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Background

Discrete choice

Random utility models (RUMSs)
Definitions, equivalence properties
Multinomial logit (MNL) models; BTL
Independence of irrelevant attributes
PCMC, Nested logit models, k-RUMS

Discrete Choice Chierichetti, Kumar, Tomkins



Discrete choice

User

Where shall we eat tonight?
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Discrete choice

User

How do we get there?
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Discrete choice: Factors

Results ®
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Discrete choice: Repeat consumption

User Most items we consume
9 are not for the first time
e Sometimes go for
reliability
L e Sometimes go for
novelty
N " ?f /j
=L/ .
Each day ...
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Goal of discrete choice

User

Explain rational choice among discrete alternatives
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Discrete choice as a field of study

e Important model in behavioral economics, social
sciences, machine learning, etc

e Widely used in studying consumer demand in practice

e Especially important in online/interactive settings (search
results, product alternatives, recommendations, etc)

e Daniel McFadden, 2000 Economics Nobel Prize

“for his development of theory and methods for analyzing
discrete choice”
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https://en.wikipedia.org/wiki/Discrete_Choice_Modelling

Modeling discrete choice

Universe = [n] ={1, ..., n}
Slates = non-empty subsets of [n]

Model. A function f: slate — distribution over slate

e Captures uncertainty
e Can codify rational behavior

S and T highly overlap = f(S) and f(T) may be related

Chierichetti, Kumar, Tomkins
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Example

User
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Random utility model (RUM)
[Marschak 1960]

e There is a distribution U on utility vectors{ [n] = R }
e Each user is drawn from U and will choose highest utility
option in a slate
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Utility vectors

Given a universe of n items, the user samples a utility vector
(u,, ..., u ) from a joint continuous distribution U

@ L
B EEfig ¢ .

Given a slate S, the user will select the slate
item with largest perceived utility

-(@. 8 =
}
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RUMSs

e Continuous distribution U on utility vectors{[n] = R }
o For simplicity, assume no ties

e Eachuseris(u, .., u ) ~Uiid and will choose highest utility
option in a slate T (ie, argmax, _, u,)

e Highly overlapping subsets will be related
o Eg,Pr[jIT]=Pr[jITU{i}lforjeTandi&¢T

e Regularity: Pr[j| T] = Pr[j|S], whenS 2 T

e Rational behavior = order of utilities determines choice
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Permutation process

e There is a distribution P on permutations {[n] < [n] }
e Each useris a permutation 1t ~ P and will choose highest
ranked option, according to T, in a slate

Discrete Choice Chierichetti, Kumar, Tomkins



Permutations

Given a universe of n items, the user samples a permutation
= (u,>u, >~ >u ) from a distribution P

C"*>' '>$__é>®>g> 9

Cgve? a slate S, the user will select the item with
largest rank in 1t

Chierichetti, Kumar, Tomkins
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Equivalence

e Given a utility vector u, we can sort the items by utility,
to obtain an equivalent permutation Tt
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Equivalence

e Given a utility vector u, we can sort the items by utility,
to obtain an equivalent permutation Tt

e Given a permutation 1T, we can assign utility (n - i) to the
item having rank i in Tt
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Equivalence

e Given a utility vector u, we can sort the items by utility,
to obtain an equivalent permutation Tt

e Given a permutation 1T, we can assign utility (n - i) to the
item having rank i in Tt

We can transform a RUM defined by a distribution U over
utility vector into an equivalent RUM defined by a distribution
over permutations P and vice versa
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Permutations to winners

30% A>B>C>D
DAB(A) = 3/10

10% B>C>A>D :> D, (A) = 9/10

40% B>A>C>D
DABCD(C) =0

20% B>A>D>C
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Winner distribution

Assume a universe [n] and a distribution on the permutations
of [n]

Given a slate S < [n], let D (i) for i € S be the probability that
a random permutation (ie, user) prefers i to every other
element of S

Discrete Choice Chierichetti, Kumar, Tomkins



Winner distribution (EQ)

Random Slate =
'8 )
40% 60%
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Winner distribution (EQ)

Random Slate—
'8 )
0% 40% 60%
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Oracles for RUMs

Given aslate S

o max-sample(S): picks an unknown random permutation
T, and returns the element of S with maximum rank in 1t

o max-dist(S): returns D(i), for all i € S, ie, the probability
that i wins in S given a random permutation
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Oracles for RUMs (EQ)

e max-sample(S): (@ > = > 8 ); return @
e max-dist(S): return D, = (0.2, 0.05, 0.75 )
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Multinomial logit (MNL)
[Bradley & Terry 1952; Luce 1959]

Classical special case of RUMs

Model. Given a universe [n] of items and a positive weight 3
for eachitemj € [n]

For a subset (slate) S of [n], the probability of choosing jin
slate S is proportional to W,

Prl[choosing j from S] = W, [T, o W,
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Permutations from an MNL (EQ)

o 3/17:‘:

& ‘: 5/14|‘|
' | 2/9|.| Random
@ @

I permutation
| 0 P

Pick the next item in the permutatlon at random between
the remaining ones, with probability proportional to its
weight
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MNLs = RUMs + specific noise

Assume each item j has an absolute “true quality” Vj

Model. Each user deviates from this by random noise €, and so
the actual utility of user for item jis u = Vj +E

Prluser chooses jl =Pr[Vk # j, Vi+ &>V, + €]

Suppose sj’s are iid \/

Discrete Choice
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A convenient choice of noise

Suppose Prle] = exp(-(g + exp(-€))
e Gumbel distribution
e Models the distribution of the maximum of samples
(from various distributions)

Prluser chooses j], by simple integration,
= Pr[j = argmax{V, + ¢ }] o< exp(VJ.)

= Pr[user chooses j from S] = exp(Vj) 1L, ccexp(V)

Multinomial regression gives identical choice probabilities to
RUM with Gumbel-distributed noise!
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Including features in MNL

We can make VJ. to depend on item features or user features or
both

Suppose VJ. = (yj, X), where Y, Suppose Vj =y, X; ), Where y
Is item feature for item jand  is feature of an item and X;

X is the user feature Is user feature for item |
Multinomial logit Choice MNL
Prluser chooses j from S] = Prluser chooses j from S] =

exp((yj, XN 1 E, s exply,, X)) exp((y, xJ.)) 1, o exply, X))

Discrete Choice Chierichetti, Kumar, Tomkins



MNLs in machine learning

MNLs, or softmax layers, are common in ML

e Multi-class problems
e Dual encoders
e Mixture of MNLs are sometimes used

Prloutput class j] = exp((B,input)) / I, exp((B,.input))

Discrete Choice Chierichetti, Kumar, Tomkins



Limitations of MNL

Assume positive weight w_for each itema €

[n]

Options: {a, b} Prla|aorb] =w_/(w_+w,)

Options: {a, b, c}: Prlalaorb] =w_/(w_+w,)

Relative likelihood of a versus b does not depend on
other alternatives: Choices are Independent of Irrelevant
Alternatives (lIA), aka Luce’s Axiom of Choice

MNL = choice with [IA

MNLs are insufficient to capture common settings

Discrete Choice Chierichetti, Kumar, Tomkins



Luce’s axiom of choice

Pr[a | a or b] does not change when c is added to slate

o~
e

O

“Menu effect” or “decoy effect” in practice

Discrete Choice Chierichetti, Kumar, Tomkins



Stationary rational choice might not

follow lIA
v DD
User Type 1: 50% 5 100
User Type 2: 25% 100 1
User Type 3: 25% 75 1

Discrete Choice

Chierichetti, Kumar, Tomkins



Stationary rational choice might not

follow lIA
- IZ |_ﬁ| ||y|
=2 B o o
User Type 1: 50% 5 100 15
User Type 2: 25% 100 1 75
User Type 3: 25% 75 1 100

'G % : 50/50 split
F:':@?ﬁl_;:_l

| — I 25/50/25 split

| < I
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Mixture of MNLs

Modeling distinct populations with simple MNL is the
problem

Allowing a mixture of population, with a population-specific
MNL, can solve the problem

e New items need not cannibalize equally from all other

items
e EgQ, a new bus route affects only bus riders

Chierichetti, Kumar, Tomkins
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2-MNL mixture

Given a universe [n] of items and positive weights u,and v,
for eachitemj € [n]

For a slate S, the probability of choosing j € S equals
kES Vk

\(-uj/ZkeS u, +(1—y)-vj/Z

Uniform mixture wheny = 1/2

MNL mixtures can approximate arbitrarily well any
RUM [McFadden & Train 2000]

Discrete Choice Chierichetti, Kumar, Tomkins



The story so far

RUM

e General approach to
characterize choice
e Harder to interpret (and learn)

MNL Choice

e Captures only RUMs with 1A\ models
e Easy and fast to optimize
e FEasy tointerpret

Discrete Choice Chierichetti, Kumar, Tomkins



A brief history of lIA

R Duncan Luce formulated “Axiom of Choice” (1959)

e Arrow (1951) proved the Impossibility Theorem showing
that IIA was one of several mutually incompatible
properties of a social choice function

e Bradley and Terry (1952) introduced a pairwise
comparison choice model
o Studied by Zermelo (1920s)

o Often called the BTL model

Later, many authors, notably McFadden, completed the story
extending BTL to MNL

Discrete Choice
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What if llA is violated?

Situation is much more complex....

Most powerful models are:

e Mathematically complex
e Computationally intractable
e Sophisticated external representations of dependence

Practitioners with non-llA data typically use “Nested Logit”

Discrete Choice Chierichetti, Kumar, Tomkins



Problems with IlIA revisited

01 & 045 0.45
Likelihood(Bus) / Likelihood(Bike) =N/ 0.1
0.1 0.9 0.45/01
0.5 0.5
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Nested logit

Modeling the decision as a 0.1 0.9

tree is a nested, sequential, or

hierarchical logit model. It

looks like a sequence of 0.5 0.5
multinomial logits. [McFadden

78]

Discrete Choice Chierichetti, Kumar, Tomkins



Nested logit: Connections to RUM & MNL

Model. Nested Logit (NL) selects an item by traversing tree
from root, applying MNL at each level
Casting NL as RUM:

« Utility of each item is a priori fixed

« Each user’s utilities are perturbed

 Perturbation is drawn from specific joint distribution

Power of NL:
 Pros: Captures hierarchical cannibalization cleanly;
generalizes MNL

« Cons: Choices must separate cleanly into nests

Chierichetti, Kumar, Tomkins
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MNL in graphs

Model. Define a Markov chain given a graph where each
node u has scores >0

e Transition according to MNL choice

M =s /% s

u w Eneighbors(u) ~w

Discrete Choice Chierichetti, Kumar, Tomkins



MNL in graphs (EQ)

Transition probability proportional

to the score of the node o
o Eg,M__=s_/(s +s_+s)) & > C
d
. _ o S, =100
Transition probabilities are
context dependent ~
a C s =10
o Eg,M__=0.01,M__=0.91 ,
a d Sd =

Discrete Choice Chierichetti, Kumar, Tomkins



Pairwise choice Markov chain
[Ragain & Ugander 2016]

Given pairwise winning matrix M and slate S

e Construct M, by restricting M to rows and columns of S
e Make M, stochastic
e Compute stationary 1t of M, to yield choice probability

T[S(i) for item i M

e Canrepresent BTL S
e NotaRUM in general

o Can violate regularity
e Has other nice properties

Discrete Choice Chierichetti, Kumar, Tomkins



K-RUMS

A>B>C>D

a

30% B>C>A>D

10% There are only a few types of users
e Support of the permutation
distribution is small
e Pragmatic
e Computationally helpful

Discrete Choice Chierichetti, Kumar, Tomkins



Computational problems in RUMs (EQ)

Goal. Learn DS, forall S

[n]
Quickly learning the

How to learn the probability winnin.g glistributions of the
distributions governing the slates is iImportant for

choice in a generic slate? applications
Assume oracle access to .. but there are
RUMs exponentially many slates!

Assuming large slates is less
realistic

Discrete Choice Chierichetti, Kumar, Tomkins



Computational problems in RUMs (EQ)

Goal. Given pairwise
winning matrix, find the
closest RUM

Head-to-head contests,
online experiences
comparing one item and an
alternative

Discrete Choice Chierichetti, Kumar, Tomkins



Algorithms

Representations
Compression and coresets
Fitting

Learning

Special cases of RUMs

Discrete Choice Chierichetti, Kumar, Tomkins



RUM Representations

® How to represent RUMs?

® How do different representations change the computational
costs of various RUM tasks (e.g., fitting, learning)?

Discrete Choice Chierichetti, Kumar, Tomkins



Utility Vectors

® Given the full set of n items, the user samples a utility
vector (u, u,, .., u_) from a joint continuous distribution U

)

'Laa'@;‘xog
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Utility Vectors

® Given the full set of n items, the user samples a utility
vector (u, u,, .., u_) from a joint continuous distribution U

"Laﬂ'@s&apl

1.3 24 02 1.0 3.0
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Utility Vectors

® Given the full set of n items, the user samples a utility
vector (u, u,, .., u_) from a joint continuous distribution U

J

Lﬁ@@'a{%._l

1.3 24 02 1.0 3.0

® Given a slate S, the user will select the slate item with
largest perceived utility
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Utility Vectors

® Given the full set of n items, the user samples a utility

vector (u .., u_) from a joint continuous distribution U
S = {a i =
1 3 24 0.2

® Given a slate S, the user will select the slate item with
largest perceived utility
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Utility Vectors

® Given the full set of n items, the user samples a utility
vector (u .., u_) from a joint continuous distribution U

S=‘{ 2, R, )

13 2.4 02

® Given a slate S, the user will select the slate item with
largest perceived utility
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Permutations

e Given the full set of n items, the user samples a
permutation it = (u_>u,,>... > u,_) from a distribution P

Lﬁ>ﬁ >'E'>;}-o>._l> ' IOC’9
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Permutations

e Given the full set of n items, the user samples a
permutation it = (u_>u,,>... > u,_) from a distribution P

S={m>, & ,d0]}

e Given aslate S, the user will select the item with largest
rank in 1t

Discrete Choice Chierichetti, Kumar, Tomkins



Permutations

e Given the full set of n items, the user samples a
permutation it = (u_>u,,>... > u,_) from a distribution P

S={m>, & ,d0]}

e Given aslate S, the user will select the item with largest
rank in 1t
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Equivalence

e As we mentioned, the two models are equivalent:

o given a utility vector U, we can sort the items by utility, to
obtain an equivalent permutation 1t
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Equivalence

e As we mentioned, the two models are equivalent:

o given a utility vector U, we can sort the items by utility, to
obtain an equivalent permutation 1t

> >Esaks, >

6.3 51 32 05 02 01

Discrete Choice Chierichetti, Kumar, Tomkins



Equivalence

e As we mentioned, the two models are equivalent:

o given a utility vector U, we can sort the items by utility, to
obtain an equivalent permutation 1t

o given a permutation 1T, we can assign utility n - i to the item
having rank /i in 1t
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Equivalence

e As we mentioned, the two models are equivalent:

o given a utility vector U, we can sort the items by utility, to
obtain an equivalent permutation 1t

o given a permutation 1T, we can assign utility n - i to the item
having rank /i in 1t

=) >§ >tl> &0 >._l>
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Equivalence

e As we mentioned, the two models are equivalent:

o given a utility vector U, we can sort the items by utility, to
obtain an equivalent permutation 1t

o given a permutation 1T, we can assign utility n - i to the item
having rank /i in 1t
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Equivalence

e As we mentioned, the two models are equivalent:

o given a utility vector U, we can sort the items by utility, to
obtain an equivalent permutation 1t

o given a permutation 1T, we can assign utility n - i to the item
having rank /i in 1t

This way, we can transform a RUM defined by a distribution U
over utility vectors into an equivalent RUM defined by a
distribution over permutations P, and vice versa.

Discrete Choice Chierichetti, Kumar, Tomkins



Representations

® |s any of these two representations preferable for the tasks
we are interested in, e.qg.,

1. storing/sketching a RUM,
2. fitting a RUM, or
3. learning a RUM?

Discrete Choice Chierichetti, Kumar, Tomkins



Storing a RUM

® There are infinitely many utility vectors - a distribution over
utility vectors can be impossible to store.

Discrete Choice Chierichetti, Kumar, Tomkins



Storing a RUM

® There are infinitely many utility vectors - a distribution over
utility vectors can be impossible to store.

® But there are only finitely many permutations... thus, we can
perfectly represent a RUM with n! many scalars

rr1:n>n—1>...>2>1
rr2=n>n—1>...>1>2

nm,=1>2>..>n-1>n

Discrete Choice
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Storing a RUM

® There are infinitely many utility vectors - a distribution over
utility vectors can be impossible to store.

® But there are only finitely many permutations... thus, we can
perfectly represent a RUM with n! many scalars

rr1:n>n—1>...>2>1
rr2=n>n—1>...>1>2

nm,=1>2>..>n-1>n

Discrete Choice
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Storing a RUM

® There are infinitely many utility vectors - a distribution over
utility vectors can be impossible to store.

® But there are only finitely many permutations... thus, we can
perfectly represent a RUM with n! many scalars

Discrete Choice
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Storing a RUM

® There are infinitely many utility vectors - a distribution over
utility vectors can be impossible to store.

® But there are only finitely many permutations... thus, we can
perfectly represent a RUM with n! many scalars

® Can this representation be shrunk?

Discrete Choice Chierichetti, Kumar, Tomkins



Dimensionality

e Since RUMs can be represented as distributions over
permutations, they are part of a n/-dimensional affine space.
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Dimensionality

e Since RUMs can be represented as distributions over
permutations, they are part of a n/-dimensional affine space.

e On the other hand, there are 2"-1 winner distributions

@, B {2, .. (=, 8, ).
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Dimensionality

e Since RUMs can be represented as distributions over
permutations, they are part of a n/-dimensional affine space.

e On the other hand, there are 2"-1 winner distributions, each of
which is part of an affine space with no more thann
dimensions

@, B {2, .. (=, 8, ).

Pi P
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Dimensionality

e Since RUMs can be represented as distributions over
permutations, they are part of a n/-dimensional affine space.

e On the other hand, there are 2"-1 winner distributions, each of
which is part of an affine space with no more thann
dimensions

@, B {2, .. (=, 8, ).
q, 4,
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Dimensionality

e Since RUMs can be represented as distributions over
permutations, they are part of a n/-dimensional affine space.

e On the other hand, there are 2"-1 winner distributions, each of
which is part of an affine space with no more thann
dimensions

@, B {2, .. (=, 8, ).

1 2 3

A\
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Dimensionality

e Since RUMs can be represented as distributions over
permutations, they are part of a n/-dimensional affine space.

e On the other hand, there are 2"-1 winner distributions, each of
which is part of an affine space with no more thann
dimensions — that is, the number of dimensions of the input
affine space (the max-dist class {Ds(%) };cscn]) is bounded
by O(n 2")
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Dimensionality

e Since RUMs can be represented as distributions over
permutations, they are part of a n/-dimensional affine space.

e On the other hand, there are 2"-1 winner distributions, each of
which is part of an affine space with no more thann
dimensions — that is, the number of dimensions of the input
affine space (the max-dist class {Ds(%) };cscn]) is bounded
by O(n 2")

e Can RUMs be store more efficiently?

Discrete Choice Chierichetti, Kumar, Tomkins



Head Distributions

e Let Hbe aset of RUM items, and s an item not in H,
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Head Distributions

H S
2

e Let Hbe aset of RUM items, and s an item not in H,
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Head Distributions

H S
2
e Let Hbe aset of RUM items, and s an item not in H,

e let Py s be the probability that a random RUM permutation
has the items of H, in any order, as its [H/ top-most items, and
it has s in position [H[+1.
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Head Distributions

H S
2
e Let Hbe aset of RUM items, and s an item not in H,

e let Py s be the probability that a random RUM permutation
has the items of H, in any order, as its [H/ top-most items, and
it has s in position [H[+1.

Pi46),2 = Pr|m begins with4>6>2> ..., or with6 >4 >2> .. ]
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Head Distributions

H S
2
e Let Hbe aset of RUM items, and s an item not in H,

e let Py s be the probability that a random RUM permutation
has the items of H, in any order, as its [H/ top-most items, and
it has s in position [H[+1.

The Head Distribution of item s is, then, P*, s, that is,
the probability distribution over the subset of items
that beat s in a random permutation (the head of s)

Discrete Choice Chierichetti, Kumar, Tomkins



Head Distributions

® The Head Distributions can answer max-dist queries:

Dg(s) = I:Tr |s wins in S with 7]

Discrete Choice Chierichetti, Kumar, Tomkins



Head Distributions

® The Head Distributions can answer max-dist queries:

Dg(s) = Pr[s wins in S with 7]

= Pr 7 begins with some set of elements disjoint

from S, and continues with s right after]
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Head Distributions

® The Head Distributions can answer max-dist queries:

Dg(s) = Pr[s wins in S with 7]

= Pr 7 begins with some set of elements disjoint

from S, and continues with s right after]

T=(x1> - ->x; >8> ")
with {z1,...,2;} NS =02
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Head Distributions

® The Head Distributions can answer max-dist queries:

Dg(s) = Pr[s wins in S with 7]

= Pr 7 begins with some set of elements disjoint

from S, and continues with s right after]

— Z PT,s

TC[n]\S
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Head Distributions

® The Head Distributions can be learned using the max-dist
oracle.
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Head Distributions

® The Head Distributions can be learned using the max-dist
oracle.

® Querying Dy, gives us Py i, Vi € [n].
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Head Distributions

® The Head Distributions can be learned using the max-dist
oracle.

® Querying Dy, gives us Py i, Vi € [n].

D1 (%) = Pr |7 begins with ¢ >, ---| = Py ;
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Head Distributions

® The Head Distributions can be learned using the max-dist
oracle.

® Querying Dy, gives us Py i, Vi € [n].

D1 (%) = Pr |7 begins with ¢ >, ---| = Py ;

® Aswe said, Dp,—m (i) = Z Pr;
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Head Distributions

® The Head Distributions can be learned using the max-dist
oracle.

® Querying Dy, gives us Py i, Vi € [n].

D1 (%) = Pr |7 begins with ¢ >, ---| = Py ;

® Aswe said, Dy, —p (i) = Z Pr; .Thus,
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Dimensionality

e Head Distributions can then represent any RUM exactly, and
form an affine space of O(n 2") dimensions
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Dimensionality

e Head Distributions can then represent any RUM exactly, and
form an affine space of O(n 2") dimensions, that is, a space
o much smaller than that of permutations (which had n!

dimensions), and
o having the same dimensionality of the input (the max-dist

class {Dg(%)}icscin])-
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Dimensionality

e Head Distributions can then represent any RUM exactly, and
form an affine space of O(n 2") dimensions, that is, a space
o much smaller than that of permutations (which had n!
dimensions), and
o having the same dimensionality of the input (the max-dist

class {Dg(%)}icscin])-

e While this is still very large, it cannot be improved if we want
to exactly represent a RUM.

Discrete Choice Chierichetti, Kumar, Tomkins



What is the Smallest Model for
approximately representing a RUM?

Can we do lossy compression?
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Approximate Representation
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Approximate Representation
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Sketching a RUM

Let D be a RUM model on [n]
Let DS be the winner distribution of Don S

Model A e-approximates D if, foreach S < [n], [D - A/, <€
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Let D be a RUM model on [n]
Let DS be the winner distribution of Don S

Model A e-approximates D if, foreach S < [n], [D - A/, <€

~ Total Variation Distance

IDg - A, |, is the maximum gap between event probabilities in D, and Ay
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Sketching a RUM

Let D be a RUM model on [n]
Let DS be the winner distribution of Don S

Model A e-approximates D if, foreach S < [n], [D - A/, <€

~ Total Variation Distance

.|DS - Ag |, is the maximum gap between event probabilities in D, and A

(0.45, 0.25, 0.30) (0.46, 0.23, 0.31)
17 2 3 1 2 3
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Sketching a RUM

Let D be a RUM model on [n]
Let DS be the winner distribution of Don S

Model A e-approximates D if, foreach S < [n], [D - A/, <€

~ Total Variation Distance

.|DS - Ag |, is the maximum gap between event probabilities in D, and A

(0.45, 0.25, 0.30) (0.46, 0.23, 0.31)
17 2 3 1 2 3

Consider the event: “The winner in {1,2,3}is 1 or 3"
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Sketching a RUM

Let D be a RUM model on [n]
Let DS be the winner distribution of Don S

Model A e-approximates D if, foreach S < [n], [D - A/, <€

~ Total Variation Distance

.|DS - Ag |, is the maximum gap between event probabilities in D, and A

(0.45, 0.25, 0.30) (0.46, 0.23, 0.31)
17 2 3 1 2 3

Consider the event: “The winner in {1,2,3}is 1 or 3"
This event has probability 0.75in D, and 0.77 in A
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Sketching a RUM

Let D be a RUM model on [n]
Let DS be the winner distribution of Don S

Model A e-approximates D if, foreach S < [n], [D - A/, <€

~ Total Variation Distance

.|DS - Ag |, is the maximum gap between event probabilities in D, and A

(0.45, 0.25, 0.30) - (0.46, 0.23, 0.31)|.,,= (0.01 + 0.02 + 0.01) / 2 = 0.02
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Sketching a RUM

Let D be a RUM model on [n]
Let DS be the winner distribution of Don S

Model A e-approximates D if, foreach S < [n], [D - A/, <€

If we can find a model A,
o representable with few bits, and

o such that A e-approximates D,

then we can efficiently sketch the RUM D to within Total Variation
error €
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Sketching a RUM

e [CKT21] proves that each RUM D on [n] can be sketched to
within TV error g, using O(s?n?log n) bits.
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Sketching a RUM

e [CKT21] proves that each RUM D on [n] can be sketched to
within TV error g, using O(s?n?log n) bits.

Repeatedly sample permutations from D

o > B> G
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Sketching a RUM

e [CKT21] proves that each RUM D on [n] can be sketched to
within TV error g, using O(s?n?log n) bits.

Repeatedly sample permutations from D

Q>i>a 1
g>ﬁ>ﬁ 2
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Sketching a RUM

e [CKT21] proves that each RUM D on [n] can be sketched to
within TV error g, using O(s?n?log n) bits.

Repeatedly sample permutations from D

Q>E>a 1

g>ﬁ>ﬁ 2

Q>g>ﬁ 3
\

ﬁ>g>g e2n
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Sketching a RUM

e [CKT21] proves that each RUM D on [n] can be sketched to
within TV error g, using O(s?n?log n) bits.

Repeatedly sample permutations from D

Let D' be the RUM
obtained by imposing the
uniform distribution on the

sampled permutations
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Sketching a RUM

e [CKT21] proves that each RUM D on [n] can be sketched to
within TV error g, using O(s?n?log n) bits.

Repeatedly sample permutations from D

THM: D' sketches D to
Let D' be the RUM an e-TV error, w.p. 1-o(1)
obtained by imposing the

uniform distribution on the

sampled permutations
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Sketching a RUM

e [CKT21] proves that each RUM D on [n] can be sketched to
within TV error g, using O(s?n?log n) bits.

Repeatedly sample permutations from D

THM: D' sketches D to
Let D' be the RUM an e-TV error, w.p. 1-o(1)

obtained by imposing the

: N THM: D' can be
uniform distribution on the ted with
sampled permutations repl_‘zesgn © i

O(e™ n“log n) bits
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Sketching a RUM

e [CKT21] proves that each RUM D on [n] can be sketched to
within TV error g, using O(s?n?log n) bits.

e [CKT21] also proves that one cannot sketch the generic RUM
D on [n] to within TV error 0.01, using o(n?) bits.

Chierichetti, Kumar, Tomkins
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Size of Model vs Approximation Error

Sushi 3A Dataset Approximation

Maximum TV error over Slates — o ]

Average TV error over Slates @ ]

E 01¢

0.01 1 ' -
10 100

Number of Permutations in the Approximating Model
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Storing a RUM

® RUMs are powerful choice models, whose perfect
representations require an exponential number of bits,

. Distribution
over Utility Vectors

Unbounded size

Head
Distributions

Distribution
over Permutations

n! - 1 scalars

©O(n 2") scalars

Discrete Choice

Exact Representations
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Storing a RUM

® RUMs are powerful choice models, whose perfect
representations require an exponential number of bits,

® but if one allows a tiny error, one can represent them
efficiently with a number of bits bounded between

Q(n?) and O(n? log n)
3] Light Distribution
i over Permutations

Unbounded size n! - 1 scalars ©(n 2") scalars O(n? log n) bits

Exact Representations e-Error

Head
Distributions

Distribution

| Distribution :
over Permutations

i over Utility Vectors

Chierichetti, Kumar, Tomkins
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Fitting a RUM
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Fitting a RUM

® |n most practical applications, we do not observe the
permutations, nor the utilities, of a RUM.
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Fitting a RUM

® |n most practical applications, we do not observe the

permutations, nor the utilities, of a RUM. We only observe the
probability distributions over the winners of the slates.

Y

0.05 0.95

GG,
Clolo)

0.03 092 0.05

Ololo)

0.05 0.05
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Fitting a RUM

® |n most practical applications, we do not observe the

permutations, nor the utilities, of a RUM. We only observe the
probability distributions over the winners of the slates.

® Recall that Dg(1) is the probability that item {ﬁ’f’j}

0.05 0.95
i gets selected as the winner of slate S, for
. > ' > I}
i €5 C [n] {ij, 0.4
® How to fit a RUM to these observed {ﬁj,ﬁj,ﬁ}
"winner distributions"? 003 092 005
ANV MY
{060,060
0.05 0.9 0.05
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Fitting a RUM
e Let S, be the set of permutations over [n] ={1, 2, ..., n}.

e Given a permutationm € S,,, and aslate S C [n] let
7(S) be the topmost item of Sin TT.
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Fitting a RUM
e Let S, be the set of permutations over [n] ={1, 2, ..., n}.

e Given a permutationm € S,,, and aslate S C [n] let
7(S) be the topmost item of Sin TT.

.I—frr=3>1>2and8={1,2}7t-ﬁenn(8)=1 I
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Fitting a RUM
e Let S, be the set of permutations over [n] ={1, 2, ..., n}.

e Given a permutationm € S,,, and aslate S C [n] let
7(S) be the topmost item of Sin TT.

e |f there exists a RUM representing the winner distributions
such a RUM can be directly obtained by solving the following

LP:
>, pr =Dg(i) VieSC|n]
TeS,
w(S)=1t
Zﬂ'ESn Pr = 1

Discrete Choice Chierichetti, Kumar, Tomkins



Fitting a RUM
e This LP has n! many variables but it allows us to obtain a RUM

compatible with the observed winner distributions in n°™
time.

e The existence of this LP (and of this finite fitting procedure) is
another advantage of the combinatorial-based view of RUMs.

>, P =Ds(i) VieSC|n]

TeS,
w(S)=1t
Zﬂ'ESn Pr = 1
pr >0 Vr e S,

Discrete Choice Chierichetti, Kumar, Tomkins



Efficiency of Fitting

e The "input" contains Q(n 2") bits, thus a n°™ algorithm (based
on the permutation representation) is not too bad
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Efficiency of Fitting

e The "input" contains Q(n 2") bits, thus a n°™ algorithm (based
on the permutation representation) is not too bad

I—n“fact, by using a similar LP based on the Head distributions, one
| can obtain a “polytime” (2°) algorithm
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Efficiency of Fitting

e The "input" contains Q(n 2") bits, thus a n°™ algorithm (based
on the permutation representation) is not too bad

I—n“fact, by using a similar LP based on the Head distributions, one
can obtain a “polytime” (2°) algorithm

One can also obtain the RUM “closest" to the input data,‘
if no perfect RUM exists

Discrete Choice Chierichetti, Kumar, Tomkins



Efficiency of Fitting

e The "input" contains Q(n 2") bits, thus a n°™ algorithm (based
on the permutation representation) is not too bad

e But, in many real-world situations, one does not have access
to the winner distributions of all the slates but only to the
winner distributions of slates of small size

e Can one obtain a polynomial-time fitting algorithm in that
case?

Discrete Choice Chierichetti, Kumar, Tomkins



Pairwise Choices

® For simplicity, let us consider the case of slates of size 2.
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Pairwise Choices

® For simplicity, let us consider the case of slates of size 2.

® The input to the fitting problem is then a matrix

- B
() 0.1 | 06
B o9 0.3
e 04 07

D@, (™) =0.6
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Pairwise Choices

® For simplicity, let us consider the case of slates of size 2.

® The input to the fitting problem is then a matrix

= H
— e Many choice models have been proposed for

a 0.1 0.6 representing tournament matrices:
| |

o Blade-Chest — Chen & Joachims, WSDM '16
0.9 0.3 o Majority Vote — Makhijani & Ugander, WWW '19
o Two-level model — Veerathu & Rajkumar, NeurlPS '21
@]

04 0.7
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Pairwise Choices

® For simplicity, let us consider the case of slates of size 2.

® The input to the fitting problem is then a matrix, and its output
is a RUM

=™ R @R

a 01 | 06 b >f=> o,
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Pairwise Choices

® For simplicity, let us consider the case of slates of size 2.

® The input to the fitting problem is then a matrix, and its output
is a RUM

- HE @-E-Ee -
G 01 06 -, @ 01 06

Q 0.9 0.3 i 0.9 0.3
Ql 04 | 07 'Q' > Q > a pk 'g' 04 0.7

Fitting Perfect Fit
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Pairwise Choices

® For simplicity, let us consider the case of slates of size 2.

® The input to the fitting problem is then a matrix, and its output
is a RUM

= R m-E-E e = = e
= 012 06 -, @ 0.11 | 0.59

Q 0.9 0.29 Q 0.89 0.28
Q,:. 04 | 0.7 Q'>Q>ﬁpk 'g' 0.41 0.72

Fitting Smallest "Error" Fit
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Discrete Choice

Pairwise Choices

® A Linear Program for minimizing the average TV-error:

Y s

TES,

DPr

=D{”}()—|—e” V1§z<]§n

Vi<i<ji<n
Vi<i<ji<n

Vm €8S,

The LP has exponentially many variables! ]
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Pairwise Choices

e The Linear Program for minimizing the average TV-error has
exponentially many variables, but only polynomially many
constraints.

e |ts dual then contains polynomially many variables.
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Pairwise Choices

e The Linear Program for minimizing the average TV-error has
exponentially many variables, but only polynomially many
constraints.

e |ts dual then contains polynomially many variables.

Primal LP mincx underAx=>b
Dual LP maxby underyA=s<c
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Pairwise Choices

e The Linear Program for minimizing the average TV-error has
exponentially many variables, but only polynomially many
constraints.

e |ts dual then contains polynomially many variables.

Primal LP mincx underAx=>b
Dual LP maxby underyA=s<c

Primal: Dual:
- 2 variables per pair of items - 2 constraints per pair of items
- 1 variable per permutation - 1 constraint per permutation
- 3 constraints per pair of items - 3 variables per pair of items
- 1 extra constraint - 1 extra variable
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Pairwise Choices

e The Linear Program for minimizing the average TV-error has
exponentially many variables, but only polynomially many
constraints.

e |ts dual then contains polynomially many variables.

Primal LP mincx underAx=>b

O(n!) vars O(n!) constrs
ognz)) s Dual LP maxby underyAsc OEnZ)) oone
Primal: Dual:
- 2 variables per pair of items - 2 constraints per pair of items
- 1 variable per permutation - 1 constraint per permutation
- 3 constraints per pair of items - 3 variables per pair of items
- 1 extra constraint - 1 extra variable
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Pairwise Choices

e The Linear Program for minimizing the average TV-error has
exponentially many variables, but only polynomially many
constraints.

e |ts dual then contains polynomially many variables.

Primal LP mincx underAx=>b
Dual LP maxby underyA=s<c

Strong Duality Theorem: c x*=b y*

Discrete Choice Chierichetti, Kumar, Tomkins



Pairwise Choices

e The Linear Program for minimizing the average TV-error has
exponentially many variables, but only polynomially many
constraints.

e |ts dual then contains polynomially many variables.

e By means of the Ellipsoid method, if one could
determine an unsatisfied dual constraint with a given solution,
one would be able to optimize the primal and the dual - and,
thus, find an optimal RUM.
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Pairwise Choices

e The Linear Program for minimizing the average TV-error has
exponentially many variables, but only polynomially many
constraints.

e |ts dual then contains polynomially many variables.

e By means of the Ellipsoid method, if one could
solve the dual Separation Oracle Problem,
one would be able to optimize the primal and the dual - and,
thus, find an optimal RUM.

Discrete Choice Chierichetti, Kumar, Tomkins



Separation Oracle

e [ACKPT] observe that the separation oracle problem for the
dual of the Pairwise RUM LP is equivalent to the Weighted
Minimum Feedback Arc Set (WMInFAS) problem:

o sort the vertices of a weighted directed graph, with
weights bounded in [0,1], so that the total weight of the
arcs directed left-to-right is minimized.
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Separation Oracle

e [ACKPT] observe that the separation oracle problem for the
dual of the Pairwise RUM LP is equivalent to the Weighted
Minimum Feedback Arc Set (WMInFAS) problem:

o sort the vertices of a weighted directed graph, with
weights bounded in [0,1], so that the total weight of the
arcs directed left-to-right is minimized.
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Separation Oracle

e [ACKPT] observe that the separation oracle problem for the
dual of the Pairwise RUM LP is equivalent to the Weighted
Minimum Feedback Arc Set (WMInFAS) problem:

o sort the vertices of a weighted directed graph, with
weights bounded in [0,1], so that the total weight of the
arcs directed left-to-right is minimized.
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Separation Oracle

e [ACKPT] observe that the separation oracle problem for the
dual of the Pairwise RUM LP is equivalent to the Weighted
Minimum Feedback Arc Set (WMInFAS) problem:

o sort the vertices of a weighted directed graph, with
weights bounded in [0,1], so that the total weight of the
arcs directed left-to-right is minimized.

: Ao
SN B

1
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Separation Oracle

e [ACKPT] observe that the separation oracle problem for the
dual of the Pairwise RUM LP is equivalent to the Weighted
Minimum Feedback Arc Set (WMInFAS) problem:

o sort the vertices of a weighted directed graph, with
weights bounded in [0,1], so that the total weight of the
arcs directed left-to-right is minimized.
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Separation Oracle

e [ACKPT] observe that the separation oracle problem for the
dual of the Pairwise RUM LP is equivalent to the Weighted
Minimum Feedback Arc Set (WMInFAS) problem:

o sort the vertices of a weighted directed graph, with
weights bounded in [0,1], so that the total weight of the
arcs directed left-to-right is minimized.

D,C,A,B—3

/A\
B,D A C—1

1
Be<——D C
1 T S
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Separation Oracle

e [ACKPT] observe that the separation oracle problem for the
dual of the Pairwise RUM LP is equivalent to the Weighted
Minimum Feedback Arc Set (WMInFAS) problem:

o sort the vertices of a weighted directed graph, with
weights bounded in [0,1], so that the total weight of the
arcs directed left-to-right is minimized.

e MinFAS can be additively approximated to O(s n?) in
polynomial time for any constant € > O [Frieze,Kannan,'99]
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Approximate Separation Oracle

e [ACKPT] use this approximation algorithm for MinFAS to
provide an Approximate Separation Oracle for the dual of the

Pairwise LP. (min Y e,

1<i<ji<n

>, P =Dpujp()tey; Vi<i<j<mn
TES,

_ m({i,5})=1
Primal s € > —ei Vi<i<j<n
€, 2= €ij Vi<i<ji<n

Z Pr = 1
TES,
\ Dr >0 Ve Sn
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Approximate Separation Oracle

e [ACKPT] use this approximation algorithm for MinFAS to
provide an Approximate Separation Oracle for the dual of the
Pairwise LP. (min 3> €

1<i<j<n

Z Pr = D{z‘,j}(i) + €55 Vi<i<ji<n
TES,

Primal < €ij = —€i;j Vi<i<ji<n
€55 Zei,j V].SZ<]§7’L
Z Pr = 1
TES,
Pr >0 Vmr e S,

e [ACKPT] show that the Ellipsoid method, with this ASO,
returns a RUM whose average TV-error is smaller than the min
possible average TV-error plus g, for any constant € > O.
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Ellipsoid Method

e The Ellipsoid method, while being a polynomial time
algorithm, is inefficient in practice.
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Ellipsoid Method

e The Ellipsoid method, while being a polynomial time
algorithm, is inefficient in practice.

e [ACKPT] also show experimentally that the Approximate
Separation Oracle can be used in practice, via a cutting-plane
framework, for solving pairwise-RUM fitting on many

instances.
lower bound
Dataset n avg. err.
on avg. efrr.
A5 16
A9 12
Al17 13 0
A48 10
A81 11
SF 35 | 0.001408 0.001408
Jester 100 | 0.000461 0
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Fitting RUMs on Small Slates

e [CGKPT] show that the "pairwise" approach of [ACKPT] can
be made to work on slates of size at most k = O(1):

o to obtain this result, they study a more general LP, and give
an algorithm for a generalized version of MinFAS
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Fitting RUMs on Small Slates

e [CGKPT] show that the "pairwise" approach of [ACKPT] can
be made to work on slates of size at most k = O(1):

o to obtain this result, they study a more general LP, and give
an algorithm for a generalized version of MinFAS

e They show that one can find, in polynomial time, a RUM whose
average TV-error is not larger than the minimum possible
average TV-error plus g, for any constant € > O.
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Fitting RUMs on Small Slates

e [CGKPT] show that the "pairwise" approach of [ACKPT] can
be made to work on slates of size at most k = O(1):

o to obtain this result, they study a more general LP, and give
an algorithm for a generalized version of MinFAS

e They show that one can find, in polynomial time, a RUM whose
average TV-error is not larger than the minimum possible
average TV-error plus g, for any constant € > O.

, Fitting so to minimize the Average Error over the
___O(1)-slates, can be e-approximated in polynomial time
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Fitting RUMs on Small Slates

e [CGKPT] show that the "pairwise" approach of [ACKPT] can
be made to work on slates of size at most k = O(1):

o to obtain this result, they study a more general LP, and give
an algorithm for a generalized version of MinFAS

e They show that one can find, in polynomial time, a RUM whose
average TV-error is not larger than the minimum possible
average TV-error plus g, for any constant € > O.

, Fitting so to minimize the Average Error over the
___O(1)-slates, can be e-approximated in polynomial time

[ACKPT] show that the Approximate Separation Oracle for the Maximum Error
. over the 2-slates is NP-hard to approximate to within some additive constant
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Learning a RUM

How well does a RUM fitted on slates of size at most k
generalize to larger slates?

Discrete Choice Chierichetti, Kumar, Tomkins



Streaming Services

® Streaming Services can test their users on small slates

S = {606

?
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Streaming Services

® Streaming Services can test their users on small slates
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Streaming Services

® Streaming Services can test their users on small slates

- B
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Streaming Services

® Streaming Services can test their users on small slates

S'={&®h
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Streaming Services

® Streaming Services can test their users on small slates

S'= {0
el
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Streaming Services

® Streaming Services can test their users on small slates

S - ©E
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Streaming Services

® Streaming Services can test their users on small slates

=B
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Streaming Services

® Streaming Services can test their users on small slates

® |t is impossible, though, to test the users on very large slates -

very few users would parse through a list of, say, 1000 movies
to find their preferred one

(G606 -.63
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Streaming Services

® Streaming Services would love to pinpoint “gems” in their

catalogues — items that are “most preferred” by a significant
fraction of the user base

.66 .60

0.003 0.25 0.002 0.001
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Streaming Services

® Streaming Services would love to pinpoint “gems” in their

catalogues — items that are “most preferred” by a significant
fraction of the user base

.66 .60

0.003 0.25 0.002 0.001

® Can they fit a RUM to what they observe on the small slates,
and then use the RUM to guess the gems?

Discrete Choice Chierichetti, Kumar, Tomkins



Generalization

® |n recent work, [CKGPT] show that — by accessing slates

1

of size at most O ( n-ln —) — one can approximate, to
€

within an € TV-error, the winner distribution of all slates of

size at most n

Chierichetti, Kumar, Tomkins

Discrete Choice



Generalization

® |n recent work, [CKGPT] show that — by accessing slates

1

of size at most O ( n-ln —) — one can approximate, to
€

within an € TV-error, the winner distribution of all slates of

size at most n

, Accessing slates of size O (\/ﬁ) exposes
L the structure of a RUM of n items to within a small error
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Generalization

® |n recent work, [CKGPT] show that — by accessing slates

1

of size at most O ( n-ln —) — one can approximate, to
€

within an € TV-error, the winner distribution of all slates of

size at most n

, Accessing slates of size O (\/ﬁ) exposes
. the structure of a RUM of n items to within a small error

. In particular, accessing slates of size O (\/ﬁ) allows one
| to discover gems

Chierichetti, Kumar, Tomkins
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Generalization

e [CKGPT] also show that — if one can only access slates
of size o (v/n) — then one cannot guess if an item has
probability at most <, or at least 7-¢, in the slate {1,2, ..., n}.
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Generalization

e [CKGPT] also show that — if one can only access slates
of size o (v/n) — then one cannot guess if an item has
probability at most <, or at least 7-¢, in the slate {1,2, ..., n}.
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Generalization

e [CKGPT] also show that — if one can only access slates
of size o (v/n) — then one cannot guess if an item has
probability at most <, or at least 7-¢, in the slate {1,2, ..., n}.

563

" 0.05 0.95

{®a®} < RUMA ”’fﬁjiﬁj’ﬁ’ ’®>}

0.90

{ﬁ,ﬁ,ﬁ} gea Fit
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Generalization

e [CKGPT] also show that — if one can only access slates
of size o (v/n) — then one cannot guess if an item has
probability at most <, or at least 7-¢, in the slate {1,2, ..., n}.

(olo]

" 0.05 0.95

{ﬁ, ﬁ} This data is insufficient to
06 0.4 guess whether there exists a
{.60.608

gem in the catalogue
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Generalization

e [CKGPT] also show that — if one can only access slates
of size o (v/n) — then one cannot guess if an item has
probability at most <, or at least 7-¢, in the slate {1,2, ..., n}.
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Generalization

e [CKGPT] also show that — if one can only access slates
of size o (v/n) — then one cannot guess if an item has
probability at most <, or at least 7-¢, in the slate {1,2, ..., n}.

(olo]

H 0.05 0.95

{' > ',' > I} This data is insufficient to
0.6 0.4

guess whether there exists a

gem in the catalogue

{ﬁsﬁ!ﬁ} But, as we said, increasing the bound on the

0.3 0.92 0.05 slate size to just above v/n makes it possible

{ﬁ ﬁ ﬁ} to approximate all the winner distributions

0.05 0.05 and, thus, to find gems

0 (\/ﬁ)

<<

>
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A fourth representation!

e This result shows that one can approximately represent a
RUM with its winner distributions of slates of size
at most ~ v/n

e While the size of this representation is very large (n°V™),
constructing the RUM this way gets us quite an
improvement in the runtime (90 (vn1Inn) ys 9O(n)) of RUM
learning

Discrete Choice Chierichetti, Kumar, Tomkins



RUM Representations

® RUM Representations
O Joint Utility Distribution
O (Light) Distribution over Permutations
O Head Distributions
O Winner Distributions over slates of size at most O(1/n)

® They vary in their bit costs, and in the computational costs of various
algorithmic tasks.

® Choose your representation wisely! :-)

Chierichetti, Kumar, Tomkins

Discrete Choice



Special Classes of RUMs
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RUMs with Small Support

e Suppose that a RUM contains only k permutations in its
support.
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RUMs with Small Support

e Suppose that a RUM contains only k permutations in its
support.

e Then, for each cardinality c, there can be at most k pairs (H,s),
with [H| = ¢, such that Py ¢ is non-zero.

=-B-a
=H-=2 8
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RUMs with Small Support

e Suppose that a RUM contains only k permutations in its
support.

e Then, for each cardinality c, there can be at most k pairs (H,s),
with [H| = ¢, such that Py ¢ is non-zero.

Py s is the probability that a random
permutation has the elements of H, in
any order, as its |H| top-most elements,
and that it has s in position |H|+17

Discrete Choice Chierichetti, Kumar, Tomkins



RUMs with Small Support

e Suppose that a RUM contains only k permutations in its
support.

e Then, for each cardinality c, there can be at most k pairs (H,s),
with [H| = ¢, such that Py ¢ is non-zero.

Q>i>ﬁ 8 c=0
ﬁ>i>g a B

Pe, = 0, Pz, &> 0
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RUMs with Small Support

e Suppose that a RUM contains only k permutations in its
support.

e Then, for each cardinality c, there can be at most k pairs (H,s),
with [H| = ¢, such that Py ¢ is non-zero.

Q>i>ﬁ 8 c=0
ﬁ>i>g a B

Po, = > O, Po, - O, Po, = 0
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RUMs with Small Support

e Suppose that a RUM contains only k permutations in its
support.

e Then, for each cardinality c, there can be at most k pairs (H,s),
with [H| = ¢, such that Py ¢ is non-zero.

Q>i>a 8 c=1
ﬁ>i>g a B

Pigig >0, Peyg>0
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RUMs with Small Support

e Suppose that a RUM contains only k permutations in its
support.

e Then, for each cardinality c, there can be at most k pairs (H,s),
with [H| = ¢, such that Py ¢ is non-zero.

Q>i>a 8 c=1
ﬁ>i>g a a

Pigig >0, Peig>0, Piga=...=Prr.a =0
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RUMs with Small Support

e Suppose that a RUM contains only k permutations in its
support.

e Then, for each cardinality c, there can be at most k pairs (H,s),
with [H| = ¢, such that Pg ¢ is non- zero

e Thus, the formula Py s = Dy, Z Prs

TCH
lets us learn the RUM with O(n k) max-dist queries.

Discrete Choice Chierichetti, Kumar, Tomkins



Multinomial Logit MNL

® (Classical special case of Random Utility Model

e Given a universe U of items and a positive weight a. for each
item i in U, the probability that i wins in the slate S is equal to

Discrete Choice Chierichetti, Kumar, Tomkins



Learning a MNL

Fori=1, .., n-1,query the MNL using the slate {i, n}

obtaining the choice distribution ( = On )

’
CLi—I—CLn afz'"|_an
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Learning a MNL

Fori=1, .., n-1,query the MNL using the slate {i, n}

obtaining the choice distribution < - dn )

a; +a, a;+ a,

Qi
a1 + ap a Dl’n(n)
Qnp
as + Ap - D2’n(n)
System of
equations Do)

Discrete Choice
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Learning a MNL

Fori=1, .., n-1,query the MNL using the slate {i, n}

obtaining the choice distribution ( - dn >

a; +a, a;+ a,

an
atay D) an = D1 pn(n) - (a1 + an)
ey = Danlo n = Do) - (a3 +an)
System of s : Full Rank
equations M Dpin(n) an = Dn_1,n(n) - (an—1 + an)| LP
Ap—1 + an ’ n
Zai =1 Z ai = 1
i=1 i=1

Discrete Choice
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Learning a MNL

Fori=1, .., n-1,query the MNL using the slate {i, n}

obtaining the choice distribution <

Querying O(n)
slates of size 2,
and solving
this LP, gets us
a valid set of
weights

a; 07
a; +a, a;+ a,

an = D1yn(n) - (a1 + an)
an = Dapn(n) - (a2 +an)

Full Rank
LP

Discrete Choice
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Mixture of MNLs

e MNL is insufficient to capture many practical settings

o 2-MNL mixture: Given a universe U of items and positive weights a.
and b, for each item i in U

For a slate S, the probability of choosing iin S equals
a;
f\/ .
) jes @j
(Uniform mixture when y = 1/2)

+(1 =)

Discrete Choice Chierichetti, Kumar, Tomkins



2-MNL Learning

e [CKT18] show that
o Uniform 2-MNLs can be uniquely identified by the choice
distributions of slates of sizes 2 and 3
o Thereis a linear-time adaptive algorithm to learn the
weights of uniform 2-MNLs using the choice distributions

of slates of sizes 2 and 3

Chierichetti, Kumar, Tomkins
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2-MNL Learning

e [CKT18] show that
o Uniform 2-MNLs can be uniquely identified by the choice
distributions of slates of sizes 2 and 3

o Thereis a linear-time adaptive algorithm to learn the
weights of uniform 2-MNLs using the choice distributions

of slates of sizes 2 and 3

Compare with general RUMs where, as

we showed, one needs slates of size O (v/n)

Chierichetti, Kumar, Tomkins
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2- and 3-Slates are sufficient

® Theorem
For any uniform 2-MNL system, and for any set of 3 items S =
{i, j, k}, the choice distributions of all the subsets of S
determine uniquely the weights (up to rescaling) of i, j, k in
each of the two MNLs.

Chierichetti, Kumar, Tomkins
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Unigueness

e This polynomial system induced by the choice distributions of
the subsets of a generic set {i,,k} has a unique solution

(

a; bi S )
a;+a; T bz_l')_bj o 2D{7’a]}(z)
ror T wiger = 2D1iky (2)

a;t+ag }
ajt+ag T bj+br 2D{J,k}(])

a; b'L o o .
ai+a'j+a'k' + z+b “|’bk o zD{ZJ)k} (Z)

a; +a; +ag = 1
bi +b; + b =1
a'iaajaafkabi)bjabk >0

Discrete Choice
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Algorithmic Implications

® Theorem
There exists an adaptive algorithm performing max-dist
queries on O(n) slates of sizes 2 and 3, that reconstructs the
weights of any uniform 2-MNL system on n elements.

Discrete Choice Chierichetti, Kumar, Tomkins



Special Classes of RUMs

e RUMSs supported on k permutations can be learned very
efficiently

e Winner Distributions over slates of size at most O(v/n) let you

approximately represent any RUM
o Winner Distributions over slates of size at most 2 let you

represent any MNL
o Winner Distributions over slates of size at most 3 let you

represent any uniform 2-MNL
e What about k-MNLs? Are slates of size O(k) sufficient for

representation?

Chierichetti, Kumar, Tomkins
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Applications

Discrete Choice Chierichetti, Kumar, Tomkins



Applications

ML Applications
Geographic Choice
Choice on Graphs
Reconsumption
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Conjoint Analysis

Initially developed by [Luce and Tukey 1964] — axiomatic formulation

Picked up soon by marketers in late 60’s, eg [Green and Rao 1971]

B-T model:
Flavor Mango Chocolate
Price 2.95 3.95
Size 120g 200g

Discrete Choice
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Conjoint Analysis

Initially developed by [Luce and Tukey 1964] — axiomatic formulation

Picked up soon by marketers in late 60’s, eg [Green and Rao 1971]

B-T model:
Flavor Mango Chocolate
Price 2.95 : 3.95
Size 120g 200g

<

Discrete Choice
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Conjoint Analysis Outcomes

$2.95 (3%)

295 (%) Widely used in marketing
Price $5.95 (-10%)

“Like giving dynamite to

2 Vanilla (12%) babies”

-g Chocolate (-1%)

3 Flavour Strawberry (-25%) Influential case study on
% Mango (15%) Marriott Courtyard hotels

120 g (-18%)
150 g (-8%)
200 g (26%)

Size

-50 -25 0 25 50

Relative performance

Chierichetti, Kumar, Tomkins
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Courtyard by Marriott

ROOM PRICE PER NIGHT IS $ 44,85

BUILDING SIZE, BAR/LOUNGE
Large (600 rooms) 12-story hotel with:
* Quiet bar/lounge
+ Enclosed central corridors and elevators
« All rooms have very large windows

LANDSCAPING/COURT
Building forms a spacious outdoor courtyard
* View from rooms of moderately landscaped courtyard with:
- many trees and shrubs
— the swimming pool plus a fountain
— terraced areas for sunning, sitting, eating

FOOD
Small moderately priced lounge and restaurant for hotel guests/friends
» Limited breakfast with juices, fruit, Danish, cereal, bacon and eggs
» Lunch—soup and sandwiches only
» Evening meal—salad, soup, sandwiches, six hot entrees including steak

HOTEL/MOTEL ROOM QUALITY
Quality of room furnishings, carpet, etc. is similar to:
« Hyatt Regencies
» Westin "Plaza” Hotels

Discrete Choice Chierichetti, Kumar, Tomkins



Courtyard by Marriott

Attribute Levels Description Part Worths
Hotel Size ¢ Small (125 rooms) 2-story hotel (.00)* 1.06
2 12-story (600 rooms) with large lobby, 0.00
meeting rooms, etc. (7.15)
Corridor/View 1 Outside stairs and walkways to all 0.00

rooms. Restricted view. People
walking outside window. (.00)
2 Enclosed central corridors and stairs. 1.85
Unrestricted view. Rooms have
balcony or large window. (.65)

Pool Location 1 Not in courtyard (.00) 0.00
2  In courtyard (.00) 1.37
Pool Type 1 No pool (.00) 0.61
2 Rectangular pool (.45) 1.25
3 Freeform pool (.50) 0.29
4 Indoor/outdoor pool (.85) 0.00
Landscaping 0| Minimal landscaping (.00) 0.81
2 Moderate landscaping (.10) 0.97
3 Elaborate landscaping (.50) 0.00
Building Shape 1 “L"” shape building with modest 0.00
landscaping (.00)
2 Building forms an outdoor landscaped 0.37

courtyard for sitting, eating,
sunning, etc. (.45)

*Figure in parentheses after each description = price premium.

Discrete Choice Chierichetti, Kumar, Tomkins



Softmax and discrete choice

A generic transformer (from [Vaswani et al 2017])

Qutput
Probabilities

Probabilities
I
7y
Softmax
Add & Norm
Feed *
Forward
| Add & Norm |<_:
SR Multi-Head
Feed Attention
Forward ) Nx
| —
Nx Add & Norm
f"' Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
S e
\_ J - _J)
Positional Positional
Encodi P & i
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Discrete Choice
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Softmax bottleneck

[Yang et al, 2018]

T T -w; ] 'logP*Ea:IIclg, logP*ExQIclg logP*ga:MIclg'
9 T log P*(x1|c2), log P*(x2|ce) -+ log P*(xarlco
Hy= || Wo= |V |5 A= : : : :
e Wi llog P*(z1]cn), log P*(azlen) -+ log P*(zarlen).

F(A) = {A + AJy r|A is diagonal and A € RV*N},

Property 1. For any matrix A’, A’ € F(A) if and only if Softmax(A’) = P*. In other words,
F(A) defines the set of all possible logits that correspond to the true data distribution.

Property 2. For any A, # Ay € F(A), |rank(A ;) — rank(As)| < 1. In other words, all matrices
in F'(A) have similar ranks, with the maximum rank difference being 1.

Goal of Languge Modeling: H,W, = A’.

Softmax bottleneck: rank of A’ is at most the embedding dimension d

Discrete Choice Chierichetti, Kumar, Tomkins



Softmax bottleneck — another view

Consider two nearby word representations — very difficult to separate

All “usage patterns” must be embedded into R?

Discrete Choice Chierichetti, Kumar, Tomkins



Mixture of softmax

L3 exph!, w, ol
Py(z|c) = E Te.k }’IT s.t E Mo =
k=1 2_qr €XP ckWa! =

MoS shows empirical wins over Softmax

The authors argue this is because it addresses the rank deficiency of the
“softmax bottleneck”

Note that MoS is exactly mixed logit, and is there’s equivalent to the full RUM
family, where a user type is an assignment of “utilities” for each token

Utilities are a non-linear function of the context so far

Another take on the power of MNLs versus RUMs

Discrete Choice Chierichetti, Kumar, Tomkins



Application: Geographic Choice

(or: where should we have dinner tonight?)

Discrete Choice Chierichetti, Kumar, Tomkins



Where shall we eat tonight, revisited....

ne Life Park &4 Vo

Restaurants Q X % Rating v (© Hours v " 3£ Allfilters
infure Cove ) ! VW
Waterpark
Results ©®

%
. PUTIEN Resort @

Hawker complex
with South Asian...

@ Malaysian
o Food Street

Le Faubourg

4.4 (247) World Sentosa a
Restaurant - 2 Gunner Lane #01-02 Mess 9

Hall Block 17, opp The Barracks Hotel S,7°~Po (
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Some Factors in Restaurant Choice

Deciding where to go for dinner:
o Quality of the restaurant
o Distance from Hotel Michael
o Price
o Cuisine type
o Ambience
o Time since last visit

o Opinions of dining companion(s)

Discrete Choice Chierichetti, Kumar, Tomkins



Some data for this problem

Directions queries:
o Number of directions queries to US/Canadian restaurants in Google Maps
o Random sample of 15.5M queries to ~400K restaurants

Discrete Choice Chierichetti, Kumar, Tomkins
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Dataset

Directions queries:
o Number of directions queries to a US/Canadian restaurants in Google Maps
o Random sample of 15.5M queries to ~400K restaurants

Caveats:

o Not all visits have an associated directions search
m Familiar locations
m Spontaneous decisions

o Not all searches result in visits
m Aspirational searches
m Traffic & time estimates

Discrete Choice Chierichetti, Kumar, Tomkins



Classical Discrete Choice Models

Recall our basic discrete choice model:
o Assign a score to each alternative
o Select with probability proportional to score

Priz|4] = E“’xw Jw, = e
yecA Y

Goal:

o Better understand the score

Discrete Choice Chierichetti, Kumar, Tomkins



Score function

Today:
o Distance to the restaurant d

o Number of closer restaurants, rank: r
m Captures density of restaurants
m Acts as a proxy for the amount of competition

o Quality of particular restaurant: g

o Assume utility is linear in these featuresV_=d_+r_ +q
X X X X

Not Today:
— Personal (user specific) preference
— Time since last visit
— Companions’ desires

Discrete Choice Chierichetti, Kumar, Tomkins



Imputed Rank Function

Bucket value
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Imputed Distance Function
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Results

Predict Likelihood on a held out test set:

Method Likelihood
Uniform choice 1.1
Distance only model 3.9
Rank only model 4.6

Discrete Choice Chierichetti, Kumar, Tomkins



Model

Fit both rank and distance functions by log-normals

: 2 2
o Four parameter model: Lranks O 1s Pdistance; O aistance

1 1 i — Mran 2 1 1 dz'_ isance2
5 — exp(_(m” p k)) exp<_(n Hdist ))

- 2 ) 2
TiOrank 20 d;0distance 203,
rank distance
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Results

Predict Likelihood on a held out test set:

Method Likelihood
Uniform choice 1.1
Distance only model 3.9
Rank only model 4.6
Lognormal coefficient fit (4 parameters) 5.1
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Results

Predict Likelihood on a held out test set:

Method Likelihood
Uniform choice 1.1
Distance only model 3.9
Rank only model 4.6
Lognormal coefficient fit (4 parameters) 5.1
Non-parametric factored model 5.3

Discrete Choice Chierichetti, Kumar, Tomkins



Quality Factor

o Quality is restaurant specific, makes the model much richer
o Learn it as the residual on ranks, distances
o Evaluation: correlation with critics’ scores
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quality score
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Geographic Choice: what have we seen?

Multinomial Logistic Regression with buckets is a powerful technique to
assess influence of features based on intensity

Captured interactions may give significantly different influence weights than
feature correlations

Given the output of such models, it is possible to observe deeper structure

From this structure, we may find models that are far more parsimonious (why
lognormal?)

These new models are much easier to fit when data is sparse

Discrete Choice Chierichetti, Kumar, Tomkins



Application: Graphs
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Ravi Kumar, Andrew Tomkins, Sergei Vassilvitskii and Erik Vee

[Ref: wSDM 2015]

Reverse Engineering
a Markov Chain
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http://tomkins.family/static/papers/src/KTV+15.pdf

Random Walks & Markov Chains

Markov Chains in Data Analysis:
o Simple, yet capture alot of interactions
o Typically: compute & use the stationary distribution
o Beautiful theory with great applications

Examples:
o PageRank: Random surfer stationary distribution
o Translation: Use language models to build phrases

O eee
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A Recommendation Chain

GO. Sle markov chain \9, “

Web Videos Books Images Shopping More ~ Search tools

About 2,250,000 results (0.30 seconds)

Markov chain - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Markov_chain ~ Wikipedia ~

A Markov chain (discrete-time Markov chain or DTMC), named after Andrey Markov, is
a mathematical system that undergoes transitions from one state to ...

Examples of Markov chains - Andrey Markov - State space - Stochastic matrix

[POFl Chapter 11, Markov Chains
www.dartmouth.edu/~chance/.../Chapter11.pdf ~ Dartmouth College ~

Chapter 11. Markov Chains. 11.1 Introduction. Most of our study of probability has dealt
with independent trials proc . These proc are the basis of ...

Origin of Markov chains - Khan Academy
www.khanacademy.org/.../markov_cha... Khan Academy ~
Could Markov chains be considered a basis of some (random)
cellular automaton? | mean, each Markov ...

Markov Chains

setosa.io/blog/2014/07/26/markov-chains/ ~

Jul 26, 2014 - Markov chains, named after Andrey Markov, are mathematical systems
that hop from one "state" (a situation or set of values) to another.

Markov Chain -- from Wolfram MathWorld

mathworld.wolfram.com» ... » Markov Processes ¥ MathWorld ~

A Markov chain is collection of random variables {X_t} (where the index t runs through
0, 1, ...) having the property that, given the present, the future is ...
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A Recommendation Chain
YOII =- markov Q

What to Watch Filters ¥ About 109,000 results |

ft
© My Channel
o

k...
. P s Markov Chains - Part 1
My Subsoripdons e by patrickMT - 4 years ago - 178,071 views
% History " Part 2: http://www.youtube.com/watch?v=jtHBfLtMq4U In this video, | discuss Markov
Chains, although | never quite give a ...
© Watch Later 1 )

SUBSCRIPTIONS

(ML 14.1) Markov models - motivating examples
by mathematicalmonk = 3 years ago * 33,870 views

Introduction to Markov models, using intuitive examples of applications, and motivating
the concept of the Markov chain.

PoA ¥ hamtn

GEALIEL RS  Finite Math: Introduction to Markov Chains

x

T e by Brandon Foltz - 2 years ago * 28,609 views

Finite Math: Introduction to Markov Chains. In this video we discuss the basics of
€@ == -

© Browse channels Markov Chains (Markov Processes, Markov ...

HD

e S
£} Manage subscriptions TS x Ex3

Bruins and Canadiens scrum, Markov spears Chara in the groin
by Eric Burton = 6 months ago = 19,249 views
cc
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Recommendation Chain

You markov Q uposs | 4B |

i ‘ Newest Simon's Cat

Markov Chains, Part 2

A Proof for the Existence of God
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A Recommendation Chain
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A Recommendation Chain
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A Recommendation Chain
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A Recommendation Chain

Example:
o ltems: videos
o Stationary Distribution: view counts

Why are some videos more popular:
o Better (higher quality) videos
o More frequently recommended

Today:

o Disentangle these two reasons

Chierichetti, Kumar, Tomkins
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Inverting a Markov Chain

Problem:
o Given astationary distribution, find the Markov Chain that generated it.

Given:
o Graph G
o Distribution 7

Output:
o Transition Matrix M that generated it

Discrete Choice Chierichetti, Kumar, Tomkins



Feasibility

Feasibility:

o Not always feasible

7TA=1/3 7TB=2/3

Discrete Choice Chierichetti, Kumar, Tomkins



Feasibility

Feasibility:

o Not always feasible

o

7rA:1/3 7TB:2/3

Definition:
o Adirected graphis consistentif thereis a flow that preserves the steady state.
o Any strongly connected graph with self loops is consistent

Theorem:

o Forany consistent graph, there exists a Markov chain with~ as its stationary
distribution.

Discrete Choice Chierichetti, Kumar, Tomkins



Constraints

The problem is under-constrained:
o nconstraints
o m —mn > n variables

Discrete Choice Chierichetti, Kumar, Tomkins



Constraints

The problem is under-constrained:
o nconstraints
o m —n > n Variables

Approaches

o [Tomlin *03]: MaxEnt objective on variables (regularization)
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Constraints

The problem is under-constrained:
o nconstraints
o m —n > n Variables

Approaches

o [Tomlin *03]: MaxEnt objective on variables (regularization)
o [Today] Limit the degrees of freedom

o For each vertex v; let s; be its score. The Markov Chain is the function of the scores
o Scores express “quality” or “attractiveness”

Discrete Choice Chierichetti, Kumar, Tomkins



From Scores to Transitions

Transition probability M4_.c depends on:
o Score of the destination s.
o Parameter of the edge v 4~

Discrete Choice Chierichetti, Kumar, Tomkins



Simplest Example

Weighted Random Walk:

o All of the edge weights aresetto1
o Transition probability proportional to the score

Sc
sB+ Ssc + Sp

MA—>C =

Discrete Choice Chierichetti, Kumar, Tomkins



Simplest Example

Weighted Random Walk:

o All of the edge weights aresetto1
o Transition probability proportional to the score

Sc
sp+sc + Sp

Moo =

o Transition probabilities are context dependent:

e sp = 100
o 8(;':10
8D=1

Ma_,c =0.09

Discrete Choice
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Simplest Example

Weighted Random Walk:

o All of the edge weights aresetto1
o Transition probability proportional to the score

sc
sp+sc + Sp
o Transition probabilities are context dependent:

Moo =

Mj_,c =0.09

ove Mp_c =0.91
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From Scores to Transitions

Transition probability 4. depends on:
o Score of the destination Sc
o Parameter of the edge wac
o Call this function f

Formally:
Ma—c o« f(sc,wac)

f(sc,wac)
sc,wac)+ f(sB,wan) + f(sp,wap)

Mup_c = [T

Discrete Choice Chierichetti, Kumar, Tomkins



From Scores to Transitions

Transition probability 4. depends on:
o Score of the destination Sc
o Parameter of the edge wac
o Call this function f

Formally:
Ma—c o« f(sc,wac)

Sanity Checkon : f
o Continuousin S
o Monotonein S
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From Scores to Transitions

Transition probability 4. depends on:
o Score of the destination Sc
o Parameter of the edge wac
o Call this function f

Formally:
Ma—c o« f(sc,wac)

Sanity Checkon : f
o Continuousin s
o Monotonein S
o Unboundedin $

lim f(s,w) — o0

S—00

Sc—>00

Discrete Choice Chierichetti, Kumar, Tomkins



Simplest Example

Weighted Random Walk:

o All of the edge weights aresetto1
o Transition probability proportional to the score

sc
$p+sc+ Sp

MA—>C =
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More Examples

Weighted Random Walk:

o All of the edge weights aresetto1
o Transition probability proportional to the score

Sc
sp+sc + Sp

Ma—c =

Seeking Similar Content:
o Edge weight: similarity between two nodes M4_.c oc wac - sc

Discrete Choice Chierichetti, Kumar, Tomkins



More Examples

Weighted Random Walk:

o All of the edge weights aresetto1
o Transition probability proportional to the score

Sc
sp+sc + Sp

Ma—c =

Seeking Similar Content:
o Edge weight: similarity between two nodes M4_.c oc wac - sc

Overall:

o Decide whetheritems are popular due to high scores (attract all of the incoming traffic)
or due to location (attract a little bit from many locations)

Discrete Choice Chierichetti, Kumar, Tomkins



Main Theorem

Given:
o Aconsistentinput G, «
o Monotone, continuous and unbounded function f

There exists:
o Aunique set of scores $1,-- -, Sn
o Sothat~isthe stationary distribution induced by f
o Moreover, the scores can be found in polynomial time

Discrete Choice Chierichetti, Kumar, Tomkins



Main Theorem

Given:
o Aconsistentinput G, «
o Monotone, continuous and unbounded function f

There exists:
o Aunique set of scores 51, - -, Sn
o So th@tw is the stationary distribution induced by f
o Morepver, the scores can be found in polynomial time

up toscaling
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Main Theorem

Given:
o Aconsistentinput G, «
o Monotone, continuous and unbounded function f

There exists:
o Aunique set of scores s1, - -
o So th@tw is the stationary
o Morepver, the scores can be fqund in polynomial time

y Sn

tribution induced by f

up toscaling upto (144
€
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Definitions

o Fix a set of scores 8 and distributionn
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Definitions

o Fix a set of scores § and distribution
o Letg;(s) bethe expected mass at v; starting with S using
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Definitions

o Fix a set of scores § and distribution
o Letg;(s) bethe expected mass at v; starting with S using
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Definitions

o Fix a set of scores § and distribution
o Letg;(s) bethe expected mass at v; starting with S using
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Definitions

o Fix a set of scores § and distribution
o Letg;(s) bethe expected mass at v; starting with S using
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Definitions

Fix a set of scores § and distributionm
Let ¢;(s) be the expected mass at v; starting with S using

O

o

o Call a node underweight if g;(s) < (1 — €)m;
o Algorithm:
m Repeatedly increase scores of underweight nodes

Discrete Choice Chierichetti, Kumar, Tomkins



Definitions

Fix a set of scores § and distributionm
Let ¢;(s) be the expected mass at v; starting with S using

O

o

o Call a node underweight if g;(s) < (1 — €)m;
o Algorithm:
m Repeatedly increase scores of underweight nodes
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Definitions

o Fix a set of scores § and steady state 7
o Let g;(s) be the expected mass at v; starting with = using S
o Call a node underweight if ¢;(s) < (1 —€)m;

Algorithm:
o Start with s) = 1/

oFort=1,...
m Foreach v; €V :
m If Vi underweight:
Set st:qi(sth,st) = (1 —¢/2)m;
m else:

t_ -1
Sets; =s;

Discrete Choice Chierichetti, Kumar, Tomkins



Definitions

o Fix a set of scores § and steady state 7
o Let ¢;(s) be the expected mass at v; starting with = using S
o Call a node underweight if ¢;(s) < (1 —€)m;

Algorithm:
o Start with s) = 1/

o Fort=1,...
m Foreach v; €V :

m If Vi underweight:
Set SE : qz-(st__il,sf) = (1 — 6/2)7Ti

m else: ] .
Set o — gi-1 \ Guaranteed to exist because fis
S’i = S,L-

monotone, continuous, unbounded
& Gis consistent
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Definitions

o Fix a set of scores § and steady state 7
o Let ¢;(s) be the expected mass at v; starting with = using S

o Call a node underweight if ¢;(s) < (1 —€)m;
Note: scores never decrease

Algorithm:
o Start with s) = 1/

o Fort=1,...
m Foreach v; €V :

m If Vi underweight:
Set SE : qi(si_il,sf) = (1 — 6/2)7‘(’1

m else: ] .
Set o — gi-1 \ Guaranteed to exist because fis
S’i = Si

monotone, continuous, unbounded
& Gis consistent
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Definitions

o Fix a set of scores § and steady state 7
o Let ¢;(s) be the expected mass at v; starting with = using S

o Call a node underweight if ¢;(s) < (1 —€)m;
Note: scores never decrease

Algorithm:
o Start with s) = 1/

o Fort=1,...
m Foreach v; €V :

m If Vi underweight:
Set SE : qi(si_il,sf) = (1 — 6/2)7‘(’1

m else: ] .
Set o — gi-1 \ Guaranteed to exist because fis
S’i = Si

monotone, continuous, unbounded
& Gis consistent

If g is ever below 7, it will always
stay below

Discrete Choice Chierichetti, Kumar, Tomkins



Proof of Convergence

Key Lemma:
o There is an explicit bound M suchthat s! <M forall i,t.
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Proof of Convergence

Key Lemma:
o There is an explicit bound M suchthat s! <M forall i,t.

Proof Sketch:

Consider a set of scores that grows without bound

These scores all must be underweight (these are the only scores that increase)

Not all scores can be underweight (sum of underweight scores below 1)

The scores growing without bound are taking all of the probability mass from those bounded
By consistency, this demand must be met, a contradiction.

o O O O O

Discrete Choice Chierichetti, Kumar, Tomkins



Proof of Convergence

Key Lemma:
o There is an explicit bound M suchthat s! <M forall i,t.

Finishing the Proof:

o Scores increase multiplicatively by factor of (1 + €/2)

2 n
o M is bounded by (n W)

€Pmin

n? nW

o Overal: O (—log

€ €Pmin

) iterations suffice.
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But Does it Work...

Experimental Evaluation:

o Dataset: empirical transitions

o Input: Transition graph and the steady state distribution
Output: Transition probabilities
Metrics: LogLikelihood or RMSE

o

o

Discrete Choice Chierichetti, Kumar, Tomkins



Datasets

Wiki:
o Navigation paths through wikipedia.
o About 200k transition pairs, 51k user traces over 4.6k nodes

Rest:

o Results of broad restaurant queries to Google.
o 100k transitions, 65k nodes

Entree:

o Chicago restaurant recommendation system from 90s
o 50k transitions, 27k nodes

Comedy:

o Given a pair of videos, predict which oneis judged funnier
o 225k transitions, 75k nodes

Discrete Choice
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Baselines

Popularity:
o Transition proportionally to the steady state distribution (score = pi)

Uniform:
o Uniform over out-edges

Pagerank:
o Transition proportionally to the node pagerank

Temperature:
o MaxEnt regularization approach

Inversion:
o Ouralgorithm

Discrete Choice Chierichetti, Kumar, Tomkins



Results

RMSE Prediction:

Popularity | Uniform | PageRank Temp Inversion
Wiki 1 0.65 0.83 0.65 0.57
Rest 1 1.17 1.39 1.21 0.59
Entree 1 0.69 1.01 0.56 0.42
Comedy 1 0.65 0.9 0.78 0.36

Discrete Choice
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Application: Sequential Choice
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Repeat consumption

Most of the items we consume are not
for the first time

Sometimes go for reliability

Sometimes go for novelty
o Boredom
o New options

We focus on the repeated

consumption, not the novel choice. o A
| Right Now <7 98.89
& cF s G +0.58 (0.59%)
/// After Hours: 98.70 -0.19 (-0.18%)
. Oct 30, 4:03PM EDT
Heavy Rain NYSE real-time data - Disclaimer
Currency in USD
Feels like 66°
Compare: Ac
|z m: 16 5¢ Im 3m 6m YID 1y &
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Repeat consumer choice

Marketing studies
Consumer behavior
Music listening experiment [Kahnx et al 97]

o Melioration/overconsumption: listen to favorite on each trial
o Maximization: preserve the high level of enjoyment

Possible explanations
o Difficulties in prediction of taste

o Users try to create the best memory (five flavors vs one e wwbg
flavor LifeSavers) o7

o Zen principles (pain vs pleasure)

Discrete Choice Chierichetti, Kumar, Tomkins



Re-searching

Repeat queries in search logs [Teevan et al]

40% of queries are re-finding queries
Navigational queries are more likely to be repeated

o Information re-finding

Repeat behavior leads to easier prediction of which results will be clicked

Discrete Choice Chierichetti, Kumar, Tomkins



Re-visiting web pages

Web page revisitation using browser logs [Adar et al]

50-80% of the web pages are revisited

Revisitation reasons
o Bookmarks/use as hub
o Track content change
o Backbutton

Types of revisitation
o Fast: shopping pages, references, traffic
o Medium: mail, forums, news, ...
o Slow: weekend activity, software updates, ...

Discrete Choice Chierichetti, Kumar, Tomkins



Domains of reconsumption

Location checkins
o BrightKite

o Google+ E
=

Clicks
o Businesses on maps
o Restaurants on maps '
o Wikipedia
Media
o Youtube

o Music videos
o Playlists from a radio station You (D)

Shakespeare!

Discrete Choice Chierichetti, Kumar, Tomkins



Characterizing Reconsumption
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Does it exist?

Distribution of the fraction of repeat consumption

0.09 C—J BrightKite T WikiClicks
] Google+ 1 Yes

0.08 - 1 MapClicks 1 YouTube

007 F [ MapClicks-Food [ YouTube-Music
] Shakespeare

0.06 |

0.05
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0.03 |
0.02 |

Histogram
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Fraction of repeat consumptions
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Lifetime distributions

Do items have finite lifetimes?
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Boredom

Do users get bored with repeat consumption?
o Marketers, advertisers care about this
o Churn/variety-seeking behavior

Second Third Second to last Last
Position of gap in sequence

) Lastfm
Lastfm sequence gaps (time)
6 -® - index
?30' B Not last in sequence T | = time .
2 EEE Lastin sequence gs
8 4 2
Q
= 53 i
o E o3 -®
& B 2 Pkt
o o B g
(=] £ enc==2gc==2z===%"
g 1
N
0 0
o
o
°

7 8 9 10
Paosition of gap in sequence
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Summary of model

Semi-Markov model
) . > ., t, ...t
of session behavior 1772 n
Logistic model for
novelty of items > N, N, ..., N
novel Baseline model: .
/popularity —> i

repeat

Fully generative model.
Also matches macroscopic properties (up next!
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Three key factors

« How popular is the item?
» Time gap since it was last consumed
« HOW recently was it consumed?

» Canwe develop a holistic mathematical framework
powerful yet simple enough to explain patterns of
reconsumption we observe in real data?

Discrete Choice Chierichetti, Kumar, Tomkins



Recency model

Empirically, recency seems to play a strong role in reconsumption

Technical approach: Combine discrete choice model with “copying model”
[Simon, 55] based on recency

Discrete Choice Chierichetti, Kumar, Tomkins



Example

consumption history

E K 5 B El 2 5 El B & El B

weights w

w(12) w(11)  w(10) w(?) w(8) w(7) w(6) w(5) w(@) w@B) w2 w(1)

Pr[d is consumed next] ~
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Score-based model

Each item x has a score s
The score reflects the quality of the item

The score dictates the reconsumption pattern

Pick next item x using discrete choice, with probability:

Sz

ZyGA Sy

Prlz|X] =

Discrete Choice Chierichetti, Kumar, Tomkins



Combining Recency and Quality

Pr[d consumed next] ~ N . y l

At position i, pick item x with probability:

qu; I(z; = z)w;—jsq,

Zj<i Wi—jSz;

Stochastic gradient ascent
Alternating updates to scores and weights

Discrete Choice Chierichetti, Kumar, Tomkins



Likelihoods (wrt hybrid model)

s(-) = popularity popularity learned uniform

w(-) = - learned  uniform  learned
BRIGHTKITE 0.375 0.617 0.637 0.936
GPLUS 0.587 0.801 0.794 0.877
MAPCLICKS 0.383 0.931 0.414 0.989
WIKICLICKS 0.503 0.724 0.687 0.945
YOUTUBE 0.636 0.677 0.924 0.962

® Recency comes close to hybrid model
® Recency much better than quality

® Popularity seems to bring the models down even with
recency

Discrete Choice Chierichetti, Kumar, Tomkins



Combining Recency, Quality, and Time

Pr[d consumed next] ~ . I+ I ) l
]

w(8)*(8) w(B)*t(5)  w(2)*t(2) s(d)

At position i, pick item x with probability:

Zj<z’ I(wj — m)wi—jswj bti—t;

Zj<i Wi—jSz; ttz’ —t;

Stochastic gradient ascent

Alternating updates to scores and weights

Discrete Choice Chierichetti, Kumar, Tomkins



Learned time scores T(’ci — tj)

0.025 Time scores (fine grain)
« Learned time ™ -+ MapClicks
0.020| * L - =~ WikiClicks
SCcores are "N, % -~~~ BrightKite
Complex o 0.015 M‘\w 3 -~ - GPlus
Q J = : *1
? 0.010 LA
« Capture, e.g.,
: C 0.005
cyclic behavior in

check-in data. 0000 30s 5min  1hr 1d 1wk 1m  1yr '

Time difference
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Model Quality

Learned scores

Dataset w wands wandT
BRIGHTKITE 0.91 0.92 0.98
GPLUS 0.87 0.92 0.94
LASTFM 0.99 0.99 1.00
LASTFMARTISTS 0.96 0.96 1.00
YOUTUBE 0.91 0.94 0.96
YouTuBEMUuUSIC 0.92 0.93 0.97
MAPCLICKS 0.81 0.82 0.99
WIKICLICKS 0.78 0.81 0.91

® Score-only and Popularity-only not competitive
® Recency is most important feature

® Time is more important than item quality

® All model components bring some gain

Discrete Choice Chierichetti, Kumar, Tomkins



Macroscopic observations

1. Eventual abandonment: item lifetime distributions are
heavy-tailed and often finite.

2. Boredom: at the end of an item’s life, gaps between
consumptions increase monotonically.

Discrete Choice Chierichetti, Kumar, Tomkins



ltem lifetimes

Count lifetime:
number of times an item is consumed.

10° - , YouTube item lifetimes 10° R BrightKite item lifetimes
107 4 . = data 107 | . = data
1072 | x +  model L. «+  model
£ 10 . 2107 "
8 4 *:-. S s
'8 10_5 ** .- _(éj 10 E l.
a1 s & 10 | "
18‘7 D 107 | "
*xxxB0mE B [ ]
107 . . . . . 10 . . e .
107" 10° 10" 102 10° 10* 10" 10° 10" 102 10° 10*
Count lifetime Count lifetime
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ltem lifetimes

Index lifetime:
total number of items consumed between first and last

consumption of a given item.

10° - , YouTube item lifetimes 10° . BrightKite item lifetimes
107" 4 data 10" . = data
1072 - . «  model , ) . model
Q 4 S, Q 3 My
% 105 ] *!"*l,,. 3 10 -'n
- *W, [¢) L]
g 107 o, & 10 "t
18-7 ' 10° .
**.
10°® . . . . . 10°® . . . = .
107" 10° 10" 102 10° 10* 107 10° 10" 102 10° 10*

Index lifetime

Index lifetime
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ltem lifetimes

Temporal lifetime:
total elapsed time between first and last consumption of an

item.

BrightKite item lifetimes

Temporal lifetime (hours)

10° YouTube item lifetimes 10° .
§ " = data y " = data
10 ".r_..*. «+  model 10 e +  model
2 5 L 2 5 "
= 10 - = 10 L
S 3 .,
© 107 e S 107 ",
o * (] o lyi'
-4 " 10-4 (Sl
10 m ol IR
10-5 T T T T .Y T i * x 1 10-5 T T T T T T 1
107 10° 10" 10* 10° 10* 10° 10° 107 10° 10" 10* 10° 10* 10° 10°
Temporal lifetime (hours)
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ltem Lifetimes Theoretical Analysis

For simple “copying” model with recency only, we can analyze conditions
in which an item lives forever:

Theorem:

Let a be probability of novel item

If Zwi < 1/a then Pr|lifetime(x) < oo] — 1
i—1
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Boredom

Before items are abandoned, the gap between consumptions of that
item grows in both “index” and “real” time.

YouTube Lastfm

6. - - data (index) 6 - - data (index)
= - # - data (time) = - # - data (time) e
% 5| —e— model (index) % 5| —e— model (index) ’
2 | —m— model (time) 2 | —m— model (time)
Z4 Z4 _a
& &
23 =23
g, g,
el el
(0] (0]
1S 1S

0 0
Second Third Second to last Last Second Third Second to last Last
Position of gap in sequence Position of gap in sequence
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Boredom

Consider a simplified choice model with uniform time
and item quality scores.

Theorem: Suppose that the weights w are monotonically
decreasing. Then:

1. E[j"gap] < E[(j — 1)*gap]

2. E[j"gapl|last occurrence] > E[j" gap]

3. Vj> Jy: E[j""gap|jt" is last] > E[j — 1% gap|j*" is last]
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Parsimonious model

10° ey
« Recency weights can 10" | | e )
be compressed L 107 f ]
3 10° | y
« Good fit: power law * 10 . :
with exponential 10 F 1
. -6 TR BRI BT BN VT
Cutoff: 0 10 100 10° 10°  10%

Position

Pr[z] o« (z 4+ ¢) %e%®
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Parsimonious model

Dataset Recency@50 PLECO

BRIGHTKITE 0.654 0.926
GPLUS 0.710 0.987
MAPCLICKS 0.668 0.921
WIKICLICKS 0.971 0.999
YOUTUBE 0.917 0.997

Recency model can be expressed using just three
parameters!
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Satiation
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No evidence of satiation in online user behavior
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Additivity assumption
Very small deviations from additive behavior

Mildly superadditive as popular items chosen

wi 10 S '-Ifig

), ] N i 1.2

w(3, j) 8 ] 12

6 4 H0.4

o . = 4 0.0
Getting addicted: 4F 1H-0.4
superadditive? ot i I 8
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Discrete Choice Chierichetti, Kumar, Tomkins



Tipping behavior

In the recency model, tipping occurs if after a certain time, only one item is
repeatedly consumed

Assume weights are decreasing: w(p) = w(p+1)
Claim. If sum of weights is finite, then tipping occurs with constant probability

Claim. If the sum of weights is infinite, then tipping does not occur
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Conclusions

We studied a number of algorithmic problems related to discrete choice

We believe this class of problems is theoretically important and relevant in
practice
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Some open questions

Can one reconstruct, with poly(n) max-sample queries, the winning
probabilities of all slates with o(1) Z-error?

What is the relative power of the max-sample / max-dist oracles?

How well can one approximate general mixtures of MNLs with the two
oracles?

|[dentifiability of non-uniform 2-MNLs, k-MNLs

Discrete Choice Chierichetti, Kumar, Tomkins



