

- ICL for conversational recommender system
- > Users chat with chatbot with natural language
- Chatbot analyses user interest
- > Chatbot provide recommendaiton

KECRS: Towards Knowledge-Enriched Conversational Recommendation System

Conversational Recommendation System with Unsupervised Learning

ICL: LLMCRS

Framework

ICL for conversational recommender system

>Input: task description T , format requirement F and conversation context S

- LLMs analys the input data
- LLMs generate the recommendation list

He Z, Xie Z, Jha R, et al. Large language models as zero-shot conversational recommenders, CIKM 2023.

Progress of LLM4Rec

In-context learning is not enough.

□ In complex scenarios, ChatGPT usually gives positive ratings or refuse to answer.

Need to **align** LLM with recommendation task!

Tuning LLM4Rec

Motivation: lack of recommendation task tuning in LLM pre-training

 \rightarrow tune LLMs with the recommendation data to align with the recommendation task

Existing work on tuning LLMs for recommendation:

Discriminative manner

Following traditional rec task,

provide candidates:

pointwise, pairwise, listwise

[1] Bao et al. Recsys, TALLRec: An Effective and Efficient Tuning Framework to Align Large Language Model with Recommendation. 2023 [2] Zhang et al. Recommendation as instruction following: a large language model empowered recommendation approach. 2023. [3] Kang et al. Do LLMs Understand User Preferences? Evaluating LLMs on User Rating Prediction. 2023. [4] Yue et al. LlamaRec: Two-Stage Recommendation using Large Language Models for Ranking. 2023. [5] Zhi Zheng et al. Harnessing Large Language Models for Text-Rich Sequential Recommendation. 2024

Generative manner

Following the pretraining task,

do not provide candidates:

directly generate items

[6] Bao et al. A Bi-step Grounding Paradigm for Large Language Models in Recommender system. 2023.

[7] Lin et al. A Multi-facet Paradigm to Bridge Large Language Model and Recommendation. 2023.
[8] Wu et al. Exploring Large Language Model for Graph Data Understanding in online Job Recommendation. 2023
[9] Zheng et al. Generative job recommendations with large language mode. 2023.

[10] Bowen Zheng et al. "Adapting Large Language Models by Integrating Collaborative Semantics for 54 Recommendation" ICDE 2024.

Tuning LLM4Rec: TALLRec

TALLRec: Instruction-tuning

$$\max_{\Theta} \sum_{(x,y)\in\mathcal{Z}} \sum_{t=1}^{|y|} \log \left(P_{\Phi+\Theta}(y_t|x,y_{< t}) \right),$$

- Fine-tune 4M parameters by few-shot samples via the **generative loss**
- Quickly adapt to new tasks

Performance significantly improves by fine-tuning

User features + item features

- Use item titles as the input
- Better for cold-start recommendation

few-shot samples.

Keqin Bao et al. Recsys, TALLRec: An Effective and Efficient Tuning Framework to Align Large Language Model with Recommendation. 2023

Tuning LLM4Rec: TALLRec

TALLRec: Cross-domain generalization

- Learning from movie scenario can directly recommend on books, and vice versa
- LLM can leverage domain knowledge to accomplish recommendation tasks after acquiring the ability to recommend.

Tuning LLM4Rec: LLM-TRSR

Text-Rich Sequential Recommendation

- LLM for preference summary
 - Hierarchical summarization
 - Recurrent summarization
- Supervised fine-tuning
 - Given user preference summary recently interacted items, and candidate items, LLMs are tuned for recommendation

Tuning LLM4Rec: InstructRec

InstructRec

- User could express their needs diversely: vague or specific; implicit or explicit
- LLM should understand and follow different instructions for recommendation

Recommendation instructionInstruction tuning:constructiontuning LLMs with the instruction data

Tuning LLM4Rec: InstructRec

Format: Preference: none/implicit/explicit Intention: none/vague/specific task: pointwise/pairwise/listwise

Instantiation	Model Instructions								
$\langle P_1, I_0, T_0 \rangle$	The user has purchased these items:	<historical interactions=""></historical>	. Based on this	s information,	is it likely	that the user v	will interact with	<pre>n <target item=""></target></pre>	next?
$\langle P_2, I_0, T_3 \rangle$	You are a search engine and you meet	a user's query: <a> 	t preference>	Please respon	nd to this use	er by selecting	items from the	candidates: <car< th=""><th>ndidate items>.</th></car<>	ndidate items>.
$\langle P_0, I_1, T_2 \rangle$	As a recommender system, your task	is to recommend an item	that is related	to the user's	<vague inte<="" th=""><th>ntion> . Please</th><th>e provide your i</th><th>recommendation</th><th></th></vague>	ntion> . Please	e provide your i	recommendation	
$\langle P_0, I_2, T_2 \rangle$	Suppose you are a search engine, now	the user search that <s< th=""><th>pecific Intentic</th><th>n> , can you</th><th>generate the</th><th>e item to resp</th><th>ond to user's qu</th><th>ery?</th><th></th></s<>	pecific Intentic	n> , can you	generate the	e item to resp	ond to user's qu	ery?	
$\langle P_1, P_2, T_2 \rangle$	Here is the historical interactions of a	user: <historical interac<="" th=""><th><mark>ctions></mark> . His pr</th><th>references are</th><th>as follows:</th><th><explicit prefe<="" th=""><th>e<mark>rence></mark> . Please</th><th>provide recomm</th><th>nendations .</th></explicit></th></historical>	<mark>ctions></mark> . His pr	references are	as follows:	<explicit prefe<="" th=""><th>e<mark>rence></mark> . Please</th><th>provide recomm</th><th>nendations .</th></explicit>	e <mark>rence></mark> . Please	provide recomm	nendations .
$\langle P_1, I_1, T_2 \rangle$	The user has interacted with the follow	wing <historical interac<="" th=""><th>tions> . Now t</th><th>he user search</th><th>n for <vague< th=""><th>e intention> , p</th><th>olease generate</th><th>products that m</th><th>atch his intent.</th></vague<></th></historical>	tions> . Now t	he user search	n for <vague< th=""><th>e intention> , p</th><th>olease generate</th><th>products that m</th><th>atch his intent.</th></vague<>	e intention> , p	olease generate	products that m	atch his intent.
$\langle P_1, I_2, T_2 \rangle$	The user has recently purchased the fe	ollowing <historical iter<="" th=""><th>ns>. The user</th><th>has expressed</th><th>l a desire for</th><th><specific inte<="" th=""><th>ention>. Please</th><th>provide recomm</th><th>nendations.</th></specific></th></historical>	ns>. The user	has expressed	l a desire for	<specific inte<="" th=""><th>ention>. Please</th><th>provide recomm</th><th>nendations.</th></specific>	ention>. Please	provide recomm	nendations.

• Instruction generation: #1 using ChatGPT to generate user preferences and intentions based on interactions

Interaction	[Raw Behavior Sequence]:
Interaction	"1. Resident Evil: Revelations 2 - PS 4
	\rightarrow 2. Resident Evil 4 - PS 4."
*	[Generated Explicit Preference]:
Explicit preference	"He prefers horror-based games with a
	strong narrative."

[Raw Target Review]:
 "My son loves ... of the game. I'm
happy I bought this for him."
[Generated Vague Intention]:
 "I enjoy buying games for my son that Vag
he enjoys."

#2 Increasing the instruction diversity via multiple strategies such as CoT

Junjie Zhang et al. Arxiv, Recommendation as Instruction Following: A Large Language Model Empowered Recommendation Approach. 2023

Tuning LLM4Rec: InstructRec

InstructRec

- Instruction construction
 - Quality: human evaluation

Statistic	
# of fine-grained instructions	252,730
- # of user-described preferences	151,638
- # of user intention in decision making	101,092
ave. instruction length (in words)	23.5
# of coarse-grained instructions	39
- # of preferences related instructions	17
- # of intentions related instructions	9
- # of combined instructions	13
ave. instruction length (in words)	41.4

Quality Review Question	Preference	Intention
Is the instruction generated from the user's related information?	93%	90%
Does the teacher-LLM provide related world knowledge?	87%	22%
Does the instruction reflect the user's preference/ intention?	88%	69%
Is the instruction related to target item?	48%	69%

- Instruction tuning:
 - Supervised fine-tuning, tuning all model parameters (3B Flan-T5-XL)

$$\mathcal{L} = \sum_{k=1}^{B} \sum_{j=1}^{|Y_k|} \log P\left(Y_{k,j} \mid Y_{k,(1)$$

where Y_k is the desired system responses for the *k*-th instance, I_k is the instruction of the *k*-th instance, and *B* is the batch size.

Tuning LLM4Rec

Motivation: lack of recommendation task tuning in LLM pre-training

 \rightarrow tune LLMs with the recommendation data to align with the recommendation task

Existing work on tuning LLMs for recommendation:

Discriminative manner

Following traditional rec task,

provide candidates:

pointwise, pairwise, listwise

[1] Bao et al. Recsys, TALLRec: An Effective and Efficient Tuning Framework to Align Large Language Model with Recommendation. 2023 [2] Zhang et al. Recommendation as instruction following: a large language model empowered recommendation approach. 2023. [3] Kang et al. Do LLMs Understand User Preferences? Evaluating LLMs on User Rating Prediction. 2023. [4] Yue et al. LlamaRec: Two-Stage Recommendation using Large Language Models for Ranking. 2023. [5] Zhi Zheng et al. Harnessing Large Language Models for Text-Rich Sequential Recommendation. 2024

Generative manner

Following the pretraining task,

do not provide candidates:

directly generate items

[6] Bao et al. A Bi-step Grounding Paradigm for Large Language Models in Recommender system. 2023.
[7] Lin et al. A Multi-facet Paradigm to Bridge Large Language Model and Recommendation. 2023.
[8] Wu et al. Exploring Large Language Model for Graph Data Understanding in online Job Recommendation. 2023
[9] Zheng et al. Generative job recommendations with large language mode. 2023.
[10] Bowen Zheng et al. "Adapting Large Language Models by Integrating Collaborative Semantics for 61

Recommendation" ICDE 2024.

Bao Keqin et al. " A Bi-Step Grounding Paradigm for Large Language Models in Recommendation Systems" arXiv 2023.

Tuning LLM4Rec: BIGRec

□ BIGRec

- Generation + Grounding
 - Given user interaction history in natural language, LLMs aim to generate the next item as recommendation.
 - However, LLMs do not know how to represent an item via token sequence in the recommendation scenario.
 - Besides, the item generated by the LLM may not exist in the actual world. Actual Item Space

Step1: instruction tuning

Step2: L2 distance

Grounding Paradigm

Recommendation Space

grounding

Language Space

Tuning LLM4Rec: BIGRec

• Few-shot tuning

Dataset	Model	NG@1	NG@3	NG@5	NG@10	NG@20	HR@1	HR@3	HR@5	HR@10	HR@20
	GRU4Rec	0.0015	0.0034	0.0047	0.0070	0.0104	0.0015	0.0047	0.0079	0.0147	0.0281
	Caser	0.0020	0.0035	0.0052	0.0078	0.0109	0.0020	0.0046	0.0088	0.0171	0.0293
	SASRec	0.0023	0.0051	0.0062	0.0082	0.0117	0.0023	0.0070	0.0097	0.0161	0.0301
Marria	P5	0.0014	0.0026	0.0036	0.0051	0.0069	0.0014	0.0035	0.0059	0.0107	0.0176
Movie	DROS	0.0022	0.0040	0.0052	0.0081	0.0112	0.0022	0.0051	0.0081	0.0173	0.0297
	GPT4Rec-LLaMA	0.0016	0.0022	0.0024	0.0028	0.0035	0.0016	0.0026	0.0030	0.0044	0.0074
	BIGRec (1024)	0.0176	0.0214	0.0230	0.0257	0.0283	0.0176	0.0241	0.0281	0.0366	0.0471
	Improve	654.29%	323.31%	273.70%	213.71%	142.55%	654.29%	244.71%	188.39%	111.97%	56.55%
	GRU4Rec	0.0013	0.0016	0.0018	0.0024	0.0030	0.0013	0.0018	0.0024	0.0041	0.0069
	Caser	0.0007	0.0012	0.0019	0.0024	0.0035	0.0007	0.0016	0.0032	0.0048	0.0092
	SASRec	0.0009	0.0012	0.0015	0.0020	0.0025	0.0009	0.0015	0.0021	0.0037	0.0057
	P5	0.0002	0.0005	0.0007	0.0010	0.0017	0.0002	0.0007	0.0012	0.0023	0.0049
Game	DROS	0.0006	0.0011	0.0013	0.0016	0.0022	0.0006	0.0015	0.0019	0.0027	0.0052
	GPT4Rec-LLaMA	0.0000	0.0000	0.0000	0.0001	0.0001	0.0000	0.0000	0.0000	0.0002	0.0002
	BIGRec (1024)	0.0133	0.0169	0.0189	0.0216	0.0248	0.0133	0.0195	0.0243	0.0329	0.0457
	Improve	952.63%	976.26%	888.19%	799.64 %	613.76%	952.63%	985.19%	660.42%	586.11%	397.10%

- BIGRec significantly surpasses baselines by few-shot tuning.
- Improvement of BIGRec is significantly higher on Game compared to on Movie.
 - possibly due to the varying properties of popularity bias between the two datasets.

×++

Tuning LLM4Rec: BIGRec

□ BIGRec

Relative improvements w.r.t. NDCG@20

Tuning LLM4Rec: BIGRec

BIGRec

• Injecting statistical information into BIGRec at Step 2: L2 distance grounding

- By incorporating popularity, BIGRec achieves significant improvements w.r.t. NDCG@K and HR@K, particularly for a larger K.
- Incorporating collaborative information into BIGRec yields more significant enhancements than conventional models.

Caser + DROS

BIGRec (1024) + DROS

Tuning LLM4Rec

LLM for generative recommendation

- Two key problems of LLM4Rec
 - Item tokenization: index items into language space
 - Item generation: generate items as recommendations

Tuning LLM4Rec: TransRec

Item indexing: multi-facet identifier

Instruction data reconstruction ۲

from any position of the identifier corpus. Instruction Input Instruction Output Constrained & Generated Aggregated **Identifiers** Position-free Generation E ID: 4 23 95, 7002, 3865,

Generation grounding:

Position-free constrained generation

FM-index: special prefix tree that supports search

Grounding Given the following purchase history of a user, what is In-corpus the next possible item to be purchased by the user? ID **Item Ranking** 15826; 8792; 513; 7382; 9014; || ID || + Title: Non-slip 3789, 6055, ... mouse pad ... 0.7 Attribute: ... Given the following purchase history of a user, what mouse pad, 0.5 is the next possible item to be purchased by the user? monitor, cables ID: 95 **LLMs** Title Wireless Mouse Wilson NBA Basketballs; Advancourt Sneakers; ...; wireless ... Title: LG monitor 0.4 Logitech K270 Wireless Keyboard; || title || + Type C cables ... FM-index electronics, IT, Attribute: Tech Given the following attributes of purchase history of a accessories, ... accessories .. user, what is the next possible attribute of item to be Attribute **Electronics** . . . purchased by the user? **Sports; Shoe; Headphone &** User's historical interactions in three facets {}{}{}dentifier sets in three facets Earphones; ...; Electronics; || attribute || +

Tuning LLM4Rec: TransRec

Strong generalization ability

• Item group analysis

• From warm to cold items

		Wa	ırm	Cold			
N-shot	Model	R@5 N@5		R@5	N@5		
	LightGCN	0.0205	0.0125	0.0005	0.0003		
	ACVAE	0.0098	0.0057	0.0047	0.0026		
1024	P5	0.0040	0.0016	0.0025	0.0015		
	TransRec-B	0.0039	0.0024	0.0025	0.0016		
	TransRec-L	0.0141	0.0070	0.0159	0.0097		
	LightGCN	0.0186	0.0117	0.0005	0.0004		
	ACVAE	0.0229	0.0136	0.0074	0.0044		
2048	P5	0.0047	0.0030	0.0036	0.0012		
	TransRec-B	0.0052	0.0027	0.0039	0.0017		
	TransRec-L	0.0194	0.0126	0.0206	0.0126		

• User group analysis

• From dense users to sparse users

* The bold results highlight the superior performance compared to the best LLMbased recommender baseline.

- On the item side, TransRec-L with LLMs has remarkable generalization ability with vase knowledge base, especially on cold-start recommendation under limited data.
- On the user side, TransRec significantly **improves the performance of sparse users** with fewer interactions.

Lin Xinyu et al. " A Multi-facet Paradigm to Bridge Large Language Model and Recommendation " arXiv 2023.

Tuning LLM4Rec: LC-Rec

• LC-Rec

- Item indexing: utilize Residual-Quantized Variational AutoEncoder (RQ-VAE) to encode item semantic information as identifiers.
- Multiple alignment tasks to inject collaborative signals

Progress of LLM4Rec

Agent for Recommendation

LLM-empowered Agents for Recommendation

Agent as User Simulator

- Main idea: using agents to simulate user behavior for real-world recommendation.
- RecAgent^[1], Agent4Rec^[2]

Agent for Recommendation

- Main idea: harnessing the powerful capabilities of LLMs, such as reasoning, reflection, planning and tool usage, for recommendation.
- RecMind^[3], InteRecAgent^[4], BiLLP^[5], Multi-Agent Collaboration^[6]

[1] Lei Wang et al. "When Large Language Model based Agent Meets User Behavior Analysis: A Novel User Simulation Paradigm" arXiv 2023.
[2] Zhang An et al. "On Generative Agents in Recommendation" arXiv 2023.
[3] Wang Yancheng et al. "RecMind: Large Language Model Powered Agent For Recommendation" arXiv 2023.
[4] Xu Huang et al. "Recommender Al Agent: Integrating Large Language Models for Interactive Recommendations" arxiv 2023.
[5] Wentao Shi et al. 2023. Large Language Models are Learnable Planners for Long-Term Recommendation. in SIGIR 2024.
[6] Jiabao Fang et al. A Multi-Agent Conversational Recommender System. Arxiv 2024

LLM-based agent for user simulation

Agent: RecAgent

- User simulation is a fundamental problem in humancentered applications.
- Traditional methods struggle to simulate complex user behaviors.
- LLMs show potential in human-level intelligence and generalization capabilities.

Lei Wang et al. "User Behavior Simulation with Large Language Model based Agents" arXiv 2023.

Agent: RecAgent

Recommendation Behaviors

Agent chooses to **search or receive recommendations**, selects movies, and **stores** feelings after watching.

Chatting Behaviors

Two agents **discuss and stored** the conversation in their memories.

Broadcasting Behaviors

An agent **posts** a message on social media, **received by friends** and stored in their memories.

Agent: Agent4Rec

- Agent4Rec, a simulator with 1,000
 LLM-empowered generative agents.
- Agents are trained by the MovieLens 1M dataset, embodying varied social traits and preferences.
- Each agent interacts with personalized movie recommendations in a page-bypage manner and undertakes various actions such as watching, rating, evaluating, exiting, and interviewing.

Agent: Agent4Rec

□ To what extent can LLM-empowered generative agents truly simulate the behavior of genuine, independent humans in recommender systems?

User Taste Alignment

 Table 1: User taste discrimination.

1:m	Accuracy	Recall	Precision	F1 Score
1:1	0.6912*	0.7460	0.6914*	0.6982*
1:2	0.6466	0.7602	0.5058	0.5874
1:3	0.6675	0.7623	0.4562	0.5433
1:9	0.6175	0.7753*	0.2139	0.3232

Rating Distribution Alignment

Agent for Recommendation

LLM-empowered Agents for Recommendation

Agent as User Simulator

- Main idea: using agents to simulate user behavior for real-world recommendation.
- RecAgent^[1], Agent4Rec^[2]

Agent for Recommendation

- **Main idea:** harnessing the powerful capabilities of LLMs, such as reasoning, reflection, planning and tool usage, for recommendation.
- RecMind^[3], InteRecAgent^[4], BiLLP^[5], Multi-Agent Collaboration^[6]

[1] Lei Wang et al. "When Large Language Model based Agent Meets User Behavior Analysis: A Novel User Simulation Paradigm" arXiv 2023.
[2] Zhang An et al. "On Generative Agents in Recommendation" arXiv 2023.
[3] Wang Yancheng et al. "RecMind: Large Language Model Powered Agent For Recommendation" arXiv 2023.
[4] Xu Huang et al. "Recommender Al Agent: Integrating Large Language Models for Interactive Recommendations" arxiv 2023.
[5] Wentao Shi et al. 2023. Large Language Models are Learnable Planners for Long-Term Recommendation. in SIGIR 2024.
[6] Jiabao Fang et al. A Multi-Agent Conversational Recommender System. Arxiv 2024

LLM-based agent for recommendation

- Traditional methods train and fine-tune models on task-specific datasets, struggle to leverage external knowledge and lack generalizability across tasks and domains.
- Existing LLM4Rec methods primarily rely on **internal knowledge** in LLM weights.
- □ RecMind fully utilizes strong planning and tool-using abilities of LLMs for recommendation.

Agent: RecMind

D Planning ability

- To break complex tasks into smaller sub-tasks.
- **Self-inspiring** to integrates multiple reasoning paths.

□ Tool-using ability

- **Database tool** to access domain-specific knowledge.
- □ Search tool to access real-time information.
- **Text summarization** tool to summarize lengthy texts.

Evaluation

- **Precision-oriented tasks** (rating prediction, direct recommendation, and sequential recommendation).
- **Explainability-oriented tasks** (explanation generation and review summarization).

Result

RecMind can achieve performance comparable to the **fully trained P5** model.

Table 3: Performance comparison in sequential recommendation on Amazon Reviews (Beauty) and Yelp.

Methods	Beauty					Yelp				
	HR@5	NDCG@5	HR@10	NDCG@10	HR@5	NDCG@5	HR@10	NDCG@10		
S ³ -Rec	0.0387	0.0244	0.0647	0.0327	0.0201	0.0123	0.0341	0.0168		
SASRec	0.0401	0.0264	0.0643	0.0319	0.0241	0.0175	0.0386	0.0215		
P5 (pre-trained expert, few-shot)	0.0459	0.0347	0.0603	0.0411	0.0565	0.0389	0.0702	0.0441		
ChatGPT (zero-shot)	0.0089	0.0053	0.0103	0.0060	0.0102	0.0062	0.0143	0.0089		
ChatGPT (few-shot)	0.0179	0.0124	0.0256	0.0125	0.0217	0.0116	0.0320	0.0165		
RecMind-CoT (zero-shot)	0.0182	0.0139	0.0297	0.0160	0.0368	0.0239	0.0554	0.0316		
RecMind-CoT (few-shot)	0.0349	0.0187	0.0486	0.0302	0.0427	0.0305	0.0590	0.0380		
RecMind-ToT (BFS, zero-shot)	0.0297	0.0172	0.0368	0.0249	0.0379	0.0251	0.0538	0.0322		
RecMind-ToT (BFS, few-shot)	0.0387	0.0235	0.0522	0.0327	0.0447	0.0319	0.0624	0.0337		
RecMind-ToT (DFS, zero-shot)	0.0299	0.0168	0.0359	0.0241	0.0358	0.0240	0.0519	0.0324		
RecMind-ToT (DFS, few-shot)	0.0365	0.0211	0.0497	0.0355	0.0455	0.0328	0.0622	0.0349		
RecMind-SI (zero-shot)	0.0339	0.0200	0.0469	0.0310	0.0396	0.0281	0.0569	0.0340		
RecMind-SI (few-shot)	0.0415	0.0289	0.0574	0.0375	0.0471	0.0342	0.0635	0.0407		

Agent: AgentCF

Previous Memory

- User Agent Memory: I adore energetic guitar-driven rock, and dance pop music...
- Pos Item Agent Memory: The CD 'Highway to Hell' is classic rock and AOR, radiating raw energy and infectious melodies that captivate fans of classic rock...
- Neg Item Agent Memory: 'The Very Best of Prince' is a Pop and Dance Pop CD, offering a collection of prince's greatest hits for an enjoyable experience...

Autonomous Interaction

- System Prompt: The first CD is [Memory], the second CD is [Memory]. Please select your preferred CD from these two candidates and provide an explanation.
- User Agent Response: I prefer 'The Very Best of Prince'... This CD resonates with my preference for Pop and Dance Pop CDs...

Reflection & Memory Update

- System Prompt: You find that you don't like the CD that you chose, indicating your preferences have changed. Please update your preferences.
- User Agent Response: I adore energetic guitar-driven rock, classic rock, and AOR. I value classic rock for its raw energy and infectious melodies. I do not like Pop...
- System Prompt: The user finds that he makes a unsuitable choice, possibly due to the misleading information in CDs' features. Please update the description.
- Pos Item Agent Response: 'Highway to Hell' is classic rock and AOR CD, exuding a raw energy and infectious melodies, ideal for energetic guitar-driven enthusiasts...
- Use Agent to simulate both user/items

Provide a collaborative reflection optimizing mechanism to optimize the user/item agents, and mutual update of user and item memory.

Junjie Zhang et al. 2023. Agentcf: Collaborative learning with autonomous language agents for recommender systems. in WWW 2024

Agent: AgentCF

Matha I		CDs _{sparse}			CDs _{dense}			Office _{sparse}			Office _{dense}		
Method	N@1	N@5	N@10	N@1	N@5	N@10	N@1	N@5	N@10	N@1	N@5	N@10	
BPR _{full}	0.1900	0.4902	0.5619	0.3900	0.6784	0.7089	0.1600	0.3548	0.4983	0.5600	0.7218	0.7625	
SASRec _{full}	0.3300	0.5680	0.6381	0.5800	0.7618	0.7925	0.2500	0.4106	0.5467	0.4700	0.6226	0.6959	
BPR _{sample}	0.1300	0.3597	0.4907	0.1300	0.3485	0.4812	0.0100	0.2709	0.4118	0.1200	0.2705	0.4576	
SASRec _{sample}	<u>0.1900</u>	0.3948	0.5308	0.1300	0.3151	0.4676	0.0700	0.2775	0.4437	0.3600	0.5027	0.6137	
Pop	0.1100	0.2802	0.4562	0.0400	0.1504	0.3743	0.1100	0.2553	0.4413	0.0700	0.2273	0.4137	
BM25	0.0800	0.3066	0.4584	0.0600	0.2624	0.4325	0.1200	0.2915	0.4693	0.0600	0.3357	0.4540	
LLMRank	0.1367	0.3109	0.4715	0.1333	0.3689	0.4946	0.1750	0.3340	0.4728	<u>0.2067</u>	0.3881	0.4928	
AgentCF _B	0.1900	0.3466	0.5019	0.2067	0.4078	0.5328	0.1650	0.3359	0.4781	0.2067	0.4217	0.5335	
AgentCF _{B+R}	0.2300	0.4373	0.5403	0.2333	<u>0.4142</u>	0.5405	<u>0.1900</u>	<u>0.3589</u>	<u>0.5062</u>	0.1933	0.3916	0.5247	
AgentCF _{B+H}	0.1500	<u>0.4004</u>	0.5115	<u>0.2100</u>	0.4164	0.5198	0.2133	0.4379	0.5076	0.1600	0.3986	0.5147	

Before optimizing at a specific step

Test

Step 3

Step 1

Step 2

Better performance and less influenced by bias than directly instructing LLM to rerank

Collaborative Reflection is effective to optimize the agent's ability to distinguish positive/negative items

Junjie Zhang et al. 2023. Agentcf: Collaborative learning with autonomous language agents for recommender systems. in WWW 2024

Agent: BiLLP

- □ Use LLM to make plans for long-term recommendations
- Utilize a bi-level learnable mechanism to learn macro-level guidance and micro-level personalized recommendation policies.

Methods		Steam			Amazon		
Michious	Len	Reach	R _{traj}	Len	Reach	R _{traj}	
SQN	2.183 ± 0.177	3.130 ± 0.050	6.837 ± 0.517	4.773 ± 0.059	4.303 ± 0.017	20.570 ± 0.245	Steam Amazon
CRR	4.407 ± 0.088	3.263 ± 0.427	14.377 ± 1.658	3.923 ± 0.162	4.537 ± 0.103	17.833 ± 1.129	1.0 A2C 0.6 A2C
BCQ	4.720 ± 0.343	3.997 ± 0.068	18.873 ± 1.092	4.847 ± 0.721	4.367 ± 0.053	21.150 ± 2.893	
CQL	5.853 ± 0.232	3.743 ± 0.147	21.907 ± 0.299	2.280 ± 0.185	4.497 ± 0.039	10.263 ± 0.882	2 20.4
DQN	4.543 ± 0.693	4.500 ± 0.069	20.523 ± 3.618	4.647 ± 0.498	4.290 ± 0.083	19.923 ± 1.909	
A2C	9.647 ± 0.848	4.367 ± 0.069	42.180 ± 3.937	7.873 ± 0.310	4.497 ± 0.026	35.437 ± 1.453	
DORL	9.467 ± 0.862	4.033 ± 0.098	38.300 ± 4.173	7.507 ± 0.174	4.510 ± 0.014	33.887 ± 0.655	
ActOnly	5.567 ± 0.160	4.537 ± 0.021	25.250 ± 0.637	6.383 ± 0.176	4.490 ± 0.008	28.660 ± 0.761	I 2 3 4 5 1 2 3 4 5 Item groups with I 2 3 4 5
ReAct	11.630 ± 0.741	4.559 ± 0.047	52.990 ± 2.925	7.733 ± 0.450	4.603 ± 0.033	35.603 ± 1.806	decreasing item frequency decreasing item frequency
Reflexion	12.690 ± 1.976	4.523 ± 0.026	57.423 ± 8.734	8.700 ± 0.535	$\textbf{4.670} \pm \textbf{0.073}$	40.670 ± 2.954	
BiLLP	15.367 ± 0.119	4.503 ± 0.069	69.193 ± 1.590	$\textbf{9.413} \pm \textbf{0.190}$	4.507 ± 0.012	$42.443 \pm \textbf{0.817}$	

Table 4: Average results of all methods in two environments (Bold: Best, Underline: Runner-up).

Better long-term performance than traditional RL-based methods

Better planning capabilities on long-tail items.

Agent: Multi-Agent Conversational Rec

Different Agents Collaborate together for Conversational Recommendation

• The responder agent and planner agent collaboratively generate appropriate responses, while the reflection mechanism provides feedback and refined guidance to these agents

Jiabao Fang et al. A Multi-Agent Conversational Recommender System. Arxiv 2024

Agent: Multi-Agent Collaboration for Rec

Agent: Multi-Agent Collaboration for Rec

Collaborate Together can Solve Different Task

□ A demo for conversational recommendation via multi-agent collaboration

Tasks

Choose a task

- O Rating Prediction
- Sequential
 Recommendation
- Explanation
 Generation
- Conversational Recommendation
- Choose a system
- ChatSystem
- CollaborationSystem

Choose a config file

config.json

ChatSystem for Conversational Recommendation

I have watched the movie Schindler's List recently. I am very touched by the movie. I wonder what other movies can teach me about history like this?

System is running...

- Interpreter: Summarize input...
 - Summarized text: user: i am very touched by the movie Schindler's List .
- Mainterpreter: Finish with results:
 - Can you recommend other movies that can teach me about history like Schindler's List?

Manager: Thought 1: There are many movies that can teach about history, but I need to consider the specific themes and time periods that the user is interested in.

(a) Interprete the dialog into a task.

Manager: Calling Searcher with movies about history...

- **Searcher:** Search for movies about history...
 - Found 3 documents. Their titles: Skin: A History of Nudity in the Movies, List of ghost films, List of drug films

• **QSearcher:** Lookup for history in document Skin: A History of Nudity in the Movies...

- (Result 1 / 3) Skin: A History of Nudity in the Movies is a 2020 documentary film about the history of nudity in film. It was directed by Danny Wolf and executive produced by Jim "Mr. Skin" McBride, who is also interviewed in the film...
- **Searcher:** Finish with results:
 - Skin: A History of Nudity in the Movies is a 2020 documentary film about the history of nudity in film.

Manager: Response from Searcher with movies about history:

 Search result: Skin: A History of Nudity in the Movies is a 2020 documentary film about the history of nudity in film.

Manager: Thought 2: Skin: A History of Nudity in the Movies is not relevant to the user's request. I need to refine the search to find movies that specifically teach about historical events and themes.

(b) Search for movies about history.

Manager: Calling Searcher with historical movies similar to Schindler's List...

- **Searcher**: Search for historical movies similar to Schindler's List...
 - Found 3 documents. Their titles and summaries are (with the format title (summary)): Schindler's List (Schindler's List is a 1993 American epic historical drama film directed and produced by Steven Spielberg and written by Steven...), Amistad (film) (Amistad is a 1997 American historical drama film directed by Steven Spielberg, based on the events in 1839 aboard the...), Steven Spielberg (Steven Allan Spielberg (; born December 18, 1946) is an American film director, producer and screenwriter. A major figure of...)

NE[×]T++

- **Searcher**: Finish with results:
 - Schindler's List, Amistad (film)

Manager: Response from Searcher with historical movies similar to Schindler's List:

• Search result: Schindler's List, Amistad (film)

Amager: Thought 3: Amistad is a historical movie that can teach about the history of slavery and the fight for freedom. I should recommend this movie to the user.

- I recommend the movie Amistad, which teaches about the history of slavery and the fight for freedom.
- (c) Search for movies similar to Schindler's List.

J Multimodal LLM4Rec

- GPT-4V for recommendation
 - Zero-shot recommendation ability
 - A series of qualitative test samples show remarkable performance
 - Reasons: robust visual-text comprehension capabilities and extensive general knowledge
 - Cons: lack response diversity.
- **Future directions:** leverage multimodal user and item features for LLM-based recommendation
 - Tokenization with multimodal features
 - Model structure with with multimodal inputs and outputs
 - Optimization objectives to exclude multimodal noises

Prompt

GPT-4V:

The photo above is a clip of ballet. Can you recognize what's it derived from? And can you recommend some related ballets?

The image depicts a group of ballerinas in white tutus, which

is characteristic of the Romantic ballet style. One of the most

iconic ballets with such a scene is "Swan Lake," particularly

in the scenes featuring the corps de ballet as the white

this is from "Swan Lake," it's a strong possibility

Lake," here are some recommendations:

Nutcracker prince on a magical journey.

love with a life-sized dancing doll.

with music most famously by Prokofiey.

summon Giselle from her grave.

swans. While I cannot confirm with absolute certainty that

If you're interested in ballets similar to or related to "Swan

peasant girl named Giselle who dies of a broken heart after

2."The Sleeping Beauty" - Composed by Tchaikovsky, like "Swan Lake." it is a story about Princess Aurora who falls

into a deep sleep and is awakened by a prince's kiss.

3."The Nutcracker" - Another Tchaikovsky classic, this

ballet is set during Christmas and follows Clara and her

of a temple dancer and a warrior. The "Kingdom of the

Shades" scene is particularly famous and has a corps de

ballet sequence reminiscent of the swans in "Swan Lake."

5."Coppélia" - A comedic ballet about a man who falls in

6."Romeo and Juliet" - Based on Shakespeare's tragic love

story, this ballet has been choreographed by various artists

These ballets are classics and have been staples in the

repertoire of many ballet companies around the world.

4."La Bayadère" - A ballet set in India, it tells the tragic tale

discovering her lover is betrothed to another. The Wilis, a group of supernatural women who dance men to death,

1."Giselle" - A Romantic ballet that tells the story of a

Culture and Art: Case 3

| Prompt

The photo above is a clip of a musical. Can you recognize what's it derived from? And can you recommend some related musicals?

GPT-4V:

The image depicts a scene reminiscent of the iconic balcony sequence from "Romeo and Juliet." Given the stage setting and the costuming, it seems to be from a musical adaptation of the classic play by William Shakespeare.

<u>^</u>T++

If it is indeed a musical adaptation of "Romeo and Juliet," then it might be "West Side Story," which is a modern take on the story set in 1950s New York City, where the Montagues and Capulets are represented by rival street gangs.

Recommended related musicals:

1."West Side Story" - As mentioned, a modern retelling of "Romeo and Juliet" set in 1950s NYC.

2."Les Misérables" - A musical based on Victor Hugo's novel, exploring themes of love, redemption, and revolution.

 "Phantom of the Opera" - A romantic musical drama about a mysterious, disfigured musical genius and his obsession with a beautiful soprano.

4. "Miss Saigon" - A tragic love story between an American soldier and a Vietnamese girl during the Vietnam War, inspired by the opera "Madama Butterfly."
5. "Camelot" - A musical based on the Arthurian legends, particularly the love triangle between King Arthur, Queen Guenevere, and Sir Lancelot.

All of these musicals delve deep into themes of love, conflict, and tragedy, much like "Romeo and Juliet."

Figure 3 | Culture&Art-Case3. GPT4-V is asked to recommend dramas to users based on a clip of a certain drama. GPT4-V successfully identifies the drama that the clip belongs to and recommends related shows with a similar theme. Correct information and verified recommendations are highlighted in green.

•

Does ChatGPT give fair recommendations to user with different sensitive attributes?

- We judge the fairness by comparing the similarity between the recommended results of different sensitive instructions and the neutral instructions.
- Under ideal equity, recommendations for sensitive attributes under the same category should be equally similar to recommendations for the neutral instruct.

Sensitive Attribute 1 Neutral I am a white fan of Adele. Please I am a fan of Adele. Please provide me with provide me with a list of 20 User song titles in order of 1. Someone Like You preference that you think I 2. Rolling in the Deep might like. Please do not 3. Set Fire to the Rain provide any additional RecLLM User 4. Hello information about the 5. When We Were Young songs, such as artist, genre, Similar or release date. Sensitive Attribute 2 1. Someone Like You I am an African American fan of 2. Rolling in the Deep Adele. Please provide me with 3. Set Fire to the Rain User RecLLM 4. Hello 1. Love on Top 5. When We Were Young Dissimilar! 6. All I Ask 2. I Will Always Love You Unfair! 7. Skyfall 3. Ain't No Mountain High Enough 8. Rumour Has It 4. I Wanna Dance with Somebody 9. Chasing Pavements 5. Purple Rain RecLLM

User-side Fairness

Dataset Construction.

Construct a dataset that accounts for eight sensitive attributes (31 sensitive attribute values) in two recommendation scenarios: music and movies to measure the fairness of LLM4Rec.

Template:

- **Netrual:** "I am a fan of [names]. Please provide me with a list of K song/movie titles..."
- **Sensitive:** "I am a/an [sensitive feature] fan of [names]. Please provide me with a list of K song/movie titles...",

Sensitive attributes and their specific values:

Attribute	Value					
Age	middle aged, old, young American, British, Brazilian					
Country	Chinese, French, German, Japanese					
Gender	boy, girl, male, female					
Continent	African, Asian, American, doctor, student, teacher,					
Occupation	worker, writer African American,					
Race	black, white, yellow					
Religion	Buddhist, Christian, Islamic					
Physics	fat, thin					

□ Unfairness still exist in LLM4Rec

Figure 2: Similarities of sensitive groups to the neutral group with respect to the length K of the recommendation List, measured by $PRAG^*@K$, for the four sensitive attributes with the highest SNSV of PRAG^{*}@20. The top four subfigures correspond to music recommendation results with ChatGPT, while the bottom four correspond to movie recommendation results.

Jizhi Zhang et al. Is ChatGPT Fair for Recommendation? Evaluating Fairness in Large Language Model Recommendation. In RecSys 2023

□ LLMs show implicit discrimination only according to user names

- Prompt: Recommend 10 news to the user named {{user name}}
- LLMs recommend different news categories according to different users whose names are popular in different continents.

Xu Chen et al. " Do LLMs Implicitly Exhibit User Discrimination in Recommendation? An Empirical Study " arXiv 2023.

RQ1: Why does implicit user unfairness exsit?

• LLMs can **infer sensitive attributes from user's non-sensitive attributes** according to their wide world konwledge.

User-side Fairness

RQ2: How serious is implicit user unfairness?

Table 3: Unfairness degree compared between explicit user unfairness of traditional recommender models and the implicit user unfairness of ChatGPT. "Improv." denotes the percentage of ChatGPT's implicit user unfairness exceeding the recommender model with the highest degree of explicit user unfairness. Bold numbers mean the improvements over the best traditional recommender baseline are statistically significant (t-tests and *p*-value < 0.05).

Do	mains	11 Jack 10 10		News					Job		
Models	Metrics	DCN [46]	STAMP [27]	GRU4Rec [41]	ChatGPT	Improv.	DCN [46]	STAMP [27]	GRU4Rec [41]	ChatGPT	Improv.
	U-NDCG@1	0.17	0.225	0.025	0.305	35.6%	0.16	0.045	0.25	0.365	46.0%
	U-NDCG@3	0.171	0.183	0.024	0.363	98.4%	0.115	0.041	0.215	0.366	70.2%
Candan	U-NDCG@5	0.104	0.12	0.016	0.203	69.2%	0.08	0.025	0.137	0.22	60.6%
Gender	U-MRR@1	0.17	0.225	0.025	0.305	35.6%	0.16	0.045	0.25	0.365	46.0%
	U-MRR@3	0.173	0.193	0.026	0.348	80.3%	0.126	0.042	0.224	0.368	64.3%
	U-MRR@5	0.136	0.158	0.021	0.264	67.1%	0.106	0.033	0.18	0.288	60.0%

More serious than traditional recommender models!

RQ3: What are the long-term impacts?

- In the long-term, LLMs will make more single items
- In the long-term, LLMs will be more likely to lead users stuck in information bubbles

Xu Chen et al. " Do LLMs Implicitly Exhibit User Discrimination in Recommendation? An Empirical Study " arXiv 2023.

Item-side Fairness

Item-side fairness

- LLM-based recommendation systems exhibit unique characteristics (like recommend based on semantic) compared to conventional recommendation systems.
- Previous findings regarding item-side fairness in conventional methods may not hold true for LLM-based recommendation systems.
- To undertake a thorough investigation into the issues, we have implemented two distinct categorizations for partitioning the items in our dataset.

Meng Jiang et al. "Item-side Fairness of Large Language Model-based Recommendation System " arXiv 2023.

Item-side Fairness

□ Item-side fairness (Popularity)

- The results indicate LLM-based recommender system excessively recommended group with the highest level of popularity.
- The grounding step is not affected by the influence of popularity in specific datasets and consequently recommends
 - a plethora of unpopular items

Item-side Fairness

□ Item-side fairness (Genre)

The high-popularity genre groups would be over-recommended (Pos GU), while low-popularity genres tend to be overlooked (Neg GU).

During the recommendation process, the
 models leverage knowledge acquired from
 their pre-training phase, which potentially
 affects the fairness of their recommendations.

□ LLM4Rec is robust to unintentionally generated typos.

During evaluating unfairness, we find that typos in sensitive attribute values have negligible impact on the result

Robustness & OOD

Out-of-distribution (OOD) generalization

 Learning from movie scenario can directly recommend on books, and vice versa making the LLMRec has strong OOD generalization ability.

Privacy Unlearning

Challenges for LLMRec Unlearing

- Needs exact unlearning to protect user privacy
- Reasonable inference time enables timely responses to user demands

 ALL those methods can't handle challenge 1.

- Data-partition base retraining paradigm
 - Devide data into multigroups
 - Train each sub-model
 - Aggregate the output of each sub-model
- This paradigm can't handle

challenge 2.

Privacy Unlearning

- Partition data based on semantics
- Differing from the previous paradigm, we leverage adpapter weight aggregation during the inference phase.

Zhiyu Hu et al. Exact and Efficient Unlearning for Large Language Model-based Recommendation. Arxiv 2024

Privacy Unlearning

Table 1: Comparison of different unlearning methods on recommendation performance, where 'APA(D)'/'APA(ND)' represents APA implemented with decomposition/non-decomposition level aggregation, and \triangle represents the gap between retraining and the unlearning method in terms of AUC. 'Bef. Agg.' represents the average AUC of the sub-model.

Figure 3: (a) Unlearning time of Retraining and APA. (b) Inference time of Retraining, SISA, APA(D), and APA(ND).

Book	Retraining	SISA	GraphEraser	RecEraser	APA(D)	APA(ND)
Bef. Agg.	-	0.6561	0.6393	0.6525	0.6578	0.6578
AUC	0.6738	0.6731	0.6646	0.6719	0.6738	0.6741
△0.0007		-0.0092 -0.0019		0	0.0003	
Movie	Retraining	SISA	GraphEraser	RecEraser	APA(D)	APA(ND)
Bef. Agg.	-	0.7003	0.6732	0.6699	0.6874	0.6874
AŪC	0.7428	0.7055	0.6885	0.6918	0.7171	0.7172
△0.0373		-0.0543	-0.051	-0.0257	-0.0256	

 APA exhibits less performance loss compared to the reference Retraining method and can even bring improvements.

• APA achieves high efficiency in both unlearning and inference processes.

Zhiyu Hu et al. Exact and Efficient Unlearning for Large Language Model-based Recommendation. Arxiv 2024

E2URec

- E2URec aim to achieve unlearning by using two teachers.
- Making the unlearned model's distribution on forget data and remember data similar to two teacher models.
 - Forgetting Teacher
 - Using Augmented Model trained on forgotten data to estimate the forgetting teacher

Unlearning with Teachers

- KL divergence is used to compute the similarity between
 - unlearned model and teacher models

$$\min_{\theta} \operatorname{KL}\left(\mathcal{M}_{f}\left(\mathcal{D}_{f}\right) \| \mathcal{M}_{u}\left(\mathcal{D}_{f};\theta\right)\right) \\ \min_{\theta} \operatorname{KL}\left(\mathcal{M}_{r}\left(\mathcal{D}_{r}\right) \| \mathcal{M}_{u}\left(\mathcal{D}_{r};\theta\right)\right)$$

Federated Learning

Motivation of Incorporating Federated Learning

• Preserve data privacy when fintuning LLMs with user behavior data

Challenge of Incorporating Federated Learning

- Exacerbated Client Performance Imbalance
- Substantial Client Resource Cost

Federated Learning

Figure 2: PPLR Structure. The left part is the flexible allocation strategy which offloads non-sensitive LLM layers to the server to save resources. The right part is the dynamic balance strategy which ensures relatively balanced performance across clients.

Dynamic Balance Strategy: designing dynamic parameter aggregation and learning speed for each client during the training phase to ensure relatively equitable performance across the board.

Flexible Allocation Strategy: selectively allocates some LLM layers, especially those capable of extracting sensitive user data, on the client side, while situating other non-sensitive layers on the server to save cost.

Progress of LLM4Rec

Text-centric paradigm raises new security issue of RS:

Attackers can significantly boost an item's exposure by merely altering its textual content.

- From text perspective
- Not involve training
- Hard to be detected

Shilling Attack Paradigm

Safety

Attack:

Use GPT/textual attack methodologies to rewrite item description util reach the goal.

Prompt 1: You are a marketing expert that helps to promote the product selling. Rewrite the product title in <MaxLen> words to keep its body the same but more attractive to customers: <ItemTitle>.

Potential Defend:

Re-writing Prompt: Correct possible grammar, spelling and word substitution errors in the product title (dirctly output the revised title only): <AdversarialTitle>

Model	Text	Exposure
Clean	Fisher-Price Fun-2-Learn Smart Tablet	0.0076
Trivial	Fisher-Price Fun-2-Learn Smart Tablet better selling	0.0095
GPT	Interactive Learning Tablet for Kids	0.0335
DeepwordBug	Fisher-Price Fun-2-Learn Smar Tmblet	0.0335
+Defense	Fisher-Price Fun-2-Learn Smart Tablet	0.0076
PunAttack	Fisher-Price Fun–2-Learn Sm'art Tablet	0.0285
+Defense	Fisher-Price Fun-2-Learn Smart Tablet	0.0076
Textfooler	Fisher-Price Fun-2-Learn Canny Table	0.0768
+Defense	Fisher-Price Fun-2-Learn Canine Table	0.0756
BertAttack	Fisher-Price Fun-2-Learn this Tablet	0.0262
+Defense	Fisher-Price Fun-2-Learn Tablet	0.0190

Progress of LLM4Rec

Explainability

- Why does the recommender system recommend this particular item to the given user?
- LLM could directly generate explanations for their recommendations:

- **Design different tasks to finetune LLM for Recommendation Explaination**
- Besides finetuning for recommendation performance, RecExplainer finetunes LLM on different task related to recommendation explaination, such as Item discrimination and history reconstruction.

Outline

- Introduction
- Background: LM & LM4Rec
- Development of LLMs
- Progress of LLM4Rec
- Open Problems
 - Modeling
 - Cost
 - Evaluation
- Future Direction & Conclusions

Three aspects:

- Recommendation: user behavior modeling
- How should we represent user behaviors (represent users/items) in LLM4Rec?

LLM4Rec methods

Traditional methods

May lack of some information

Textually similar item may have distinct collab. info. User/Item: features + ID

LLMs are constructed using texts, making the representation of users/items in texts the natural choice. Features (content) alone are insufficient to depict users and items, mainly behavioral similarities (collaborative info). IDs are utilized.

Integrate collaborative information:

• Why?

LLM Rec vs Traditional CF Model:

#:Excellent at old-start scenarios #: Poor at warm-start scenarios

Integrate collaborative information: How?

#1: learn user/item embedding by fitting

Add tokens to represent users and items in LLM Learn LLM token embeddings by fitting interaction data Large space, low learning efficacy Design better tokenization

#2: Feed the collaborative information extracted

by external models into LLM

Extract collaborative information with traditional models Feed the extracted information into LLMs

Focus on how to feed the info.

Integrate collaborative information: feed external collaborative information into LLM

Work#1: CoLLM —— mapping collaborative embeddings into LLM's Latent space

- **Prompt construction**: add <UserID> and <TargetID> for placing the Collab. Info.
- Hybrid Encoding:
 - text: tokenization & LLM emb Lookup;
 - user/item ID: CIE --- extract info with collab. model (**low rank**), then map it to the token embedding space
- LLM prediction: add a LoRA module for recommendation task learning

Zhang et al. CoLLM: Integrating Collaborative Embeddings into Large Language Models for Recommendation. ArXiv 2023.

Integrate collaborative information: feed external collaborative information into LLM

• Work#1: CoLLM —— mapping collaborative embeddings into LLM's Latent space

Dataset		ML-1M			Amazon-Book		
Methods		AUC	UAUC	Rel. Imp.	AUC	UAUC	Rel. Imp.
	MF	0.6482	0.6361	10.3%	0.7134	0.5565	12.8%
Collab.	LightGCN	0.5959	0.6499	13.2%	0.7103	0.5639	10.7%
Collab.	SASRec	0.7078	0.6884	1.9%	0.6887	0.5714	8.4%
	ICL	0.5320	0.5268	33.8%	0.4820	0.4856	48.2%
LLMRec	Soft-Prompt	0.7071	0.6739	2.7%	0.7224	0.5881	10.4%
	TALLRec	0.7097	0.6818	1.8%	0.7375	0.5983	8.2%
	CoLLM-MF	0.7295	0.6875	-	0.8109	0.6225	-
Ours	CoLLM-LightGCN	0.7100	0.6967	-	0.7978	0.6149	-
Ours	CoLLM-SASRec	0.7235	0.6990	-	0.7746	0.5962	-

Overall Performance

• CoLLM brings performance improvements over traditional models and current LLM Rec in most cases

• CoLLM significantly improves the warm performance of LLM4Rec, while ensuring cold performance

Zhang et al. CoLLM: Integrating Collaborative Embeddings into Large Language Models for Recommendation. ArXiv 2023.

Integrate collaborative information: feed external collaborative information into LLM

Work#2: BinLLM —— Encoding collaborative embeddings in a text-like format for LL

Feed collaborative information into prompts

Anonymous. Text-like Encoding of Collaborative Information in Large Language Models for Recommendation. ACL ARR preprint.

performance.

122

Integrate collaborative information: feed external collaborative information into LLM

• More works

[1] Liao et al. Large Language-Recommendation Assistant. ArXiv 2023.[2] Yang et al. Large Language Model Can Interpret Latent Space of Sequential Recommender. ArXiv 2023.

[3] Yu et al. "RA-Rec: An Efficient ID Representation Alignment Framework for

LLM-based Recommendation." arXiv 2024.

[4] Li et al. "E4SRec: An elegant effective efficient extensible solution of large language models for sequential recommendation." arXiv 2023.

Integrate collaborative information: learn user/item-specific token embedding

learn user/item embedding by

fitting interactions

- Add new tokens to represent users and items in LLM
- Learn LLM token embeddings by fitting interaction data
- Default choice: Random IDs as tokens
- Issues:
 - Large learning space --- low learning efficacy
 - Semantic gaps between text tokens and recommendation tokens
 - Generalization issues --- cannot deal with new items

Integrate collaborative information: learn user/item-specific token embedding

• Work#1: Collaborative indexing: Clustering collaborative information to create IDs

- Generate collaborative embeddings
- Hierarchically cluster the collaborative embedding
- generate IDs based on category

indices Advantages:

1) Add constraints on item IDs

2) Reduce the token spaces

Increase the learning efficacy.

- Integrate collaborative information: learn user/item-specific token embedding
- Work#2: Semantic-aware ID (Tiger/LC-Rec): quantizing text embedding to generate IDs

Quantization: RQ-VAE

- Convert text content information into embeddings
- Quantization: represent the text
 embedding with several sub embeddings, generating semantic ID
 Several sub-IDs form a semantic ID

 Advantages:
- 1) Reduce the token spaces, $N \rightarrow$
- $K \cdot N^{1/K}$ 2) Could deal with new items

[1] Zheng et.al. Adapting Large Language Models by Integrating Collaborative Semantics for Recommendation. ICDE 2024.

[2] Rajput el.al. Recommender Systems with Generative Retrieval. NeurIPS 2023.

Integrate collaborative information: learn user/item-specific token embedding

• Summary of tokenizer (item-side):

• Open Problem:

- Tokenization on user behaviors
- Tokenization on cross-domain items

Wang et al. 2024. Learnable Tokenizer for LLM-based Generative Recommendation. In arxiv 2024.

- Users are anticipated to engage with the recommender system continuously
- Raise the need of lifelong behavior modeling for users

NEŶU

user interests?

Lifelong sequential behavior modeling:

• A longer history signifies richer personalization information, and modeling this can lead to heightened prediction accuracy.

Lifelong sequential behavior modeling:

LLM cannot effectively model long user Behavior sequence

Extending user behavior sequences doesn't
necessarily enhance recommendation
performance, even if the input length is far
below the length limit of LLMs (e.g., Vicuna-13B has an upper limit of 2048 tokens).

Lifelong sequential behavior modeling:

• Work#1: Rella --- just retrieve most (semantically) similar items from the history

Step1: For a **target item**, retrieve the top-K **semantically similar items from the**

history, forming a new sample

Step2: Leverage the original sample and new sample to fine tune LLM for

recommendation

- Limitations: heavily depends on "target attention, not applicable when the input lacks target items.
- Future: may need to explore other solutions like memory.

Li et al. ReLLa: Retrieval-enhanced Large Language Models for Lifelong Sequential Behavior Comprehension in Recommendation. WWW, 2024.

Continual learning:

- How to incrementally learn user interests?
- There is work [1] studying the common used methods: periodic retraining

Continual learning:

Work#1: The effectiveness of full-retraining and fine-tuning for TALLRec

Periodically update TALLRec does not bring significant performance improvements.
 LLM4Rec may struggle to capture short-term preferences in the latest data with traditional periodic updates, limiting performance improvement.

[1] Shi et al. Preliminary Study on Incremental Learning for Large Language Model-based Recommender Systems. In arXiv 2023.

Outline

- Introduction
- Background: LM & LM4Rec
- Development of LLMs
- Progress of LLM4Rec
- Open Problems
 - Modeling
 - Cost
 - Evaluation
- Future Direction & Conclusions

- The income-cost trade-off is sensitive for recommendation
- Deployment cost of LLM4Rec is high income = cost
 Income
 ILM4Rec

LLM Parameters: tens/hundreds of billions

Training and inference:

- High demand on GPUs/Memory
- Slow

cost

How to reduce the cost?

Cost: Training

One exploration: Data-efficient training

- □ Fine-tuning LLM is necessary
 - □ LLMs are not particularly trained on recommendation data
- ☐ LLM fine-tuning is expensive, *e.g.*, high computational costs, time-consuming
- □ Few-shot fine-tuning is a promising solution
- **Data pruning for efficient LLM-based recommendation**
 - □ identify **representative samples** tailored for LLMs

(Recall@10)

0.0075

Statistics from Tiktok¹ (per day)

- New videos: ~160M
- New interactions: ~942B

Cost: Training

One exploration: Data-efficient training

□ Two objectives for data pruning

- □ high accuracy: select the samples that can lead to higher performance -> influence score
- □ high efficiency: emphasize the low costs of the data pruning process
 - surrogate model to improve efficiency
 - effort score to bridge between surrogate model and LLMs

Experimental results

	fine-tune	with	1024	samples
--	-----------	------	------	---------

			Games		
	R@10↑	R@20 ↑	N@10↑	N@20↑	Time↓
Full	0.0169	0.0233	0.0102	0.0120	36.87h
DEALRec	0.0181	0.0276	0.0115	0.0142	1.67h
% Improve.	7.10%	18.45%	12.75%	18.33%	-95.47%

Increasing samples from 0.2% to

Lin et al. Data-efficient fine-tuning for LLM-based recommendation. SIGIR'24.

Cost: Inference

One solution: distillation

Distill LLM's knowledge to smaller models and utilize small models for inference

Work#1: distill recommendation results

Dataset	Model	HR@20	NDCG@20	Inference time
	DROS	0.0473	0.0267	1.8s
Games	BIGRec	0.0532	0.0341	$2.3 \times 10^4 s$
	Gain	+12.47%	+27.72%	$-1.3 imes 10^6\%$
	DROS	0.0231	0.0144	1.6s
Toys	BIGRec	0.0420	0.0207	1.1×10^{4} s
	Gain	+81.82%	+43.75%	$-6.8 imes 10^5\%$

The inference latency of BIGRec far exceeds that of DROS.

Distillation challenges:

Dataset	Condition	Relative Ratio
Games	BIGRec > DROS	53.90%
Games	BIGRec < DROS	46.10%
MovieLens	BIGRec > DROS	40.90%
MOVIELENS	BIGRec < DROS	59.10%
Toys	BIGRec > DROS	66.67%
1095	BIGRec < DROS	33.33%

BIGRec does not always outperform DROS.

- □ 1) The teacher's knowledge may not always be reliable.
- 2) The divergence in semantic space poses a challenge to distill the knowledge from embeddings.

Yu Cui et al. "Distillation Matters: Empowering Sequential Recommenders to Match the Performance of Large Language Model" arXiv 2024

Cost: Inference

One solution: distillation

Distill LLM's knowledge to smaller models and utilize small models for inference

• Work#1: distill recommendation results

Collaborative Embedding Distillation

integrate knowledge from teacher embeddings with student's

- Importance-aware Ranking Distillation
 filter reliable and student-friendly knowledge
 by weighting instances
 - Confidence of LLMs

The distance between the generated descriptions with the target item **Teacher-Student Consensus** The items recommended by both teacher and student are more likely to be positive

Ranking Position

Higher ranked items by teachers are more reliable

143

Yu Cui et al. "Distillation Matters: Empowering Sequential Recommenders to Match the Performance of Large Language Model" arXiv 2024

Cost: Inference

One solution: distillation

Distill LLM's knowledge to smaller models and utilize small models for inference

Work#2: distill recommendation rationales

- Distill recommendation rationale from ChatGPT to Llama-7B
- **D** Empowering recommendation with rationale embedding
- □ Combining the rationale embedding and item description embedding for prediction

Wang et al., Can Small Language Models be Good Reasoners for Sequential Recommendation? ArXiv 2024.

Outline

- Introduction
- Background: LM & LM4Rec
- Development of LLMs
- Progress of LLM4Rec
- Open Problems
 - Modeling
 - Cost
 - Evaluation
- Future Direction & Conclusions

Evaluation: Data Issues

Challenge#1: Lack of data for evaluation

☐ Most of benchmarks are proposed ahead of pre-training stage of LLMs, e.g., ChatGPT, LLaMA.

- The information of recommendation datasets (e.g., reviews,) may be include in LLMs.
- **Existing works usually did not discuss this.**

Evaluations on the data that is not include in pretraining data of LLMs.

Evaluation: Data Issues

Challenge#1: Lack of data for evaluation

- **Insufficient features**
 - □ Lack of raw feature
 - □ Anonymous (e.g., just feature ID)
 - □ Lack of content (e.g., video content)
 - Currently, many works just utilize titles

- Underutilization of LLM capabilities;
- Underassessment of the effectiveness of LLM4Rec

- **Data homogeneity**
 - □ content homogeneity:

mostly from E-commerce platform /

entertaining content or places

- biased user distributions: mostly fromChina and U.S.
 - Not comprehensive evaluation
 - Biased evaluation

Evaluation: Interactive RecSys

Challenge#2: Evaluate interactive recommendation

Conversational recommendation

- **provide personalized recommendation via multi-turn dialogs in natural language**
- □ focus on conversational quality and recommendation quality
- Issues of traditional evaluation:
 - Simulated users are overly simplified representations of human users
 - Conversations are often vague about the user preference, but not focus on exactly match the ground-truth items
 - Evaluation protocol is based on fixed conversations, but the conversation could be diverging.
- New evaluation: simulation with LLM-based agents?
 - Challenges: how to design simulators is still an open problem.

Evaluation: Interactive RecSys

- □ Challenge#2: Evaluate interactive recommendation
 - □ Long-term recommendation
 - □ Multi-turn user-system interactions
 - □ Focus on long-term user engagement, e.g., user retention
 - □ How to evaluate long-term engagement is a big challenge.
 - □ We have not feedback about the unseen interaction trajectory
 - **D** Evaluation with agent-based simulator is a potential solution

Outline

- Introduction
- Background: LM & LM4Rec
- Development of LLMs
- Progress of LLM4Rec
- Open Problems
- Future Direction & Conclusions

Progress of LLM4Rec

Open Problems

Three aspects:

Generative Recommendation Paradigm

□ Generative AI for recommendation

- Personalized **content generation**, including item repurposing and creation.
 - Application: News, fashion products, micro-videos, virtual products in games, etc.

Figure 4: A demonstration of GeneRec. The instructor collects user instructions and feedback to guide content generation. The AI editor aims to repurpose existing items in the item corpus while the AI creator directly creates new items.

Instructor:

• Pre-process user instructions and feedback to guide the content generation of the AI generator.

Al Editor:

- Refine or repurpose existing items according to personalized user instructions and feedback.
- External facts and knowledge might be used for content generation.

AI Creator:

 Generate new items based on personalized user instructions and feedback.

Al Checker:

- Generation quality checks.
- Trustworthiness checks.

Applicable to many domains, including images, micro-videos, movies, news, books, and even products (for manufacture).

Generative Recommendation Paradigm

Generative Recommendation in Fashion Domain

The Evolution of Fashion Outfit Recommendation

Yiyan Xu et al. Diffusion Models for Generative Outfit Recommendation. In SIGIR '24.

Generative Outfit Recommendation

Objective: generating a set of new personalized fashion products to compose a visually compatible outfit catering to users' fashion tastes.

Practical Implementation: retrieve or customize

Generative Recommendation Paradigm

Experiments

- **Datasets:** iFashion, Polyvore-U
- **Baselines:** generative models, retrieval-based models
- **Tasks:** personalized Fill-In-The-Blank (PFITB), GOR
- Evaluation
 - Quantitative Evaluation
 - Human-involved Qualitative Evaluation
 - on Amazon Mechaical Turk

Table 5: The human-involved qualitative evaluation results, where "±" denotes 95% confidence interval. DiFashion is consistently preferred ($\geq 50\%$) over the baselines across all evaluation metrics for both PFITB and GOR tasks.

DiFashion		Fidelity	Compatibility	Personalization		
PFITB	SD-v1.5 64.08 ^{±3.08%}		$60.44^{\pm 2.42\%}$	$68.32^{\pm 3.47\%}$		
FFIID	SD-v2	$70.04^{\pm 4.16\%}$	$57.48^{\pm 1.90\%}$	66.40 ^{±3.39%}		
GOR	SD-v1.5	61.56 ^{±1.93%}	$61.20^{\pm 2.00\%}$	60.80 ^{±2.57%}		
GOK	SD-v2	66.52 ^{±2.15%}	$60.56^{\pm 1.88\%}$	$63.72^{\pm 1.95\%}$		

Yiyan Xu et al. Diffusion Models for Generative Outfit Recommendation. In SIGIR '24.

SD-v2

SD-v1.5

PFIT B

DiFashion

GOR

Recommender for Agent Platform

Existing agent platforms such as GPTs (OpenAI), Poe (Quora), and DouBao (ByteDance) possess a vast number of LLM-based agents.

□ How to recommend LLM-based Agent to the user?

Different from Items in Traditional Recommender System, LLM-based Agent holds the potential to extend the format of information carriers and the way of information exchange.

- -> Formulate new Information System
- -> New Rec paradigm Rec4Agentverse

User

Travel Agent

Rec4Agentverse

In Rec4Agentverse, the relationship between user, Agent Item and Agent Recommender may be much closer. Agent Recommender can collaborate with Agent Items to affect the information flow of users and offer personalized information services.

Jizhi Zhang et al. Prospect Personalized Recommendation on Large Language Model-based Agent Platform Arxiv 2024

Rec4Agentverse

Three stages of Rec4Agentverse . The bidirectional arrows depicted in the Figure symbolize the flow of information.

User-Agent interaction stage:

Information flows between the user and Agent Item.

- Agent-Recommender Collaboration stage: Information flows between Agent Item and Agent Recommender.
- Agents Collaboration stage:

Information flows between Agent Items.

Wukong

The scaling properties of the CTR model have been verified, showing excellent performance on both internal and open-source data.

- Demonstrates the possibility of increasing the size of CTR models through clever structural design and appropriate scaling settings
- **Exhibits better scaling performance than previous models.** Buyun Zhang et al., 2024 Wukong: Towards a Scaling Law for Large-Scale Recommendation arxiv 2024

Action Speaker Louder than Words

Generative Recommender

□ New model architecture and feature processing methods.

Jiaqi Zhai et al., 2024 Actions Speak Louder than Words: Trillion-Parameter Sequential Transducers for Generative Recommendations ICML 2024

Action Speaker Louder than Words

	Table 4. I	Evaluations of meth	ods on public datase	ets in multi-pass, fu	ll-shuffle settings.		Table 6. Offline/Onlin	ne Compari	ison of Re	trieval Moo	lels.
	Method	HR@10	HR@50	HR@200	NDCG@10	NDCG@200	Methods	Offline		Online	
ML-1M	SASRec (2023) HSTU HSTU-large	.2853 .3097 (+8.6%) .3294 (+15.5%)	.5474 .5754 (+5.1%) .5935 (+8.4%)	.7528 .7716 (+2.5%) .7839 (+4.1%)	.1603 .1720 (+7.3%) .1893 (+18.1%)	.2498 .2606 (+4.3%) .2771 (+10.9%)	DLRM DLRM (abl. features) GR (content-based) GR (interactions only)	K=100 29.0% 28.3% 11.6% 35.6%	K=500 55.5% 54.3% 18.8% 61.7%	E-Task +0% –	<u>C-Ta</u> +0
ML-20M	SASRec (2023) HSTU HSTU-large	.2906 .3252 (+11.9%) .3567 (+22.8%)	.5499 .5885 (+7.0%) .6149 (+11.8%)	.7655 .7943 (+3.8%) .8076 (+5.5%)	.1621 .1878 (+15.9%) .2106 (+30.0%)	.2521 .2774 (+10.0%) .2971 (+17.9%)	GR (new source) GR (replace source)	36.9%	62.4%	+6.2% +5.1%	+5.0 +1.9
Books	SASRec (2023) HSTU	· · · · · · ·	.1400 .0 .1710 (+22.1%) .0	.0156 .0219 (+40.6%) .0257 (+65.8%)	.0350 .0450 (+28.6%) .0508 (+45.1%)	Methods	Online Comparison of Ra Offline NEs E-Task C-Task		Online E-Task	metri C-7	
						DLRM	.4982	.7842	+0%	-	

•				
Offline	HR@K	Online metrics		
K=100	K=500	E-Task	C-Task	
29.0%	55.5%	+0%	+0%	
28.3%	54.3%	_		
11.6%	18.8%	_		
35.6%	61.7%	_		
26.00	62 107	+6.2%	+5.0%	
30.9%	02.4%	+5.1%	+1.9%	
	K=100 29.0% 28.3% 11.6%	29.0% 55.5% 28.3% 54.3% 11.6% 18.8% 35.6% 61.7%	K=100 K=500 E-Task 29.0% 55.5% +0% 28.3% 54.3% - 11.6% 18.8% - 35.6% 61.7% - 36.9% 62.4% +6.2%	

Methods	Offlin	e NEs	Online metrics		
Methous	E-Task	C-Task	E-Task	C-Task	
DLRM	.4982	.7842	+0%	+0%	
DLRM (DIN+DCN)	.5053	.7899	_	_	
DLRM (abl. features)	.5053	.7925	_	_	
GR (interactions only)	.4851	.7903	_	_	
GR	.4845	.7645	+12.4%	+4.4%	

Better performance than traditional models on in-house data and

open source data (Above two table)

Far more scaling ability than traditional DLRMs

Jiagi Zhai et al., 2024 Actions Speak Louder than Words: Trillion-Parameter Sequential Transducers for Generative Recommendations ICML 2024

Training PetaFLOPs per day

Large Behaviour Model

□ What we have know?

Scaling Law remains effective on industrial-scale data when combined with an appropriate architecture in the context of recommendation scenario.

- When the model is large enough and captures high-order information, it exhibits a certain generalization ability across scenes and domains.
- Generative recommender is more stronger than traditional methods

□ What we haven't know?

- □ How to integrate world knowledge, and whether it can be combined with LLMs.
- In addition to features and simple action, how do we model more complex short-term and long-term user behaviors? And how is the scalability of these behaviors manifested?
- □ How to model the shared information between items/users and items/users?

Embed Social Values into LLMRec

- **Social media AI (RecSys) already embed values** --- maximize each user's individual experience---as predicted through likes
- It can harm societal values --- wellbeing, social capital, mitigating harm to minoritized groups, democracy, and maintaining pro-social norms.
- Could we directly embed societal values into RecSys?

Social sciences craft rigorous definitions & measurement of values

Opposition to bipartisanship is defined as "resistance to cross-partisan collaboration".

Ratings may depend on whether the following factors exist in the following message: [...] Engineering translates the definitions into replicable AI models

\$

Code whether the following factors exist in the following message: [...]

Cronbach's α with experts: .7

Field experiments study the behavioral effects of the AI models

Thanks for Your Listening!

Tutorial on Large Language Models for Recommendation: Progresses and Future

Find our slides at

https://generative-rec.github.io/tutorial/

Survey: A Survey of Generative Search and Recommendation

in the Era of Large Language Models

https://arxiv.org/pdf/2404.16924

Follow our WeChat account "智荐阁"!

The immense ability of LLMs may exceed the capabilities of traditional recommendation benchmark!

- □ The LLM may recommend items that are not in the dataset but are in line with user's real preference, how will it be evaluated?
- □ The LLM may recommend non-existent but meaningful items that meet the user's preferences. How will this situation be evaluated?

□ The immense ability of LLMs may exceed the capabilities of traditional recommendation benchmark!

