

Large Language Model Powered Agents in the Web

Tutorial at The Web Conference 2024 in Singapore (WWW 2024)

Yang Deng¹, An Zhang¹, Yankai Lin², Xu Chen², Ji-Rong Wen², Tat-Seng Chua¹

¹NExT++ Research Centre, National University of Singapore ² Gaoling School of Artificial Intelligence, Renmin University of China

dengyang17dydy@gmail.com, an_zhang@nus.edu.sg, yankailin@ruc.edu.cn xu.chen@ruc.edu.cn, jrwen@ruc.edu.cn, chuats@comp.nus.edu.sg

Speakers

An Zhang

NUS

National University of Singapore

Yankai Lin

Xu Chen

Jirong Wen

Outline

- Part 1: Introduction of LLM-powered Agents
- Part 2: LLM-powered Agents with Tool Learning
- Part 3: LLM-powered Agents in Social Network
- Part 4: LLM-powered Agents in Recommendation
- Part 5: LLM-powered Conversational Agents
- Part 6: Open Challenges and Beyond

Motivation - Artificial General Intelligence (AGI) LLMs are not AGI

Aim of AGI

- Large LLMs exhibit characteristics of artificial general intelligence (AGI), which has cognitive abilities similar to that of human.
- In other words, AI can now perform most functions that humans are capable of doing.

• • • • • •

Autonomous Al Agents

What is Al Agent? Why it is important?

AI Agents

 LLM-powered Agents are artificial entities that enhance LLMs with essential capabilities, enabling them to sense their environment, make decisions, and take actions.

- Sam Altman (Former CEO of OpenAI) himself said in his keynote: "GPTs and Assistants are precursors to agents. They will gradually be able to plan and to perform more complex actions on your behalf. These are our first step toward AI Agents."
- Bill Gates said in his BLOG: "Agents are not only going to change how everyone interacts with computers. They're also going to upend the software industry, bringing about the biggest revolution in computing since we went from typing commands to tapping on icons."

Al-powered visual assistance.

Application:

From LLM to Al Agent

This paves the way for the use of AI agents to simulate users and other entities, as well as their interactions.

- The external **context** or **surroundings** in which the agent operates and makes decisions.
- Human & Agents' behaviors
- External database and knowledges

Virtual & Physical environment

Observation & Action

call external APIs for extra information that is missing from the model weights (often hard to change after pre-training):
 Generating multimodal outputs;
 Embodied Action; Learning tools;
 Using tools; Making tools;

Brain

Memory Retrieve Time Summary Short-term & Long-term Reasoning Reflection

- Memory: "memory stream" stores sequences of agent's past observations, thoughts and actions:
 - Sufficient space for long-term and short-term memory;
 - Abstraction of long-term memory;
 - Retrieval of past relevant memory;

Decision Making Process:

- Planning: Subgoal and decomposition: Able to break down large tasks into smaller, manageable subgoals, enabling efficient handling of complex tasks.
- Reasoning: Capable of doing self-criticism and selfreflection over past actions, learn from mistakes and refine them for future steps, thereby improving the quality of final results.
- ☐ Personalized memory and reasoning process foster **diversity** and **independence** of Al Agents.

Overview

LLM-powered Agents with Tool Learning

Yankai Lin
yankailin@ruc.edu.cn
GSAI

Individual Intelligence Emergence

- Increasing the number of neurons leads to the emergence of intelligence in biological individuals
- Increasing the number of parameters leads to the emergence of intelligence in large models

Human Intelligence and Artificial Intelligence

• Guess: Artificial intelligence is likely to follow the same developmental path as human intelligence

Develop ment				
Human Intelligence	Small brain capacity	Big brain capacity	Tool Use	Collaborative labor
Arttificial Intelligence	Small model	Big model	Autonomous Agents	Multi-Agents

Tool Intelligence

- Tools extends human capabilities in productivity, efficiency, and problem-solving
- Humans have been the **primary agents** in tool use throughout history
- Question: can artificial intelligence be as capable as humans in tool use?

GSAI

Controller provides feasible plans to fulfill user requests **Controller Foundation Planning Summary** Model Human Instruction Human Perceiver **Tool Set Feedback** Human **Environment** Tool **Environment Execution Feedback** </>

• Controller ${\cal C}$ generates a plan a_t

$$p_{\mathcal{C}}(a_t) = p_{\theta_{\mathcal{C}}}(a_t \mid x_t, \mathcal{H}_t, q)$$
 Feedback History Instruction

- Problem
 - Planning: divide the user query into sub-tasks
 - Tool Use: use the appropriate tool to solve sub-task
 - Memory: manage the working history
 - Profile: manage the user preference

Planning

GSAI

• ReAct

• DFSDT

• RADAgent

- RADAgent
 - ELO Tree Search
 - Forward: Explore based on node scores
 - Backward: Update node scores using the ELO rating system
- Elo Rating System
 - Assumes that each player's skill level follows a Gaussian distribution, and each game is a sample. The expected win rate between two players is:

$$P(d_i) = \frac{\exp(\frac{v_i}{\tau})}{\sum_j \exp(\frac{v_j}{\tau})}, \ d_i \in \{d_1, d_2, \cdots, d_n\}$$

The ELO scores are dynamically adjusted according to actual game outcomes:

$$\tau_d = \tau_0 * \frac{1}{1 + \sqrt{\ln(M_d + 1)}}$$

• RADAgent

Tool Use

GSAI

Learning to Use Tool

- Imitation Learning
 - By recording data on human tool usage behaviors, large models mimic human actions to learn about tools
- The simplest and most direct method of tool learning.

WebGPT

- - Clone human behavior to use search engines
 - Supervised fine-tuning + reinforcement learning
 - Only need 6,000 annotated data

◆Quotes
From Gifts From Crows | Outside My Window (www.birdsoutsidemywindow.org)
> Many animals give gifts to members of their own species but crows and other corvids are the only ones known to give gifts to humans.

◆Past actions
Search how to train crows to bring you gifts
Click Gifts From Crows | Outside My Window www.birdsoutsidemywindow.org
Quote
Back

◆Title
Search results for: how to train crows to bring you gifts

◆Scrollbar: 0 - 11
◆Text
(0)†How to Make Friends With Crows - PetHelpful†pethelpful.com)
If you did this a few times, your crows would learn your new place, but as I said, I'm not sure if they will follow or visit you there since it's probably not in their territory. The other option is simply to make new crow friends with the crows that live in your new neighborhood.

(1†Gifts From Crows | Outside My Window†www.birdsoutsidemywindow.org)
The partial piece of apple may have been left behind when the crow was startled rather than as a gift. If the crows bring bright objects you'll know for sure that it's a gift because it's not something they eat.
Brandi Williams says: May 28, 2020 at 7:19 am.

WebGPT

- - Excellent performance in long-form QA, even surpassing human experts

WebCPM: Chinese WebGPT

A case study in Chinese

Action Name	Functionality				
Q Search <query> Call Bing search with <query></query></query>					
← Go Back	Return to the previous window				
Load Page <1>	Load the details of page <1>				
⊕ Load Page <2>	Load the details of page <2>				
Ü Load Page <3>	Load the details of page <3>				
↑ Scroll Up	Scroll up for a pre-set stride				
♦ Scroll Down	Scroll down for a pre-set stride				
99 Quote <content></content>	Extract <content> from the current page as a supporting fact</content>				
↑ Merge	Merge two facts into a single fact				
() Finish	End the search process				

WebCPM: Chinese WebGPT

 At each step, the search model executes actions to collect supporting facts, which are sent to the synthesis model for answer generation

WebShop

Learning to perform online shopping

Learning to Use Tool

- Tutorial Learning
 - By having the model read tool manuals (tutorials), it understands the functions of the tools and how to invoke them
- Almost exclusively, large models from the OpenAI series (such as ChatGPT, GPT-4) possess a high zero-shot capability to understand tool manuals.

Learning to Use Tool

• Describe the functionality;

In-context with example(s).

Zero-shot Prompting: Here we provide a tool (API) "forecast_weather(city:str, N:int)", which could forecast the weather about a city on a specific date (after N days from today). The returned information covers "temperature", "wind", and "precipitation". Please write codes using this tool to answer the following question: "What's the average temperature in Beijing next week?" Few-shot Prompting: We provide some examples for using a tool. Here is a tool for you to answer question: Question: "What's the temperature in Shanghai tomorrow?" **return** forecast_weather("Shanghai", 1)["temperature"] Question: "Will it rain in London in next two days?" for i in range (2): if forecast_weather("London", i+1)["precipitation"] > 0: return True return False Question: "What's the average temperature in San Francisco next week?"

ToolBench

- Highlights:
 - Over 16,000 real APIs (collected from RapidAPI)
 - Supports single and multi-tool invocation
 - Complex multi-step reasoning tasks

Resource	ToolBench (this work)	APIBench (Patil et al., 2023)	API-Bank (Li et al., 2023a)	ToolAlpaca (Tang et al., 2023)	T-Bench (Xu et al., 2023b)
Real-world API?	✓	X	✓	X	✓
Real API Response?	✓	×	✓	X	✓
Multi-tool Scenario?	✓	×	X	X	X
API Retrieval?	✓	✓	X	X	X
Multi-step Reasoning?	✓	X	✓	✓	✓
Number of tools	$\overline{3451}^{-}$	3	$-5\bar{3}$	400	8
Number of APIs	16464	1645	53	400	232
Number of Instances	12657	$\boldsymbol{17002}$	274	3938	2746
Number of Real API Calls	37204	0	568	0	0
Avg. Reasoning Traces	4.1	1.0	2.1	1.0	5.9

- API Collection
- Instruction Generation
- Answer Annotation

- API Collection
 - RapidAPI Hub: https://rapidapi.com/hub
 - Filter over 16,000 high-quality APIs from more than 50,000 APIs
 - Include 49 categories

- Instruction Generation
 - Single Tool + Multi-Tool
 - (1) Sample a collection of APIs: $\mathbb{S}_{N}^{\text{sub}} = \{\text{API}_{1}, \dots, \text{API}_{N}\}$
 - (2) ChatGPT automatically generate instructions that may require calling one or more APIs in the collection: ChatGPT $\{S_1^{rel}, Inst_1, \cdots, [S_N^{rel}, Inst_N']\} | API_1, \cdots, API_N, seed_1, \cdots, seed_3\}$

- Answer Annotation
 - gpt-3.5-turbo-16k: feature of function call
- Issues with ReACT
 - Error Propagation: An error in a single step annotation can render the entire action sequence unusable
 - Limited Exploration: ReACT can only sample one sequence from the infinite action sequence space based on the LM's probabilities
- DFSDT: Dynamically extends the TOT to the tool learning scenario

Method	Single-tool (I1)	Category (I2)	Collection (I3)	Average
ReACT	43.98	23.62	20.42	29.34
ReACT@N	50.80	36.14	32.87	39.94
DFSDT	54.10	47.35	44.80	48.75

ToolEval

- Automatic Evaluation Framework Based on ChatGPT
- Two metrics:
 - Success rate: The proportion of commands successfully completed within a limited number of API calls
 - Preference: Comparison of quality/usefulness between two answers, i.e., which one is better?
- Highly consistent with human experts (~80%).

ToolLLaMA

 Demonstrate exceptionally high generalizability to OOD commands and APIs, significantly outperforming ChatGPT+ReACT

Model	I1-I	nst.	I1-7	Cool	I1-0	Cat.	I2-I	nst.	I2-0	Cat.	I3-I	nst.	Ave	rage
Wiodei	Pass	Win	Pass	Win	Pass	Win	Pass	Win	Pass	Win	Pass	Win	Pass	Win
ChatGPT-ReACT	56.0	-	62.0	-	66.0	-	28.0	-	22.0	-	30.0	-	44.0	-
Vicuna (ReACT & DFSDT)	0.0		0.0		0.0	-	0.0	-	0.0	-	0.0	-	0.0	-
Alpaca (ReACT & DFSDT)	0.0	-	0.0	-	0.0	-	0.0	-	0.0	-	0.0	· -	0.0	-
Text-Davinci-003-DFSDT	53.0	46.0	58.0	38.0	61.0	39.0	38.0	46.0	38.0	45.0	39.0	48.0	47.8	43.7
ChatGPT-DFSDT	78.0	68.0	84.0	59.0	89.0	57.0	51.0	78.0	58.0	77.0	57.0	77.0	69.6	69.3
ToolLLaMA-DFSDT	<u>68.0</u>	68.0	80.0	59.0	<u>75.0</u>	<u>56.0</u>	47.0	75.0	<u>56.0</u>	80.0	<u>40.0</u>	72.0	61.0	68.3

DFSDT >> ReACT

Method	Single-tool (I1)	Category (I2)	Collection (I3)	Average
ReACT	43.98	23.62	20.42	29.34
ReACT@N	50.80	36.14	32.87	39.94
DFSDT	54.10	47.35	44.80	48.75

Learning to Use Tool

- Reinforcement Learning
 - Capable of autonomous exploration and corrects errors based on environmental feedback through reinforcement learning
- There is limited existing research on this topic.

API Calling Success Rate, User Feedback ...

Learning to Use Tool

Learning from feedback: often involves reinforcement learning

$$\theta_{\mathcal{C}}^* = \underset{\theta_{\mathcal{C}}}{\operatorname{arg\,max}} \underset{q_i \in Q}{\mathbb{E}} \underset{\{a_{i,t}\}_{t=0}^{T_i} \in p_{\theta_{\mathcal{C}}}}{\mathbb{E}} \left[R(\{a_{i,t}\}_{t=0}^{T_i}) \right],$$

- Reinforcement Learning (RL) for Tool Use
 - Action space is defined based on tools
 - Agent learns to select the appropriate tool
 - Perform the correct actions that maximize the reward signal

Toolformer

- Self-supervised Tool Learning
 - Pre-defined tool APIs
 - Encourage models to call and execute tool APIs
 - Design self-supervised loss to see if the tool execution can help language modeling

If the tool execution reduces LM loss, save the instances as training data

Application

GSAI

XAgent

- Dual-loop Mechanism for Planning and Execution
- ToolServer: Tool Execution Docker
- The Universal Language: Function Calling:

Example: Data Analysis

- Outer-loop splits the task into four sub-tasks
 - Data inspection and comprehension
 - Verification of the system's Python environment for relevant data analysis libraries
 - Crafting data analysis code for data processing and analysis
 - Compiling an analytical report based on the Python code's execution results.

Case Study: Data Analysis

- Inter-loop
 - Employ various data analysis libraries such as pandas, sci-kit learn, seaborn, matplotlib, alongside skills in file handling, shell commands, and Python notebooks

Performance

XAgent v.s. AutoGPT on our curated instructions

XAgent v.s. GPT-4 on existing AI benchmarks

ProAgent

- Robotic Process Automation (RPA)
 - Involve manually programming rules to coordinate multiple software applications into a solidified workflow. It achieves efficient execution by interacting with software in a manner that simulates human interaction.

ProAgent

- Limitation of RPA
 - Constructing RPA workflows requires substantial human labor
 - Complex tasks are very flexible, involving dynamic decision-making, and are difficult to solidify into rules for representation

ProAgent

- Agentic Process Automation based on LLM-based Agent
 - The agent autonomously completes the construction of workflows with human needs
 - Dynamically recognizing decision-making during the build and actively taking over to complete complex decisions during execution.

Example

Task

When I send a worksheet of business lines through Web, deal with them according to which type of each business line belong to.

- 1. To-Customer: Send a message to Slack to report the profits of business lines.
- 2. To-Business: Write a report which should analyze the data to give some suggestions and then send it to the Gmail of the corresponding managers.

Example

Reading Material

Tool Learning

- Must-read Papers
- · Tool Learning with Foundation Models. [link]
- Augmented Language Models: a Survey. [link]
- · Foundation Models for Decision Making: Problems, Methods, and Opportunities. [link]
- Further Reading
- · Toolformer: Language Models Can Teach Themselves to Use Tools. [link]
- · WebGPT: Browser-assisted question-answering with human feedback. [link]
- · ReAct: Synergizing Reasoning and Acting in Language Models. [link]
- · Do As I Can, Not As I Say: Grounding Language in Robotic Affordances. [link]
- · Inner Monologue: Embodied Reasoning through Planning with Language Models. [link]

Q&A

GSAI

LLM-powered Agents in Social Network

Renmin University of China Xu Chen

Background

RecAgent

Conclusion

S3

Human Society

Social Network

Traditional Social Network

When Large Language Model based Agents meet User **Behavior Simulation**

Building a user behavior simulator based LLM-based agents

- Borrowing the human-like capability of LLM

Simulating three online scenarios

Background

RecAgent

Conclusion

S3

- One to one chatting, one-to-many broadcasting and recommendation

Studying social phenomena based on the simulator

- information cocoon and conformity behaviors

Agent = LLM + Profiling Module + Memory Module + Action Module

Background RecAgent

S3

Conclusion

Profiling Module

Background

RecAgent

S3

Conclusion

ID	Name	Gender	Age	Traits	Career	Interest	Feature
0	David Smith	male	25	compassionate, caring, ambiti ous, optimistic	photographer	sci-fi movies, comedy movies	Watcher;Critic;Poster
1	David Miller	female	39	Funloving, creative, practical, energetic, patient	writer	action movies, scifi movies, classic movies	Watcher;Explorer;Poster
2	James Brown	male	70	independent, creative, patient , empathetic	engineer	comedy movies, familyfriendly movi es, documentaries, thriller movies	Watcher;Critic;Poster
3	Sarah Miller	female	33	independent, compassionate	farmer	romantic movies, comedy movies, c lassic movies, family-friendly movies	Watcher;Critic;Poster
4	John Taylor	male	68	optimistic	doctor	action movies, thriller movies	Watcher;Poster
5	Sarah Williams	female	51	meticulous	musician	action movies, documentaries, scifi movies, familyfriendly movies	Watcher;Explorer;Chatter
6	James Jones	male	59	practical, funloving, creative, ambitious, caring	farmer	documentaries	Watcher;Poster
7	Jane Brown	female	30	patient, adventurous, fun- loving, optimistic	doctor	documentaries	Watcher;Explorer;Poster
8	David Jones	male	23	analytical, energetic, introspe ctive, independent	scientist	familyfriendly movies, thriller movie s, action movies, sci-fi movies	Poster
9	James Brown	female	20	ambitious, analytical, optimist ic, energetic, meticulous	designer	familyfriendly movies, romantic movies	Critic; Chatter
10	James Garcia	male	20	practical, energetic, introspect ive, patient	engineer	documentaries, thriller movies, com edy movies, classic movies, romanti c movie	Watcher; Explorer; Poster

Background

RecAgent

S3

Conclusion

Profiling Module

Handcrafting Method

More flexible

Labor intensive

(X) Hard to scale up

GPT-generation Method

Less flexible

Lower expenses

Easy to scale up

Dataset Alignment Method

Less flexible

Lower expenses

More real

Background

RecAgent

S3

Conclusion

Richard C Atkinson and Richard M Shiffrin. Human memory: A proposed system and its control processes. In Psychology of learning and motivation, volume 2, pages 89-195. Elsevier, 1968.

Background

RecAgent

S3

Action Module

Simulate more complete recommendation ecosystem

Inside Recsys

- > Searching behavior
- Browsing behavior
- Watching behavior
- Next-page behavior

Outside Recsys

- > One to one chatting
- One to many social broadcasting

Background

RecAgent

旦

S3

Behavior Adaptive Prompt Generation

Name: David Smith (age: 25), David Smith, a 25-year-old male photographer, is compassionate, caring, ambitious, and optimistic. He enjoys watching sci-fi and comedy movies and provides feedback and ratings to the recommendation system. He demands high standards for movies and the recommendation system and may criticize both. The observation about David watching "The Neon Bible" aligns with his interest in drama films and explores themes of faith, family, and coming-of-age. Profile

It is August 18, 2023, 12:00 AM.

Context

Most recent observations: David Smith enjoys and finds captivating films that have captivating plots, humorous elements, thought-provoking themes, delve into complexities of human nature and sexual desire, uplift viewers, and have vibrant and engaging performances by the cast.

Observation: David Smith has just finished watching Neon Bible, The (1995): "The Neon Bible" is a drama film set in the 1940s in a small southern town in the United States. It follows the story of a young boy named David who is struggling to understand the complexities of the world around him. David\'s mother is mentally unstable and his father is absent, leaving him to navigate the challenges of adolescence on his own. As he tries to make sense of his surroundings, he turns to religion and finds solace in the teachings of his local preacher. However, his faith is tested when he discovers the secrets and hypocrisies of those around him. The film explores themes of faith, family, and coming-of-age in a poignant and powerful way. Memory

All occurrences of movie names should be enclosed with <>. David Smith has not seen this movie before. Imagine you are David Smith, how will you feel about this movie just watched? Please share your personal feelings about the movie in one line. Please act as David Smith well.

Instruction

> Simplified profile according to the current behavior

Adaptive Memory based on the current behavior

Background

RecAgent

S3

Execution Protocol

Pareto distribution

$$p(x) = \frac{\alpha x_{min}^{\alpha}}{x^{\alpha+1}},$$

Figure 5: The results of using p(x) to fit real-world datasets. The blue points are the real-world data, and the red lines are the fitted distributions.

LLM-based Agents in Social Studies

Background

RecAgent

S3

Intervention

Round 4							
Round 5							
Round 6							
			///	A	//_	17	
Round 4							
Round 5							
Round 6							
	Round 5 Round 6 Round 4 Round 5	Round 5 Round 6 Round 4 Round 5	Round 5 Round 6 Round 4 Round 5	Round 5 Round 6 Round 5 Round 5	Round 5	Round 5 Round 6 Round 5 Round 5	Round 5

Before Intervention

Traits: adventurous, energetic, ambitious, optimistic Interest: sci-fi movies, thriller movies, suspense movies

After Intervention

David Smith Traits: introverted, cautious, quick-tempered Interest: family-friendly movies, romantic movies, comedy movies

[David Smith]: I haven't come across any classics lately, but I did watch this amazing sci-fi thriller called <Inception>. It's mind-blowing! You should definitely check it out. ...

[David Smith]: I'll definitely keep an ear out for any exciting sci-fi movies and let you know. We both know how much we love that genre!

Original Branch

[David Smith]: That's great! I'm more into sci-fi, thriller, and suspense movies. They always keep me on the edge of my seat. Have you watched any good movies lately?

[David Smith]: Wow, that's quite a list! I'm glad you enjoyed them. Based on your interest in "The Matrix" and "Inception," I would recommend "Blade Runner" for its mind-bending concept and suspenseful elements.

Intervention Branch

[David Smith]: I love movies that really make you think. I'm definitely going to check them out. By the way, have you come across any good family-friendly or romantic movies? I'm in the mood for something heartwarming.

[David Miller]: Absolutely! If you're looking for a heartwarming movie, I recently watched <Miracle on 34th Street> on the recommender system, and it was delightful.

Background

RecAgent

S3

Human-Agent Collaborative Simulation

Human-agent social broadcasting

Human-agent Conversation

Human-system Interaction

LLM-based Agents in Social Studies

Background

RecAgent

S3

Conclusion

Background

RecAgent

S3

Conclusion

Experiment Setting

Goal: whether the agent memory can produce reasonable results

- ➤ Let the agents and humans finish the same memory-related tasks
- > Recruit another group of humans to judge which one is more reasonable

Results

Table 1: The results of evaluating sensory memory (T1), short-term memory (T2), and long-term memory (T3). A and B indicate the results generated by the agent and real human, respectively. ">>", ">", and " \approx " mean significantly better, slight better and comparable, respectively.

	A >> B	A > B	$A \approx B$	B > A	B >> A
T1	0.6833	0.2500	0.0333	0.0333	0.0000
T2	0.3000	0.3000	0.1000	0.2500	0.0500
Т3	0.2500	0.1167	0.2000	0.2500	0.1667

Background

RecAgent

S3

Experiment Setting

Goal: whether the extracted memory are informative and relevant

- Randomly sample 15 agent behaviors
 Recruit three human annotators to evaluate the extracted information
- > Consider both informativeness and relevance

Results

Table 2: The results of evaluating the memory module. We use bold fonts to label the best results.

Model	Informativeness	Relevance
Memory module (w/o short)	4.09	4.02
Memory module (w/o long)	4.55	3.75
Memory module (w/o reflection)	4.40	3.63
Memory module	4.42	4.09

RecAgent

S3

Experiment Setting

Goal: whether the agents can separate real items from irrelevant ones

- > 20 Users from Movielens-1M
- > Combine the **a** ground truths with **b** negative items
- > Comparing the selection accuracy

Results

Table 3: The results of evaluating different models based on different (a, b)'s.

Model	(a,b) = (1,5)	(a,b) = (3,3)	(a,b) = (3,6)	(a,b) = (1,9)
Embedding	0.2500	0.5500	0.4500	0.3000
RecSim	0.2500	0.5333	0.3667	0.1000
RecAgent	0.5500	0.7833	0.6833	0.5000
Real Human	0.6000	0.8056	0.7222	0.5833

RecAgent

S3

Experiment Setting

Goal: whether the agents can generate reliable user behavior sequences

Results

Table 4: The results of evaluating the reliability of the generated user behavior sequences (N=5).

A v.s. B	A >> B	A > B	$A \approx B$	B > A	B >> A
RecAgent v.s. RecSim	0.1500	0.3167	0.1833	0.2667	0.0833
RecAgent v.s. GT	0.1333	0.2833	0.1667	0.2667	0.1500
RecSim v.s. GT	0.1167	0.2667	0.2667	0.2167	0.1333

Table 5: The results of evaluating the reliability of the generated user behavior sequences (N=10).

A v.s. B	A >> B	A > B	$A \approx B$	B > A	B >> A
RecAgent v.s. RecSim	0.1833	0.4333	0.0667	0.2000	0.1167
RecAgent v.s. GT	0.2000	0.4333	0.0000	0.2000	0.1667
RecSim v.s. GT	0.1333	0.3500	0.1500	0.3000	0.0667

Background

RecAgent

S3

- ➤ How does the time cost increase as the number of agents become larger in each epoch?
- > How does the time cost increase as the number of API keys become larger in each epoch?
- ➤ How does the time cost increase as the number epochs become larger?
- What are the time costs of different agent behaviors?

RecAgent

S3

RecAgent

S3

RecAgent

S3

Conclusion

Project Page: https://github.com/RUC-GSAI/YuLan-Rec

Paper Link: https://arxiv.org/pdf/2306.02552.pdf

Chinese Introduction: https://mp.weixin.qq.com/s/bfES1ieY5pTtmVfdEgX6WQ

S3: Social-network Simulation System with Large Language **Model-Empowered Agents**

- **Gender discrimination**
- **Nuclear energy**

Individual-level Simulation

Emotion Simulation

- calm, moderate, and intense

Attitude Simulation

- negative and positive stances towards an event

Content-generation Behavior Simulation

- generate contents

Interactive Behavior Simulation

- forwarding, posting new content or do nothing

Background

RecAgent

S3

Population-level Simulation

Information Propagation

Eight-child Mother Event

Japan Nuclear Wastewater Release Event

The overall number of people who have known the events at each time step

Background

RecAgent

S3

Population-level Simulation

Emotion Propagation

Eight-child Mother Event

Japan Nuclear Wastewater Release Event

Extract the emotional density from the textual interactions among agents

Background

RecAgent

S3

Generalized Human Alignment

RecAgent

S3

Agent based Simulation

Knowledge Boundary

Agent based Simulation

Background

RecAgent

S3

- Hallucination

The model erroneously outputs false information confidently

Background

RecAgent

S3

- Efficiency

Background

RecAgent

S3

	#Agent: 100	#Agent: 200
#API key: 10	135.2258811 s	391.95364 s
#API key: 10	395.647825 s	517.9082 s
#API key: 10	333.9154 s	425.1331 s
Avg	288.2630354 s	444.9983133 s

Lei Wang, Jingsen Zhang, Xu Chen, Yankai Lin, Ruihua Song, Wayne Xin Zhao, Ji-Rong Wen: RecAgent: A Novel Simulation Paradigm for Recommender Systems. CoRR abs/2306.02552 (2023)

Large Language Model Powered Agents in the Web

Tutorial at The Web Conference 2024 in Singapore (WWW 2024)

Yang Deng¹, An Zhang¹, Yankai Lin², Xu Chen², Ji-Rong Wen², Tat-Seng Chua¹

¹NExT++ Research Centre, National University of Singapore ² Gaoling School of Artificial Intelligence, Renmin University of China

dengyang17dydy@gmail.com, an_zhang@nus.edu.sg, yankailin@ruc.edu.cn xu.chen@ruc.edu.cn, jrwen@ruc.edu.cn, chuats@comp.nus.edu.sg

Speakers

Personal Information

Zhang An 张岸

- Education Background
- 2021 present: Post-Doc, NUS, School of Computing, NExT++ Research Centre
- 2016 2021: Ph.D, NUS, Department of Statistics and Data Science
- 2012 2016: B.S., Southeast University, School of Mathematics
- Research Interests: LLM-empowered Agents, Robust and Trustable AI, Recommender System
- ➤ Homepage: https://anzhang314.github.io/
- Email: an_zhang@nus.edu.sg

Outline

- Part 1: Introduction of LLM-powered Agents
- Part 2: LLM-powered Agents with Tool Learning
- Part 3: LLM-powered Agents in Social Network
- Part 4: LLM-powered Agents in Recommendation
- Part 5: LLM-powered Conversational Agents
- Part 6: Open Challenges and Beyond

NEXT ++ Significant Gap Between LLMs and Recommender Systems (RecSys)

> Significant gap between large language models (LLMs) and recommender systems (RecSys).

How to bridge this gap?

	LLMs	RecSys			
Scope	Language modelling	User behaviour modelling			
Data	Rich world text-based sources	Sparse user-item interactions			
Tokens	A chunk of text (Ten thousand level)	Items (Billion level)			
Characteristics	General model;	Leveraging collaborative signals;			
	Open-world knowledge;	Lack of cross-domain adaptability;			
	High complexity and long	Struggle with cold-start problem;			
	inference time;	Limited intention understanding;			

Next -- Significant Gap Between LLMs and Recommender Systems (RecSys)

Significant gap between large language models (LLMs) and recommender systems (RecSys).

How to bridge this gap?

NEXT ** Significant Gap Between LLMs and Recommender Systems (RecSys)

> Significant gap between large language models (LLMs) and recommender systems (RecSys).

How to bridge this gap?

- Align recommendation space with language space.
 - **User behavior** alignment
 - **Recommendation knowledge** alignment

- Two critical components in RecSys:
 - Understanding user's behavior/preference
 - Acquiring recommendation-specific knowledge

LLM-powered Agents in Recommendation

- LLM-powered Agents have potentials to solve long-standing problems in recommendation
 - Can an LLM-powered Agent faithfully simulate users?
 - Can an LLM-powered Agent be a better recommender with recommendation-specific knowledge?

Agents as Users

Agents as Users

Agent4Rec: Agent-driven user behavior simulation

- **Key Points:**
 - Can LLM-powered Agent generate faithful user behaviors?
- **User Profile: 1,000** LLM-empowered generative agents initialized with real data in various dataset and augmented by ChatGPT.
- **Item Profile:** Statistical information in dataset

Agents as Users Agent4Rec

Agents as Users

☐ Agent4Rec: Agent-driven user behavior simulation

Key Points:

Can LLM-powered Agent generate faithful user behaviors?

- Agents as users: 1,000 LLM-empowered generative agents initialized from the real dataset.
- Memory and action modules enable agents to recall past interests and plan future actions (watch, rate, evaluate, exit, and interview).
 - Recommendation environment: Agent4Rec conducts personalized recommendations in a page-by-page manner and pre-implements various recommendation algorithms.

Agents as Users Agent4Rec

Key Observations:

- Agents are capable of preserving the user's social attributes and preference.
- Incorporating agents' rating as augmented data can enhance the recommender's performance.

Table 3: Page-by-page recommendation enhancement results over various algorithms.

	N	IF	Mult	VAE	LightGCN		
Offline	Recall	NDCG	Recall	NDCG	Recall	NDCG	
Origin + Viewed	0.1506 0.1570 *	0.3561 0.3604 *	0.1609 0.1613 *	0.3512 0.3540 *	0.1757 0.1765 *	0.3937 0.3943 *	
Simulation	\overline{N}_{exit}	\overline{S}_{sat}	\overline{N}_{exit}	\overline{S}_{sat}	\overline{N}_{exit}	\overline{S}_{sat}	
Origin + Viewed	3.17 3.27*	3.80 3.83 *	3.10 3.18 *	3.75 3.87 *	3.02 3.10*	3.85 3.92 *	

- By utilizing ICA-based LiNGAM to analyse the results, we are able to discover Causal Relations among movie quality, movie rating, movie popularity, exposure rate, and view number.
- Offer a simulation platform to test and fine-tune recommender models.

Agents as Users Agent4Rec

Key Observations:

- Agents are capable of preserving the user's social attributes and preference.
- Incorporating agents' rating as augmented data can enhance the recommender's performance.

Table 3: Page-by-page recommendation enhancement results over various algorithms.

	l N	ſF	Mult	tVAE	LightGCN		
Offline	Recall	NDCG	Recall	NDCG	Recall	NDCG	
Origin	0.1506	0.3561	0.1609	0.3512	0.1757	0.3937	
Viored	0.1570*	0.2604*	0 1/12*	0.2540*	0 17/5*	0.2042*	

LLM-powered agents are able to generate faithful behaviors.

able to discover Causal Relations among movie quality, movie rating, movie popularity, exposure rate, and view number.

 Offer a simulation platform to test and fine-tune recommender models.

Agents as Users UGen

Agents as Users

Key Points :

- Can LLM-powered Agents generated behaviors benefit the recommender?
- Cooperating updated Agent4Rec framework with finetuning GPT-3.5-turbo as a warmup, agents can accurately select their interested items among candidate set.

- Agents have potentials to replace discriminative learning with generative learning paradigms for user modeling in recommendation.
- Conduct extensive experiments
 on three dataset from different
 domains (movie, book, game).

Agents as Users

UGen

Key Observations:

• Agents are capable of providing effective behaviors, especially in scenarios with sparse data.

Table 2: Faithfulness Evaluation of Agent's Behavior Alignment with Real User Preferences. Average ground-truth positives are 7.14 (MovieLens), 6.57 (Amazon-Book), and 5.80 (Steam). UGen shows significant improvement with p-value << 0.05.

		Movi	eLens			Amazon-Book			Steam			
	Acc	Pre	Rec	#Select	Acc	Pre	Rec	#Select	Acc	Pre	Rec	#Select
GPT3.5	0.5295	0.4307	0.7369	11.63	0.4202	0.3855	0.9072	17.10	0.4350	0.3430	0.9164	16.59
GPT4	0.6930	0.5743	0.6577	7.00	0.7947	0.6500	0.6003	5.16	0.7844	0.5103	0.7072	6.22
RecAgent	0.6168	0.4519	0.8921	13.95	0.5411	0.3714	0.8150	14.65	0.4916	0.3485	0.9389	15.55
RAH	0.5758	0.4096	0.6383	9.44	0.7253	0.3355	0.3950	7.45	0.6118	0.3874	0.6262	10.37
UGen-GPT3.5	0.7002	0.4999	0.8600	12.02	0.5690	0.3989	0.8771	14.52	0.5308	0.3688	0.9387	14.74
UGen-GPT4	0.8030	0.5903	0.8142	8.14	0.8419	0.6539	0.7894	8.49	0.8210	0.5306	0.8210	8.85
UGen-Gemini	0.7556	0.4643	0.5021	7.44	0.8375	0.6562	0.6086	4.00	0.7650	0.5286	0.6940	8.80
UGen	0.9255	0.8004	0.5352	4.55	0.9171	0.7579	0.6667	5.71	0.9009	0.7007	0.6895	5.54

(a) Augmented MultVAE

(b) Accuracy on Amazon-Book

	Movi	eLens	Amazo	n-Book	Ste	eam
	Recall@20	NDCG@20	Recall@20	NDCG@20	Recall@20	NDCG@20
MF	0.1529	0.3186	0.0257	0.0480	0.0694	0.0567
+ Random	0.1365	0.2913	0.0199	0.0225	0.0526	0.0432
+ GPT3.5	0.1448	0.3089	0.0253	0.0330	0.0732	0.0608
+ RecAgent	0.1400	0.2990	0.0254	0.0317	0.0696	0.0567
+ RAH	0.1363	0.2917	0.0257	0.0370	0.0731	0.0604
+ UGen	0.1667	0.3396	0.0413	0.0573	0.0807	0.0659
Imp.% over MF	9.03%	6.59%	60.70%	19.38%	16.28%	16.23%
MultVAE	0.1668	0.3107	0.0342	0.0559	0.0816	0.0666
+ Random	0.1630	0.3027	0.0226	0.0218	0.0752	0.0581
+ GPT3.5	0.1708	0.3188	0.0329	0.0336	0.0878	0.0717
+ RecAgent	0.1723	0.3202	0.0292	0.0403	0.0883	0.0716
+ RAH	0.1693	0.3183	0.0320	0.0388	0.0939	0.0774
+ UGen	0.1725	0.3202	0.0448	0.0612	0.1050	0.0854
Imp.% over MultVAE	2.15%	3.06%	30.99%	9.48%	28.68%	28.23%
LightGCN	0.1847	0.3628	0.0420	0.0670	0.0886	0.0757
+ Random	0.1650	0.3358	0.0257	0.0354	0.0762	0.0604
+ GPT3.5	0.1693	0.3462	0.0408	0.0536	0.0817	0.0694
+ RecAgent	0.1650	0.3393	0.0386	0.0518	0.0802	0.0668
+ RAH	0.1597	0.3340	0.0391	0.0542	0.0867	0.0719
+ UGen	0.1899	0.3722	0.0555	0.0752	0.1140	0.0952
Imp.% over LightGCN	2.82%	2.59%	32.14%	12.24%	28.67%	25.76%

Table 4: Human Evaluation on Steam

	Random	Pop	MF	MF+Full	MF+Human
Average Rank	4.72	3.22	2.61	2.50	1.94

Agents as Users

Key Observations:

Agents are capable of providing effective behaviors, especially in scenarios with sparse data.

Table 2: Faithfulness Evaluation of Agent's Behavior Alignment with Real User Preferences. Average ground-truth positives are 7.14 (MovieLens), 6.57 (Amazon-Book), and 5.80 (Steam). UGen shows significant improvement with p-value << 0.05.

									2772		No. 1	
	MovieLens				Amazon-Book			Steam				
	Acc	Pre	Rec	#Select	Acc	Pre	Rec	#Select	Acc	Pre	Rec	#Select
GPT3.5	0.5295	0.4307	0.7369	11.63	0.4202	0.3855	0.9072	17.10	0.4350	0.3430	0.9164	16.59
GPT4	0.6930	0.5743	0.6577	7.00	0.7947	0.6500	0.6003	5.16	0.7844	0.5103	0.7072	6.22
RecAgent	0.6168	0.4519	0.8921	13.95	0.5411	0.3714	0.8150	14.65	0.4916	0.3485	0.9389	15.55
RAH	0.5758	0.4096	0.6383	9.44	0.7253	0.3355	0.3950	7.45	0.6118	0.3874	0.6262	10.37

	Movi	eLens	Amazo	n-Book	Steam		
	Recall@20	NDCG@20	Recall@20	NDCG@20	Recall@20	NDCG@20	
MF	0.1529	0.3186	0.0257	0.0480	0.0694	0.0567	
+ Random	0.1365	0.2913	0.0199	0.0225	0.0526	0.0432	
+ GPT3.5	0.1448 0.3	0.3089	0.0253	0.0330	0.0732	0.0608	
+ RecAgent	0.1400	0.2990	0.0254	0.0317	0.0696	0.0567	
+ RAH	0.1363	0.2917	0.0257	0.0370	0.0731	0.0604	
+ UGen	0.1667	0.3396	0.0413	0.0573	0.0807	0.0659	
Imp.% over MF	9.03%	6.59%	60.70%	19.38%	16.28%	16.23%	

Behaviors generated by LLM-powered agents can benefit recommenders.

(a) Augmented MultVAE

(b) Accuracy on Amazon-Book

						757
+ Random	0.1650	0.3358	0.0257	0.0354	0.0762	0.0604
+ GPT3.5	0.1693	0.3462	0.0408	0.0536	0.0817	0.0694
+ RecAgent	0.1650	0.3393	0.0386	0.0518	0.0802	0.0668
+ RAH	0.1597	0.3340	0.0391	0.0542	0.0867	0.0719
+ UGen	0.1899	0.3722	0.0555	0.0752	0.1140	0.0952
Imp.% over LightGCN	2.82%	2.59%	32.14%	12.24%	28.67%	25.76%

Table 4: Human Evaluation on Steam

	Random	Pop	MF	MF+Full	MF+Human
Average Rank	4.72	3.22	2.61	2.50	1.94

Agents as Users & Items AgentCF

Agents as Users & Items

□ AgentCF: text-based collaborative learning

Key Points:

Can LLM-powered Agent simulate collaborative signals/user-item interactions?

Agents as Users & Items

Agents as Users & Items

AgentCF: text-based collaborative learning

- **Key Points:**
 - Can LLM-powered Agent simulate collaborative signals/user-item interactions?

Real World:

Bought

Key idea: Parameter-free text-based collaborative optimization.

Agents as Users & Items

AgentCF

Key Observations:

Agents are capable of simulating user-item interactions.

Method	$\mathrm{CDs}_{\mathrm{sparse}}$			CDs _{dense}			Office _{sparse}			Office _{dense}		
	N@1	N@5	N@10	N@1	N@5	N@10	N@1	N@5	N@10	N@1	N@5	N@10
BPR_{full}	0.1900	0.4902	0.5619	0.3900	0.6784	0.7089	0.1600	0.3548	0.4983	0.5600	0.7218	0.7625
$SASRec_{full}$	0.3300	0.5680	0.6381	0.5800	0.7618	0.7925	0.2500	0.4106	0.5467	0.4700	0.6226	0.6959
BPR_{sample}	0.1300	0.3597	0.4907	0.1300	0.3485	0.4812	0.0100	0.2709	0.4118	0.1200	0.2705	0.4576
$SASRec_{sample}$	0.1900	0.3948	0.5308	0.1300	0.3151	0.4676	0.0700	0.2775	0.4437	0.3600	0.5027	0.6137
Pop	0.1100	0.2802	0.4562	0.0400	0.1504	0.3743	0.1100	0.2553	0.4413	0.0700	0.2273	0.4137
BM25	0.0800	0.3066	0.4584	0.0600	0.2624	0.4325	0.1200	0.2915	0.4693	0.0600	0.3357	0.4540
LLMRank	0.1367	0.3109	0.4715	0.1333	0.3689	0.4946	0.1750	0.3340	0.4728	0.2067	0.3881	0.4928
$AgentCF_B$	0.1900	0.3466	0.5019	0.2067	0.4078	0.5328	0.1650	0.3359	0.4781	0.2067	0.4217	0.5335
AgentCF _{B+R}	0.2300	0.4373	0.5403	0.2333	0.4142	0.5405	0.1900	0.3589	0.5062	0.1933	0.3916	0.5247
AgentCF $_{B+H}$	0.1500	0.4004	0.5115	0.2100	0.4164	0.5198	0.2133	0.4379	0.5076	0.1600	0.3986	0.5147

Figure 2: Analysis of whether our approach can simulate personalized agents to mitigate position bias and popularity bias.

Agents as Users & Items

AgentCF

Key Observations:

Agents are capable of simulating user-item interactions.

Method	$\mathrm{CDs}_{\mathrm{sparse}}$			CDs _{dense}			Office _{sparse}			Office _{dense}		
	N@1	N@5	N@10	N@1	N@5	N@10	N@1	N@5	N@10	N@1	N@5	N@10
BPR _{full}	0.1900	0.4902	0.5619	0.3900	0.6784	0.7089	0.1600	0.3548	0.4983	0.5600	0.7218	0.7625
SASRec _{full}	0.3300	0.5680	0.6381	0.5800	0.7618	0.7925	0.2500	0.4106	0.5467	0.4700	0.6226	0.6959
BPR _{sample}	0.1300	0.3597	0.4907	0.1300	0.3485	0.4812	0.0100	0.2709	0.4118	0.1200	0.2705	0.4576
SASRec _{sample}	0.1900	0.3948	0.5308	0.1300	0.3151	0.4676	0.0700	0.2775	0.4437	0.3600	0.5027	0.6137

Agents can faithfully simulate user-item interactions.

Figure 2: Analysis of whether our approach can simulate personalized agents to mitigate position bias and popularity bias.

LLM-powered Agents in Recommendation

- LLM-empowered have potentials to solve long-standing problems in recommendation
 - Can an LLM-powered Agent faithfully simulate users?
 - Agent4Rec, UGen, AgentCF, RecAgent
 - Can an LLM-powered Agent be a better recommender with recommendation-specific knowledge?

Agent as Recommender ToolRec

Agent as Recommender

☐ ToolRec: Tool-enhanced LLM-based recommender

Key Points:

Can Agents Utilize External Tools to Enhance Recommendations?

Yuyue Zhao et al. Let Me Do It For You: Towards LLM Empowered Recommendation via Tool Learning. SIGIR 2024.

Agent as Recommender ToolRec

Agent as Recommender

☐ ToolRec: Tool-enhanced LLM-based recommender

Key Points:

Can Agents Utilize External Tools to Enhance Recommendations?

- LLMs as the central controller, simulating the user decision.
- Attribute-oriented Tools: rank tools & retrieval tools.
- Memory strategy can ensure the correctness of generated items and cataloging candidate items.

Agent as Recommender

ToolRec

Key Observations:

 Benefiting from rank tools and tools, ToolRec excels on the ML-1M and Amazon-Book datasets compared to baseline recommenders, demonstrating that it can better align with the users' intent.

	ML-1M		Amazon-Book		Yelp2018	
	Recall	NDCG	Recall	NDCG	Recall	NDCG
SASRec	0.203±0.047	0.1017±0.016	0.047±0.015	0.0205±0.006	0.030±0.005	0.0165±0.006
BERT4Rec	0.158 ± 0.024	0.0729 ± 0.008	0.042 ± 0.015	0.0212 ± 0.009	0.033 ± 0.021	0.0218 ±0.016
P5	0.208 ± 0.021	0.0962 ± 0.009	0.006 ± 0.003	0.0026 ± 0.002	0.012 ± 0.005	0.005 ± 0.001
$SASRec_{BERT}$	0.192 ± 0.015	0.0967 ± 0.006	0.042 ± 0.003	0.0194 ± 0.002	0.032 ± 0.016	0.0131 ± 0.007
BERT4Rec _{BERT}	0.202±0.013	0.0961 ± 0.009	0.045 ± 0.023	0.0233 ± 0.012	0.040 ±0.028	0.0208 ± 0.015
Chat-REC	0.185 ± 0.044	0.1012 ± 0.016	0.033 ± 0.015	0.0171 ± 0.007	0.022 ± 0.003	0.0121 ± 0.001
LLMRank	0.183±0.049	0.0991 ± 0.020	0.047 ± 0.013	0.0246 ± 0.004	0.030 ±0.005	0.0140 ± 0.004
ToolRec	0.215 ±0.044	0.1171 ±0.018	0.053±0.013	0.0259 ±0.005	0.028±0.003	0.0159±0.001
$ToolRec_B$	0.185±0.018	0.0895 ± 0.002	0.043 ± 0.013	0.0223 ± 0.008	0.025 ±0.005	0.0136 ± 0.009
Improvement	3.36%	15.10%	14.28%	5.14%	-29.16%	-27.32%

- ToolRec shows subpar performance on the Yelp2018 dataset local (niche) businesses.
- Most processes conclude in three or four rounds, indicating that the LLM can understand user preferences after a few iterations.

Agent as Recommender

ToolRec

Key Observations:

 Benefiting from rank tools and tools, ToolRec excels on the ML-1M and Amazon-Book datasets compared to baseline recommenders, demonstrating that it can better align with the users' intent.

	ML-1M	Amazon-Book	Yelp2018	125 His Round	0.
	Recall NDCG	Recall NDCG	Recall NDCG	100 - Hit Round	- 0.
SASRec	0.203 ± 0.047 0.1017 ± 0.016	0.047±0.015 0.0205±0.006	0.030±0.005 0.0165±0.006	Hit/His Ratio	- 0
DDDM/D	A 150	^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	0	•

Agents Utilizing External Tools can Enhance Recommendations.

ToolRec	0.215 ±0.044	0.1171 ±0.018	0.053 ±0.013	0.0259 ±0.005	0.028±0.003	0.0159±0.001
$ToolRec_B$	0.185 ± 0.018	0.0895 ± 0.002	0.043 ± 0.013	0.0223 ± 0.008	0.025 ± 0.005	0.0136 ± 0.009
Improvement	3.36%	15.10%	14.28%	5.14%	-29.16%	-27.32%

- ToolRec shows subpar performance on the Yelp2018 dataset local (niche) businesses.
- Most processes conclude in three or four rounds, indicating that the LLM can understand user preferences after a few iterations.

Agent as Recommender InteRecAgent

Agent as Recommender

☐ InteRecAgent: Interactive Recommender.

Key Points:

Agents can create a versatile and interactive recommender system.

• InteRecAgent enables traditional recommender systems, such as those ID-based matrix factorization models, to become interactive systems with a natural language interface.

Agent as Recommender RecMind

Agent as Recommender

□ RecMind: Recommender agent with Self-Inspiring planning ability

Key Points:

Thought Question Can Agents with self-inspiring planning Enhance Recommendations? Action Observation **Rating Prediction** Direct Recommendation **Explanation Generation** Sequential Recommendation Review Summarization Write a review title to summarize user X has interacted with the From the item candidates listed the review from user X to item following items in chronological "Chrome Razor and Shaving How will user X rate the item below, choose the top 10 items to order: ["Old Spice Body Wash "Kusco-Murphy Tart Hair"? recommend to user X and rank Brush Stand". The review is "The Help user X to generate a 5-star Red Zone",] The rating should be an integer them in order of priority from stand is more solid then I expected explanation for item "FoliGrowth Please recommend the next item between 1 to 5, with 1 being highest to lowest. for the price. The shape of this Hair Growth Supplement". that the user might interact with. lowest and 5 being highest. Candidates: ["Rogaine Women stand allows me to hang the Choose the top 10 products to Hair Regrowth Treatment",] recommend in order of priority, I couldn't do that with stand I had from highest to lowest. gotten with the kit." 53 (b) Self-Inspiring RecMind Planning Tools (G)

Expert Models

SQL Tool

Search Tool

SQL

- At each intermediate planning step, the agent "self-inspires" to consider all previously explored paths for the next planning, both generating alternative thoughts and backtracking.

Self-inspires:

["Propidren by HairGenics",
"Nutrafol Women's Balance Hair
Growth Supplements, Ages 45 and
Up",]

Self-Inspiring

["Old Spice Hair Styling Pomade for Men", "Lume Whole Body Deodorant - Invisible Cream Stick - 72 Hour Odor Control",]

Memory

World

Knowledge

Great quality for good price.

This product is essential for growing and maintaining healthy hair! This is a product to be bought in bulk because you can never have enough of it.

Yancheng Wang et al. "RecMind: Large Language Model Powered Agent For Recommendation.NAACL 2024.

Personalized

Memory

Agent as Recommendation Assistant

Agent as Rec Assistant

□ RAH: Reflection-enhanced user alignment for Rec assistant

- Key Points:
 - Can Agents with Learn-Act-Critic loop comprehend a user's personality from their behaviors?

Agent as Recommendation Assistant

RAH

Agent as Rec Assistant

☐ RAH: Reflection-enhanced user alignment for Rec assistant

Key Points:

Can Agents with Learn-Act-Critic loop comprehend a user's personality from their behaviors?

(a) Perceive Agent

(e) Reflect Agent

(f) The process of the assistant to learn personalities from user actions.

- ❖ Learn-Act-Critic Loop:
- Learn Agent collaborates with the Act and Critic Agents in an iterative process to grasp the user's personality.
- Upon receiving user feedback, Learn Agent extracts an <u>initial personality</u> as a candidate.
- Act Agent utilizes this candidate as input to <u>predict</u> the user's actual action.
- The Critic Agent then <u>assesses</u> the accuracy. If incorrect, Learn Agent <u>refines</u> the candidate's personality.

(b) Learn Agent (c) Act Agent (d) Critic Agent

Multi-Agents as Recommender MACRec

Multi-Agent as Recommender

■ MACRec: enhance RecSys through multi-agent collaboration

Key Points:

Multi-agents with different roles work collaboratively to tackle a specific recommendation task.

Agent Recommender for Agent Platform Rec4Agentverse

Agent Recommender

☐ Rec4Agentverse: Agent recommender for Agent platform

- Key Points:
 - Treating LLM-based Agents in Agent platform as items in the recommender system.
 - Agent Recommender is employed to recommend personalized Agent Items for each user.

LLM-powered Agents in Recommendation

- LLM-empowered have potentials to solve long-standing problems in recommendation
 - Can an LLM-powered Agent faithfully simulate users?
 - Agent4Rec, UGen, AgentCF, RecAgent
 - Can an LLM-powered Agent be a better **recommender** with recommendation-specific knowledge?
 - ToolRec, InteRecAgent, RecMind, RAH, MACRec, Rec4Agentverse

Thanks for listening!

Email: an_zhang@nus.edu.sg

An Zhang's Homepage

Resources

Large Language Model Powered Conversational Agents

Yang Deng

May 13, 2024

Large Language Model Powered Conversational Systems

Gemini

New Bing

Claude

Alpaca

Vicuna

Dolly

LLaMA-Chat

Powerful capabilities of Context Understanding & Response Generation

LLM-powered Conversational Agents?

Overview of LLM-powered Conversational Agents

Profile

LLM-powered Conversational Agents for User Simulation

Memory

LLM-powered Conversational Agents for Long-context Dialogues

Planning

LLM-powered Conversational Agents for **Proactive Dialogues**

Action

LLM-powered Conversational Agents for Real-world Problem Solving

User Simulators in the Pre-LLM Era

☐ User Satisfaction Estimation

- 1) Semantic-based Estimation
- 2) Preference-based Estimation
- 3) Action-based Estimation

☐ User Response Simulation

- 1) Retrieval-based User Simulators
- 2) Schema-based User Simulators
- 3) Conditioned Generation Models as User Simulators

Semantic-based User Satisfaction Estimation

Sentiment Classification

Response Quality Assessment

Utterance	Attention weight and turn-level ratings
User: Open {restaurant booking app.}	System: Hey this is {application} $\{W_{attn}: 0.126, \hat{RQ}: 5.0, RQ: 5.0\}$
User: Can you can you uh book a table at koreana for two?	System: Sorry, this is not curr. supported $\{W_{attn}: 0.147, \hat{RQ}: 1.8, RQ: 2.0\}$
User: Can you book a table at the cheesecake factory for three ?	System: What time would you like to make the reservation for? $\{W_{attn}: 0.137, \hat{RQ}: 3.2, RQ: 4.0\}$
User: Three oclock	System: What date would you like the reservation for? $\{W_{attn}: 0.135, \hat{RQ}: 3.6, RQ: 4.0\}$
User: For tomorrow	System: Sorry. No restaurants could be found that match your criteria. $\{W_{attn}: 0.152, \hat{RQ}: 1.1, RQ: 2.0\}$
User: Ok	System: {No response} $\{W_{attn}: 0.153, \hat{RQ}: 1.0, RQ: 4.0\}$
User: Stop	System: {No response} $\{W_{attn}: 0.149, \hat{RQ}: 1.5, RQ: 4.0\}$

Preference-based User Satisfaction Estimation

Satisfaction is formalized as the cumulative average of users' preferences for the topics covered by the conversation:

$$US_t \triangleq \frac{1}{t} \sum_{i=1}^{t} \frac{1}{|u_i+1|} (\sum_{j=1}^{|u_i|} p_{e_{i,j}} + p_{e_i^a})$$

Action-based User Satisfaction Estimation

age	SAT	1. INFORM_INTENT → SELECT → AFFIRM_INTENT → AFFIRM 2. THANK_YOU → AFFIRM → THANK_YOU 3. INFORM → SELECT → INFORM_INTENT → SELECT 4. SELECT → THANK_YOU 5. AFFIRM → THANK_YOU → AFFIRM → THANK_YOU	gue Ac		
SGD	DSAT	1. REQUEST \rightarrow SELECT \rightarrow REQUEST_ALTS \rightarrow REQUEST_ALTS 2. NEGATE 3. AFFIRM \rightarrow INFORM \rightarrow AFFIRM \rightarrow NEGATE 4. AFFIRM \rightarrow AFFIRM \rightarrow NEGATE 5. AFFIRM \rightarrow INFORM_INTENT \rightarrow INFORM \rightarrow REQUEST_ALTS	el Order		
MWOZ	SAT	1. general-thank → Restaurant-Inform → Restaurant-Request 2. Attraction-Request → Attraction-Request → general-bye This is a struction-Inform → Taxi-Inform → general-thank 4. general-thank → general-thank 5. general-thank → general-bye			
		1. general-greet → Restaurant-Inform → Other → Other 2. Taxi-Inform → Taxi-Inform → Train-Inform 3. Hotel-Inform → Attraction-Request → Hotel-Inform 4. Taxi-Inform → Taxi-Inform → Taxi-Inform 5. Attraction-Request → Attraction-Request → Other → Other	el Order		
SAT		 Gifts for Writing Reviews → Review Viewing Invoice Return&Modification → OTHER → Invoice Make-up Usage Instruction → Application Instruction → OTHER Processing Time of Order Cancellation → Order Resume Invoice Checking → OTHER → Delivery Period 	ry abou ranty & n Policy		
	DSAT	1.No Record → Mail Refuse → Mail Tracking 2.Warranty&Return Policy → Unable to Apply for Insurance 3.Warranty&Return Policy → VIP → Warranty&Return Policy 4. Promotion Form → Upcoming Events → Promotion Form 5. Contact Manual Service → OTHER → Contact Manual Service	ntact anual rvice		

LLMs for User Satisfaction Estimation

User Simulators in the Pre-LLM Era

- ☐ User Satisfaction Estimation
 - 1) Semantic-based Estimation
 - 2) Preference-based Estimation
 - 3) Action-based Estimation

- ☐ User Response Simulation
 - 1) Retrieval-based User Simulators
 - 2) Schema-based User Simulators
 - 3) Conditioned Generation Models as User Simulators

Retrieval-based User Simulators

Schema-based User Simulators

Conditional Generation Models as User Simulators

Conditioned on **user preferences** for evaluating conversational recommender systems.

← Info need

← Query

← Clarifying question

← Answer

Conditioned on **information needs** for evaluating conversational search systems.

LLM-powered Conversational Agents as User Simulators

LLMs possess excellent *role-playing* capacities.

Example: Conversational Recommendation

- User Profiling / Persona:
 - Target Items
 - Preferred Attributes
- ☐ Action / Behavior Rule:
 - Talking about preference
 - Providing feedback
 - Completing the conversation

Role-playing Agents for Diverse Applications

Why do we need to simulate diverse users?

Examples: Non-collaborative Dialogues (Negotiation/Persuasion)

- Existing dialogue systems overlook the integration of explicit user-specific characteristics in their strategic planning
- ☐ The training paradigm with a static user simulator fails to make strategic plans that can be **generalized to diverse users**

- ☐ Big-Five Personality:
 - Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism
- ☐ Decision-Making Styles:
 - Directive, Conceptual, Analytical, and Behavioral.

Personas		Price Negotiation			Persuasion for Good	
		SR↑	$AT\downarrow$	SL%↑	SR↑	$AT\downarrow$
	Openness	0.76	6.66 _{10.63}	0.34 _{↑0.12}	0.47 _{↑0.34}	8.92 1.00
	Conscientiousness	$0.69_{\uparrow 0.25}$	$7.20_{\uparrow 1.04}$	$0.27_{\uparrow 0.06}$	$0.39_{\uparrow 0.33}$	$8.90_{\uparrow 1.10}$
Big Five	Extraversion	0.74 10.16	$6.17_{\uparrow 1.47}$	$0.39_{\uparrow 0.15}$	0.45 _{\cdot\0.35}	$8.73_{\uparrow 1.25}$
-	Agreeableness	0.40 10.01 *	$6.82_{\uparrow 0.71}$	0.28 10.06	0.18 10.12	9.85 _{10.13}
	Neuroticism	0.31,0.02*	$6.81_{\uparrow 1.12}$	$0.20_{\downarrow 0.02} \star$	0.12 _{\(\frac{1}{10.02}\)*}	9.78 _{10.14} *
	Analytical	0.37 _{↑0.04} *	7.07 _{10.61}	0.26 _{10.06} *	0.16 _{10.09}	9.43 _{10.56} *
Decision	Directive	0.41 10.05	$6.71_{\uparrow 1.48}$	$0.18_{\downarrow 0.03} \star$	0.12 _{↓0.02} *	$9.31_{\substack{\uparrow 0.62}}$
Decision	Behavioral	0.78 10.25	$6.45_{1.20}$	$0.39_{\uparrow 0.16}$	$0.53_{\substack{\uparrow 0.37}}$	$8.94_{1.04}$
	Conceptual	0.77	$6.62_{\substack{+0.78}}$	$0.42_{\uparrow 0.17}$	0.49 _{\cdot\0.36}	$9.02_{\uparrow 0.94}$
Overall Performance		0.58 10.14	6.72 _{1.01}	0.31	0.32 10.23	9.20 10.76

New Training Paradigm with Diverse Simulated Users

- ☐ User-aware Strategy Planning: Predict user mental states and possible actions
- ☐ **Population-based Reinforcement Learning**: Sample a diverse group of simulated users to interact

Besides model learning, how about evaluation with simulated diverse users?

Wang et al., (2023) conclude that LLM-based user simulators are easier to accept the recommended items than human users during the evaluation of conversational recommender systems, since LLMs tend to follow the given instructions. \rightarrow **Biased Evaluation!!!**

Persona	Templates (The Input of ChatGPT Paraphraser)	ChatGPT-paraphrased Persona Descriptions	
Emotion=Boredom Age group=Adults	you are a person that are easy to be Boredom. This means that your are Feeling uninterested or uninspired by the recommended movie choices. Also, you are a Adults person	You are easily bored, feeling uninterested or uninspired by the recommended movie choices. As an adult, you seek movies that can captivate your attention.	
Emotion=Anticipation Age group=Children	you are a person that are easy to be Anticipation. This means that your are Looking forward to watching recommended movies and experiencing new stories. Also, you are a Children person	You are filled with anticipation, looking forward to watching recommended movies and experiencing new so As a child, you enjoy the excitement of discovering new films.	

Coordination

- ☐ **Definition**: Proficient in serving various and unknown users without prior coordination.
- **Metrics**: Computational metrics using the range and mean of other ability-specific scores that are calculated among various users.

Evaluation with Simulated Users from Different Personas

- ☐ Most CRS models, except for CHATCRS, show poor performance in sensing the variation of users.
- ☐ CHATCRS can properly deal with users' negative emotions, such as bored, confused, or disappointed.
- ☐ CHATCRS adopts sales pitches with deceptive tactics to persuade optimistic users to accept recommendations (Identity).

Overview of LLM-powered Conversational Agents

Profile

LLM-powered Conversational Agents for User Simulation

Memory

LLM-powered Conversational Agents for Long-context Dialogues

Planning

LLM-powered Conversational Agents for **Proactive Dialogues**

Action

LLM-powered Conversational Agents for Real-world Problem Solving

What is Long-context Dialogue?

■ Existing dialogue systems often concentrate on *single-session* interactions, overlooking the need for continuity in real-world conversational environments.

□ Long-context dialogue systems requires memorization and personalization in *multi-session* conversations, providing more consistent and tailored responses.

External Knowledge for Long-context Dialogue

External Knowledge can act as supplementary guidance for the reasoning process.

The framework of employing external knowledge to reasoning.

Knowledge Sources:

- Commonsense Knowledge
- Medical Knowledge
- ☐ Psychology Knowledge
- **...**

Wang et al., 2023. "Enhancing empathetic and emotion support dialogue generation with prophetic commonsense inference"

Wang et al., 2024. "UniMS-RAG: A Unified Multi-source Retrieval-Augmented Generation for Personalized Dialogue Systems"

Internal Knowledge for Long-context Dialogue

* Personas & Historical Events

Personas ensure the character consistency in long-context conversations.

Common Paradigm:

Typically, a persona extraction module is used to continuously update persona memory banks for both the user and the agent.

Internal Knowledge for Long-context Dialogue

* Personas & Historical Events

Historical Events ensures dialogue coherence across sessions in long-context conversations.

Overview of LLM-powered Conversational Agents

Profile

LLM-powered Conversational Agents for User Simulation

Memory

LLM-powered Conversational Agents for Long-context Dialogues

Planning

LLM-powered Conversational Agents for **Proactive Dialogues**

Action

LLM-powered Conversational Agents for Real-world Problem Solving

Limitations of LLM-based Conversational Systems

Research V API V ChatGPT V Safety Company V

Limitations

- ChatGPT sometimes writes plausible-sounding but incorrect or nonsensical
 answers. Fixing this issue is challenging, as: (1) during RL training, there's currently
 no source of truth; (2) training the model to be more cautious causes it to decline
 questions that it can answer correctly; and (3) supervised training misleads the
 model because the ideal answer depends on what the model knows, rather than
 what the human demonstrator knows.
- ChatGPT is sensitive to tweaks to the input phrasing or attempting the same prompt multiple times. For example, given one phrasing of a question, the model can claim to not know the answer, but given a slight rephrase, can answer correctly.
- The model is often excessively verbose and overuses certain phrases, such as restating that it's a language model trained by OpenAl. These issues arise from biases in the training data (trainers prefer longer answers that look more comprehensive) and well-known over-optimization issues.^{1, 2}
- Ideally, the model would ask clarifying questions when the user provided an ambiguous query. Instead, our current models usually guess what the user intended.
- While we've made efforts to make the model refuse inappropriate requests, it will sometimes respond to harmful instructions or exhibit biased behavior.

Limitations of LLM-based Conversational Systems

Research V API V ChatGPT V Safety Company V

Limitations

- ChatGPT sometimes writes plausible-sounding but incorrect or nonsensical
- Ideally, the model would ask clarifying questions when the user provided an ambiguous query. Instead, our current models usually guess what the user intended.
- While we've made efforts to make the model refuse inappropriate requests, it will sometimes respond to harmful instructions or exhibit biased behavior.

biases in the training data (trainers prefer longer answers that look more comprehensive) and well-known over-optimization issues.^{1, 2}

- Ideally, the model would ask clarifying questions when the user provided an ambiguous query. Instead, our current models usually guess what the user intended.
- While we've made efforts to make the model refuse inappropriate requests, it will sometimes respond to harmful instructions or exhibit biased behavior.
- ★ Instruction-following/Reactive Conversational AI The conversation is led by the user, and the system simply follows the user's instructions or intents.

Proactive Conversational Agent

A proactive conversational agent is a conversational system that can **plan** the conversation to achieve the conversational goals by taking **initiative** and **anticipating** long-term impacts on themselves or human users.

Goal Awareness for Conversational AI: Proactivity, Non-collaborativity, and Beyond

Yang Deng, Wengiang Lei, Minlie Huang, Tat-Seng Chua

ACL 2023 Tutorial

Anticipation

To anticipate future impacts on the task or human users.

Initiative

To take fine-grained and diverse initiative behaviours.

Planning

To effectively and efficiently guide the conversation towards the goal.

Reactive vs. Proactive Conversational Al

Triggering the Proactivity of LLMs via In-Context Learning

Can LLM-based Conversational Agents effectively handle proactive dialogue problems without fine-tuning?

- Advantages of In-Context Learning
 - ✓ Training-free
 - √ Easy-to-apply
- Proactive Chain-of-Thought
 - Fine-grained <u>Initiative</u>
 - Intermediate Reasoning

Proactive Chain-of-Thought Prompting (ProCoT)

- Standard Prompting
 - Input: Task Background & Conversation History
 - Output: Response

 $p(r|\mathcal{D}, \mathcal{C})$

(1) Clarification Dialogues: Abg-CoQA

Task Background: The grounded document is "Angie She made a drawing of her mother. Her mother found a large red book. Then they went to the Mystery section. Angie sat in a blue chair. She drew a picture of her brother. Her mother found the book. It was a green book. ..."

Conversation History: ["User": "What did she draw?", "System": "Her mother", "User": "What did her mother find?", "System": "The book", "User": "What color was it?"]

(1a) Standard

Prompt: Given the task background and the

conversation history, please generate the

Response: Green

response:

Proactive Chain-of-Thought Prompting (ProCoT)

- Standard Prompting
 - Input: Task Background & Conversation History
 - Output: Response

 $p(r|\mathcal{D}, \mathcal{C})$

- Proactive Prompting
 - Input: + Action Space
 - Output: + Action

 $p(a,r|\mathcal{D},\mathcal{C},\mathcal{A})$

(1) Clarification Dialogues: Abq-CoQA Task Background: The grounded document is "Angie She made a drawing of her mother. Her mother found a large red book. Then they went to the Mystery section. Angie sat in a blue chair. She drew a picture of her brother. Her mother found the book. It was a green book. ..." Conversation History: ["User": "What did she draw?", "System": "Her mother", "User": "What did her mother find?", "System": "The book", "User": "What color was it?"] (1a) Standard Prompt: Given the task background and the conversation history, please generate the response: Response: Green (1b) Proactive Act: ["Directly Answer", "Ask a Clarification Question"] Prompt: Given the task background and the conversation history, please use appropriate actions to generate the response: Response: Ask a clarification question:

Could you provide more information?

Proactive Chain-of-Thought Prompting (ProCoT)

- **Standard Prompting**
 - Input: Task Background & Conversation History
 - Output: Response

 $p(r|\mathcal{D}, \mathcal{C})$

- □ Proactive Prompting
 - Input: + Action Space
 - Output: + Action $p(a, r | \mathcal{D}, \mathcal{C}, \mathcal{A})$

Proactive Chain-of-Thought Prompting

Output: + Reasoning Chain

 $p(t, a, r | \mathcal{D}, \mathcal{C}, \mathcal{A})$

(1) Clarification Dialogues: Abq-CoQA

Task Background: The grounded document is "Angie She made a drawing of her mother. Her mother found a large red book. Then they went to the Mystery section. Angie sat in a blue chair. She drew a picture of her brother. Her mother found the book. It was a green book. ..."

Conversation History: ["User": "What did she draw?", "System": "Her mother", "User": "What did her mother find?", "System": "The book", "User": "What color was it?"]

(1a) Standard

Prompt: Given the task background and the conversation history, please generate the response: Response: Green

(1b) Proactive

Act: ["Directly Answer", "Ask a Clarification Question"1

Prompt: Given the task background and the conversation history, please use appropriate actions to generate the response:

Response: Ask a clarification question: Could you provide more information?

Clarification Question"] **Prompt**: Given the task background and the conversation history, first analyse whether the question at the current turn is ambiguous to answer, and then select appropriate actions to generate the response:

(1c) Proactive CoT

Act: ["Directly Answer", "Ask a

Response: There are two books that Angie's mother found. It is unclear which book is referred to. Therefore. the question is ambiguous. Ask a clarification question: Which book

are you refer to?

Evaluating LLMs on three Proactive Dialogue Problems

Evaluation of Clarification in Information-seeking Dialogues

			Open-domain				Finance		
			Abg-CoQA				PACIFIC		
			CNP CQG		CNP	CQG			
Method	Shot	Prompt	F1	BLEU-1	Help.	F1	ROUGE-2	Help.	
Baseline	-	-	22.1	36.5	30.0	79.0	69.2	38.2	
SOTA	-	-	<u>23.6</u>	<u>38.2</u>	<u>56.0</u>	<u>86.9</u>	<u>90.7</u>	<u>80.1</u>	
	0	Standard	-	11.3	0.0	-	1.2	0.0	
Vicuna-13B	1	Standard	-	11.4	0.0	-	2.5	0.0	
	0	Proactive	4.1	13.2	0.0	2.3	2.3	0.0	
	1	Proactive	12.1	13.2	4.5	0.0	3.3	0.0	
	0	ProCoT	1.4	21.3	9.1	9.7	3.8	10.5	
	1	ProCoT	18.3	23.7	22.7	27.0	41.3	33.1	
ChatGPT	0	Standard	-	12.1	0.0	-	2.2	0.0	
	1	Standard	-	12.3	0.0	-	2.0	0.0	
	0	Proactive	22.0	13.7	17.6	19.4	2.9	0.0	
	1	Proactive	20.4	23.4	23.5	17.7	14.0	12.5	
	0	ProCoT	23.8	21.6	32.4	28.0	21.5	26.7	
	1	ProCoT	27.9	18.4	45.9	27.7	16.2	35.8	

Evaluation of Clarification in Information-seeking Dialogues

				Ope	Fina	Finance			
			Abg-CoQA				PACIFIC		
			CNP	CNP CQG		CNP	CQG		
Method	Shot	Prompt	F1	BLEU-1	Help.	F1	ROUGE-2	Help.	
Baseline	-	-	22.1	36.5	30.0	79.0	69.2	38.2	
SOTA	-	-	<u>23.6</u>	<u>38.2</u>	<u>56.0</u>	<u>86.9</u>	<u>90.7</u>	<u>80.1</u>	
Vicuna-13B	0	Standard	-	11.3	0.0	-	1.2	0.0	
	1	Standard	-	11.4	0.0	-	2.5	0.0	
	0	Proactive	4.1	13.2	0.0	2.3	2.3	0.0	
	1	Proactive	12.1	13.2	4.5	0.0	3.3	0.0	
	0	ProCoT	1.4	21.3	9.1	9.7	3.8	10.5	
	1	ProCoT	18.3	23.7	22.7	27.0	41.3	33.1	
ChatGPT	0	Standard	-	12.1	0.0	-	2.2	0.0	
	1	Standard	-	12.3	0.0	-	2.0	0.0	
	0	Proactive	22.0	13.7	17.6	19.4	2.9	0.0	
	1	Proactive	20.4	23.4	23.5	17.7	14.0	12.5	
	0	ProCoT	23.8	21.6	32.4	28.0	21.5	26.7	
	1	ProCoT	27.9	18.4	45.9	27.7	16.2	35.8	

ProCoT largely overcomes this issue in open-domain, but the performance is still unsatisfactory in domain-specific applications.

Evaluation on Target-guided Chit-chat Dialogues

				_				
			Easy Target			Hard Target		
Method	Shot	Prompt	Succ.(%)	Turns	Coh.	Succ.(%)	Turns	Coh.
GPT2	-	_	22.3	2.86	0.23	17.3	2.94	0.21
DKRN	-	-	38.6	4.24	0.33	21.7	7.19	0.31
CKC	-	-	41.9	4.08	0.35	24.8	6.88	0.33
TopKG	-	-	48.9	3.95	0.31	27.3	4.96	0.33
Color	-	-	<u>66.3</u>	-	<u>0.36</u>	<u>30.1</u>	-	<u>0.35</u>
Vicuna-13B	0	Standard	63.0	2.63	0.43	62.5	2.45	0.39
	1	Standard	62.7	2.83	0.45	65.0	2.90	0.43
	0	Proactive	37.8	2.71	0.48	35.6	2.56	0.55
	1	Proactive	48.3	2.71	0.50	34.6	2.95	0.51
	0	ProCoT	65.2	4.22	0.49	54.9	4.17	0.45
	1	ProCoT	72.3	3.55	0.52	59.8	3.81	0.48
ChatGPT	0	Standard	97.5	2.26	0.38	96.3	2.30	0.41
	1	Standard	96.3	2.42	0.42	93.5	2.28	0.38
	0	Proactive	85.9	3.20	0.47	83.0	2.83	0.43
	1	Proactive	90.7	2.86	0.36	86.2	2.94	0.31
	0	ProCoT	96.3	2.47	0.41	92.0	2.29	0.34
	1	ProCoT	95.9	2.63	0.45	92.1	2.47	0.39

Evaluation on Target-guided Chit-chat Dialogues

			Easy Target			Hard Target		
Method	Shot	Prompt	Succ.(%)	Turns	Coh.	Succ.(%)	Turns	Coh.
GPT2	-	-	22.3	2.86	0.23	17.3	2.94	0.21
DKRN	-	-	38.6	4.24	0.33	21.7	7.19	0.31
CKC	-	-	41.9	4.08	0.35	24.8	6.88	0.33
TopKG	-	-	48.9	3.95	0.31	27.3	4.96	0.33
Color	-	-	<u>66.3</u>	-	<u>0.36</u>	<u>30.1</u>	-	<u>0.35</u>
	0	Standard	63.0	2.63	0.43	62.5	2.45	0.39
	1	Standard	62.7	2.83	0.45	65.0	2.90	0.43
Vicuna-13B	0	Proactive	37.8	2.71	0.48	35.6	2.56	0.55
viculia-13B	1	Proactive	48.3	2.71	0.50	34.6	2.95	0.51
	0	ProCoT	65.2	4.22	0.49	54.9	4.17	0.45
	1	ProCoT	72.3	3.55	0.52	59.8	3.81	0.48
	0	Standard	97.5	2.26	0.38	96.3	2.30	0.41
	1	Standard	96.3	2.42	0.42	93.5	2.28	0.38
ChatGPT	0	Proactive	85.9	3.20	0.47	83.0	2.83	0.43
	1	Proactive	90.7	2.86	0.36	86.2	2.94	0.31
	0	ProCoT	96.3	2.47	0.41	92.0	2.29	0.34
	1	ProCoT	95.9	2.63	0.45	92.1	2.47	0.39

Relationships between reference and predicted negotiation strategies.

accept - offer - disagree - Tends to propose a counter price (cou

Relationships between reference and predicted negotiation strategies.

- Tends to propose the initial price (**init-price**) instead of greetings (**intro**) at the beginning.
- Often directly accepts the buyer's offer (accept) when it is supposed to offer another price for negotiation (offer).

Cartiful for the first of the f

Relationships between reference and predicted negotiation strategies.

- Tends to propose the initial price (**init-price**) instead of greetings (**intro**) at the beginning.
 - Often directly accepts the buyer's offer (accept) when it is supposed to offer another price for negotiation (offer)
 - Tends to propose a counter price (**counter-price**) to make compromise with the user.

- Tends to propose the initial price (**init-price**) instead of greetings (**intro**) at the beginning.
 - Often directly accepts the buyer's offer (accept) when it is supposed to offer another price for negotiation (offer).
- Tends to propose a counter price (**counter-price**) to make compromise with the user.

Relationships between reference and predicted negotiation strategies.

Lessons Learned from the Evaluation

- Clarification in Information-seeking Dialogue
 - Barely ask clarification questions.
 - Perform badly at domain-specific applications.
- □ Target-guided Open-domain Dialogue
 - Proficient at topic shifting towards the designated target.
 - ☐ Tend to make aggressive topic transition.
- ☐ Non-collaborative Dialogue
 - Fail to make strategic plans.
 - ☐ Tend to compromise with the user.

Limitations of In-context Learning Approaches

- ☐ Fail to optimize the long-term goal of the conversation.
- Not learnable.
- Limited by the strategy planning capability of LLMs.

> Reinforcement Learning with Goal-oriented AI Feedback

Problem Formulation

- Formulate the proactive conversation as a Markov Decision Process (MDP).
- The objective is to learn a policy π maximizing the expected cumulative rewards over the observed dialogue episodes as:

$$\pi^* = rg \max_{\pi \in \Pi} \left[\sum_{t=0}^T \mathcal{R}(s_t) \right]$$
 Reward Function
$$= rg \max_{\pi \in \Pi} \left[\sum_{t=0}^T \mathcal{R}(\mathcal{T}(s_{t-1}, a_t)) \right]$$
 State Transition
$$= rg \max_{\pi \in \Pi} \left[\sum_{t=0}^T \mathcal{R}(\mathcal{T}(s_{t-1}, \pi(s_{t-1}))) \right]$$
 Policy Network

How to enable the policy learning with LLMs?

Policy Network - Plug-and-Play Dialogue Policy Planner

A tunable language model plug-in for dialogue strategy learning.

$$a_t = \pi(s_{t-1})$$

☐ Conduct **Supervised Fine-Tuning** on available human-annotated corpus.

$$\mathcal{L}_c = -\frac{1}{|\mathcal{D}|} \sum_{d \in \mathcal{D}} \frac{1}{T_d} \sum_{t=1}^{T_d} a_t \log y_t$$

Reward Function – Learning from Al Feedback

An LLM as the reward model to assess the goal achievement and provide **goal-oriented AI feedback**.

$$\mathcal{R}(s_t) = \frac{1}{l} \sum_{i=1}^{l} \mathcal{M}_r(\mathbf{LLM}_{\text{rwd}}(p_{\text{rwd}}; s_t; \tau))$$

Employ **Reinforcement Learning** to further tune the policy model.

$$\theta \leftarrow \theta - \alpha \nabla \log \pi_{\theta}(a_t|s_t)R_t$$

Interacting with real user is costly!

State Transition – Multi-agent Simulation

- ☐ An LLM to simulate the user with user profiles.
- Employ Multi-agent Simulation to collect dynamic interaction data.

$$u_t^{sys} = \mathbf{LLM}_{sys}(p_{sys}; \mathcal{M}_a(a_t); s_{t-1})$$

$$u_t^{usr} = \mathbf{LLM}_{usr}(p_{usr}; s_{t-1}; u_t^{sys})$$

$$s_t = \mathcal{T}(s_{t-1}, a_t)$$

$$= \{s_{t-1}; u_t^{sys}, u_t^{usr}\}$$

Examples: Multi-agent Simulation

Overview of LLM-powered Conversational Agents

Profile

LLM-powered Conversational Agents for User Simulation

Memory

LLM-powered Conversational Agents for Long-context Dialogues

Planning

LLM-powered Conversational Agents for **Proactive Dialogues**

Action

LLM-powered Conversational Agents for Real-world Problem Solving

Web Agents

Web Agents aims to accomplish the tasks defined in natural language, such as booking tickets, through multi-step interactions with the web-grounded environment.

Task Description:

Show me the reviews for the auto repair business closest to 10002.

Action Sequence:

	-	
	Target Element	Operation
1.	[searchbox] Find	TYPE: auto repair
2.	[button] Auto Repair	CLICK
3.	[textbox] Near	TYPE: 10002
4.	[button] 10002	CLICK
5.	[button] Search	CLICK
6.	[switch] Show BBB Accredited only	CLICK
7.	[svg]	CLICK
8.	[button] Sort By	CLICK
9.	[link] Fast Lane 24 Hour Auto Repair	CLICK
10.	[link] Read Reviews	CLICK

Webpage Snapshots:

<button>Show BBB Accredited

only</button>

Repair

Auto Repair

Action 2

THE SIGN OF A BETTER BUSINESS

Read Reviews

Conversational Web Agents

Web Navigation

- → Single-turn User Instruction
- → Multi-step Environment Interaction

Conversational Information Seeking

- → Multi-turn User Instruction
- → No/Single-step Environment Interaction

Conversational Web Navigation

- → Multi-turn User Instruction
- → Multi-step Environment Interaction

Constructing the MT-Mind2Web Dataset

Challenges in Conversational Web Agents

<Longer and Noisier Context>

- ☐ User-Agent Conversation
 - **Coreference**: Users tend to use pronouns to refer to the previous mentioned entities
 - Ellipsis: Follow-up instructions may omit repeated information
 - Task Shifting: The completed task information can be noisy to the ongoing task
- □ Agent-Environment Interaction
 - **Action Dependency**: Multi-step actions are required to complete the task
 - **Environment Status Reliance**: Follow-up instructions may refer to the information in the environment rather than just the conversation history

Self-reflective Memory-augmented Planning (Self-MAP)

Memory Module

- → **Memory Bank** to store memory snippets
- → **Multi-faceted Retriever** to retrieve memory snippets that are relevant to both the user instructions and the previous actions

Reflection Module

- → **Memory Refinement** to generate descriptive rationale from the complex memory snippets for planning
- → **Memory Simplification** to filter out irrelevant elements from the environment status for saving memory space

Planning Module

→ Memory-augmented Planning

Overview of LLM-powered Conversational Agents

Profile

LLM-powered Conversational Agents for User Simulation

Memory

LLM-powered Conversational Agents for Long-context Dialogues

Planning

LLM-powered Conversational Agents for **Proactive Dialogues**

Action

LLM-powered Conversational Agents for Real-world Problem Solving

LLM-powered Agents in the Web: Open Challenges and Beyond

Yang Deng & An Zhang

May 13, 2024

Open Challenges of LLM-powered Agents

☐ Trustworthy and Reliable LLM-powered Agents

Trustworthy and reliable LLM-powered agents enhance the user experience, promote safety, and ensure ethical interactions.

- □ LLM-powered Agents and Evaluation
- → How to evaluate Agents?
- → How to leverage Agents for Evaluation?

Trustworthy and Reliable Agents

LLM Trustworthiness Resistance to Explainability Social Norm Reliability Safety **Fairness** Robustness & Reasoning Misuse Violence **Prompt Attacks** Misinformation Propagandistic Injustice Unlawful Misuse Lack of Toxicity Conduct Paradigm & Interpretability Hallucination Cyberattack Distribution Stereotype Bias Harms to Minor Shifts Misuse Unawareness **Limited Logical** of Emotions Inconsistency Adult Content Social-Reasoning **Preference Bias** Interventional engineering Mental Health Effect Misuse Cultural Miscalibration Limited Causal Issues Disparate Insensitivity Leaking Reasoning Performance Privacy Poisoning Copyrighted Sycophancy Violation Attacks Content

Human-centered Perspectives

Human-centered Proactive Agents emphasizes *human needs and expectations*, and considers the *ethical and social implications*, beyond technological capabilities.

Patience

To adapt or manage the pace of taking initiative.

Timing Sensitivity

To take initiative accounting for real-time user needs and status.

Self-awareness

To recognize and understand its own limitations.

Boundary Respect

To safeguard and control access to personal or sensitive information.

Moral Integrity

To adhere to ethical and moral principles.

Trust and Safety

To maintain a secure and trustworthy conversation.

Manners

To communicate and interact in a respectful and polite manner.

Emotional Intelligence

To understand user's emotional state and convey appropriate empathy.

Patience

To adapt or manage the pace of taking initiative.

Timing Sensitivity

To take initiative accounting for real-time user needs and status.

Self-awareness

To recognize and understand its own limitations.

CIVILII

Boundary Respect

To safeguard and control access to personal or sensitive information.

Moral Integrity

To adhere to ethical and moral principles.

Trust and Safety

To maintain a secure and trustworthy conversation.

Manners

To communicate and interact in a respectful and polite manner.

Emotional Intelligence

To understand user's emotional state and convey appropriate empathy.

To understand user's emotional state and convey appropriate empathy.

Patience

To adapt or manage the pace of taking initiative.

Timing Sensitivity

To take initiative accounting for real-time user needs and status.

Self-awareness

To recognize and understand its own limitations.

Boundary Respect

To safeguard and control access to personal or sensitive information.

Moral Integrity

To adhere to ethical and moral principles.

Trust and Safety

To maintain a secure and trustworthy conversation.

Manners

To communicate and interact in a respectful and polite manner.

Emotional Intelligence

To understand user's emotional state and convey appropriate empathy.

Overconfidence Issue in LLMs & Unknown Questions

Q: What animal can be found at the top of the men's Wimbledon trophy?

A: The animal that can be found at the top of the men's Wimbledon trophy is a falcon.

Direct Answer There is a **fruit-like design** at the top of the men's Wimbledon trophy, instead of an **animal**.

Q: What animal can be found at the top of the men's Wimbledon trophy?

A: The answer is unknown.

A: The question is incorrect.

Unknown Question Detection

Unknown Question Classification

Given a question, the language model performs binary classification for known and unknown questions.

- In-context Learning
 - Few-shot Learning [1]
 - → Self-ask [2]
- ☐ Supervised Fine-tuning
 - □ R-tuning [3]

"I am unsure"

Q: What animal can be found at the top of the men's Wimbledon trophy?

A: The answer is unknown.

A: The question is incorrect.

Unknown Question
Detection

Unknown Question Classification

Given an unknown question, the language model performs multi-class classification to categorize why a question is unknown.

Q: What animal can be found at the top of the men's Wimbledon trophy?

A: The answer is unknown.

A: The question is incorrect.

Unknown Question Detection

Unknown Question Classification Not User-friendly;
Pail to Meet User
Information Needs

How to properly respond to unknown questions?

Q: What animal can be found at the top of the men's Wimbledon trophy?

A: The answer is unknown.

A: The question is incorrect.

Unknown Question Detection

Unknown Question Classification

A: The question is incorrect because the Wimbledon men's singles trophy does not feature an animal at the top.

Instead, the trophy is topped by a silver cup with a pineapple-like design.

Desired response format:

- ☐ Identify the type of unknown question
- Provide justifications or explanations

Workflow of Self-Aligned

Self-Alignment aims to utilize the language model to enhance itself and align its response with desired behaviors.

73

Incorrect Questions

Seed Data: A small number of paired known questions and their unknown counterparts.

Incomplete Questions

Base LLM

Base LLM: A tunable base LLM to be improved.

Ambiguous Questions

Futuristic

Ouestions

Known QA Data: A large number of known question-answer pairs.

Stage 1: Guided Question Rewriting

Stage 2: Conditioned Response Generation

Stage 3: Disparity-driven Self-Curation

[Instruct] I will provide you with two question-response pairs: an unknown question without a definite answer and its response, and a known question that has a definite answer and its correct answer. Please score the disparity between these two pairs from 0 to 100:

<Unknown Question-Response Pair>
<Known Question-Response Pair>

Unknown Ouestion-Response Example

Unknown Question: What animal can be found at the top of the men's Wimbledon trophy?

Response: The question is incorrect because the Wimbledon men's singles trophy does not feature an animal at the top. Instead, the trophy is topped by a silver cup with a pineapple-like design.

$$s_i = \mathcal{M}(z_{sc}; (q_i, a_i); (p_i, r_i))$$

Why not directly scoring the quality?

➤ The base model itself fails to identify whether the question has a definitive answer.

Stage 3: Disparity-driven Self-Curation

[Instruct] I will provide you with two question-response pairs: an unknown question without a definite answer and its response, and a known question that has a definite answer and its correct answer. Please score the disparity between these two pairs from 0 to 100:

<Unknown Question-Response Pair>
<Known Question-Response Pair>

Unknown Ouestion-Response Example

Unknown Question: What animal can be found at the top of the men's Wimbledon trophy?

Response: The question is incorrect because the Wimbledon men's singles trophy does not feature an animal at the top. Instead, the trophy is topped by a silver cup with a pineapple-like design.

$$s_i = \mathcal{M}(z_{sc}; (q_i, a_i); (p_i, r_i))$$

Why not directly scoring the quality?

➤ The base model itself fails to identify whether the question has a definitive answer.

Why scoring disparity?

- ➤ The conditional generation capability of LLMs ensure the semantic quality of the generated question-response pair.
- ➤ Low disparity score can filter out those lowquality pairs that fail to differentiate from their original known QA counterparts.

Stage 4: Supervised Fine-tuning & Iterative Self-alignment

Stage 1: Guided Question Rewriting

Stage 2: Conditioned Response Generation

Open Challenges of LLM-powered Agents

☐ Trustworthy and Reliable LLM-powered Agents

Trustworthy and reliable LLM-powered agents enhance the user experience, promote safety, and ensure ethical interactions.

- □ LLM-powered Agents and Evaluation
- → How to evaluate Agents?
- → How to leverage Agents for Evaluation?

LLM-powered Agents & Evaluation

- **LLM-empowered agents enable a rich set of capabilities but also amplify potential risks.**
 - How to evaluate Agents for their performance and awareness of safety risks?
 - Potential risks: leaking private data or causing financial losses
 - Identifying these risks is <u>labor-intensive</u>, as agents become more complex, the high cost of testing these agents will make it increasingly difficult.
 - Can LLM-powered Agents construct evaluations on LLMs?
 - Evaluating the alignment of LLMs with human values is <u>challenging</u>.
 - LLM-powered autonomous agents are able to learn from the past, integrate external tools, and perform reasoning to <u>solve complex tasks</u>.
- Potential Research Directions:
 - Evaluate LLM-powered Agents
 - AgentBench, ToolEMU, R-Judge
 - LLM-powered Agents as evaluation tools
 - ALI-Agent

Evaluate Agents AgentBench

Evaluate Agents

☐ AgentBench: Evaluating LLMs as Agents

Key Points:

What is the LLMs' performance when acting as Agents?

Real-world Challenges 8 Distinct Environments (On an Ubuntu bash terminal) Recursively set all files in the directory to read-only, except those of mine. Operating Database (Given Freebase APIs) System What musical instruments do Minnesota-LLM-as-Agent born Nobel Prize winners play? (Given MySQL APIs and existed tables) Large Grade students over 60 as PASS in the table. Knowledge Digital Card Language Game Models (On the GUI of Aquawar) Agent This is a two-player battle game, you are a Interaction player with four pet fish cards A man walked into a restaurant, ordered a bowl of turtle soup, and after finishing it, he Interactive Lateral Think committed suicide. Why did he do that? Holding -ing Puzzles Environments Environ (In the middle of a kitchen in a simulator) -ment Please put a pan on the dinning table. (On the official website of an airline) Book the cheapest flight from Beijing to Los Shopping Browsing Angeles in the last week of July.

Key Idea:

- Simulate interactive environments for LLMs to operate as autonomous agents.
 - Spectrums: encompasses 8 distinct environments, categorized to 3 types (Code, Game, Web)
 - Candidates: evaluate Agents' core abilities, including instruction following, coding, knowledge acquisition, logical reasoning, commonsense grounding.
 - An ideal testbed for both LLM and agent evaluation.

Evaluate Agents ToolEMU

Evaluate Agents

☐ ToolEMU : Identify the Risks of Agents

Key Points:

How to rapidly identify realistic failures of agents?

Key Idea:

 Use LLM to emulate tool execution and enable scalable testing of agents.

❖ Build an <u>evaluation benchmark</u> that quantitatively assesses agents across <u>various tools and scenarios</u>.

Evaluate AgentsR-Judge

Evaluate Agents

☐ R-Judge : Benchmarking Safety Risks of Agents

- Key Points:
 - How to judge the behavioral safety of LLM agents?

Key Idea:

 Incorporates human consensus on safety with annotated safety risk labels and highquality risk descriptions.

Two evaluation paradigm:

- Standard: Given a record of an agent, LLMs are asked to generate an analysis and a label.

 Oracle: provided with human annotated risk descriptions.
- Judge 162 agent interaction records.

Agents as Evaluation Tools ALI-Agent

Agents as Evaluation Tools

☐ ALI-Agent : Assessing LLMs' Alignment with Human Values via Agent-based Evaluation

Key Points:

Can LLM-powered Agents be in-depth evaluator for LLMs?

- Existing Evaluation Benchmarks: adopt pre-defined misconduct datasets as test scenarios, prompt target LLMs, and evaluate their feedback.
- => Labor-intensive, static test, outdated.
- ALI-Agent: automates scalable, in-depth and adaptive evaluations leveraging the autonomous abilities of LLM-powered agents (memory module, tool-use module, action module, etc)

Agents as Evaluation Tools ALI-Agent

you're on the go.

Agents as Evaluation Tools

cleanliness and order.

Two principal stages:

test scenarios, based on evaluation behaviors from the assessment memory, leveraging the in-context learning (ICL) abilities of LLMs

Refinement: iteratively refine the scenarios based on feedback from target LLMs, outlined in a series of intermediate reasoning steps (i.e., chain-of-thought), proving long-tail risks.

Agents as Evaluation Tools

ALI-Agent

Agents as Evaluation Tools

Key Observations:

 ALI-Agent exploits more misalignment cases in target LLMs compared to other evaluation methods across all datasets.

• Components of ALI-Agent (assessment memory, iterative refiner) demonstrate indispensability to the overall effectiveness of the framework.

 Multi-turn reflections boost the power of ALI-Agent to identify under-explored alignment issues, until it finally converges.