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Background
● Discrete choice
● Random utility models (RUMs)
● Definitions, equivalence properties
● Multinomial logit (MNL) models; BTL
● Independence of irrelevant attributes
● PCMC, Nested logit models, k-RUMS
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Discrete choice

User

�� ����
Where shall we eat tonight?
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Discrete choice
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Discrete choice

User

�� ����
How do we get there?
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Discrete choice: Factors

● Quality 
● Distance
● Price 
● Cuisine type 
● Time since last 

visit
● Companion 

opinion
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Discrete choice: Repeat consumption

User

�� ����
Each day …

🧴🎧☕🛒🔎🪥 …

Most items we consume 
are not for the first time
● Sometimes go for 

reliability
● Sometimes go for 

novelty
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Goal of discrete choice

User

�� ����

Explain rational choice among discrete alternatives

Slate
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Discrete choice as a field of study
● Important model in behavioral economics, social 

sciences, machine learning, etc
● Widely used in studying consumer demand in practice
● Especially important in online/interactive settings (search 

results, product alternatives, recommendations, etc)

● Daniel McFadden, 2000 Economics Nobel Prize

“for his development of theory and methods for analyzing 
discrete choice”

https://en.wikipedia.org/wiki/Discrete_Choice_Modelling


Discrete Choice                                                                                                                                            Chierichetti, Kumar, Tomkins

Modeling discrete choice

Universe = [n] = {1, …, n}

Slates = non-empty subsets of [n]

Model.  A function f: slate → distribution over slate

● Captures uncertainty
● Can codify rational behavior

S T

[n]

S and T highly overlap ⟹ f(S) and f(T) may be related
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Example

User

�� ����Slate
0.7 0.1 0.2
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Random utility model (RUM) 
[Marschak 1960]

● There is a distribution U on utility vectors { [n] → ℝ  }
● Each user is drawn from U and will choose highest utility 

option in a slate 
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Utility vectors
Given a universe of n items, the user samples a utility vector 
(u1, ..., un) from a joint continuous distribution U

🚇🛴 
🚲🚍🚖🛵1.3   2.4     0.2   1.0   3.0   4.3

Given a slate S, the user will select the slate 
item with largest perceived utility

S = { 🚇, 🚍, 🚖 
}

�� 
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RUMs

● Continuous distribution U on utility vectors { [n] → ℝ  }
○ For simplicity, assume no ties

● Each user is (u1, ..., un) ~ U iid and will choose highest utility 
option in a slate T (ie, argmaxt∈T ut)

● Highly overlapping subsets will be related
○ Eg, Pr[j | T] ≥ Pr[j | T ∪ {i}] for j ∈ T and i ∉ T

● Regularity: Pr[j | T] ≥ Pr[j | S], when S ⊇ T
● Rational behavior ⟹ order of utilities determines choice
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Permutation process

● There is a distribution P on permutations  { [n] ↔ [n] }
● Each user is a permutation π ~ P and will choose highest 

ranked option, according to π, in a slate
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Permutations
Given a universe of n items, the user samples a permutation 
π = (ui1 > ui2 > ⋯ > uin) from a distribution P

🛵>🚖>🛴>🚇>🚍>
🚲
Given a slate S, the user will select the item with 
largest rank in π

S = { 

🚖>🚇>🚍}
�� 



Discrete Choice                                                                                                                                            Chierichetti, Kumar, Tomkins

Equivalence

● Given a utility vector u, we can sort the items by utility, 
to obtain an equivalent permutation π

🚇🛴 
🚲🚍🚖🛵1.3   2.4     0.2   1.0   3.0   4.3

🛵>🚖>🛴>🚇>🚍>
🚲
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Equivalence

● Given a utility vector u, we can sort the items by utility, 
to obtain an equivalent permutation π

● Given a permutation π, we can assign utility (n - i) to the 
item having rank i in π 

🛵>🚖>🛴>🚇>🚍>
🚲6          5          4           3          2           1
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Equivalence

We can transform a RUM defined by a distribution U over 
utility vector into an equivalent RUM defined by a distribution 
over permutations P and vice versa

● Given a utility vector u, we can sort the items by utility, 
to obtain an equivalent permutation π

● Given a permutation π, we can assign utility (n - i) to the 
item having rank i in π 
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Permutations to winners

30%

10%

40%

20%

\

A > B > C > D

B > C > A > D

B > A > C > D

B > A > D > C

DAB(A) = 3/10

DAC(A) = 9/10

DABCD(C) = 0
…
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Assume a universe [n] and a distribution on the permutations 
of [n]

Given a slate S ⊆ [n], let DS(i) for i ∈ S be the probability that 
a random permutation (ie, user) prefers i to every other 
element of S

Winner distribution
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Winner distribution (Eg)

60%

40%

Random
user

40% 60%

🚍 > 🚇 > 
🚖
🚖 > 🚇 > 
🚍

Slate = { 🚇, 🚍 
}
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Winner distribution (Eg)

60%

40%

Random
user

40% 60%

🚍 > 🚇 > 
🚖
🚖 > 🚇 > 
🚍

Slate = { 🚇, 🚖, 🚍 
} 0%



Discrete Choice                                                                                                                                            Chierichetti, Kumar, Tomkins

Oracles for RUMs

Given a slate S

○ max-sample(S): picks an unknown random permutation 
π, and returns the element of S with maximum rank in π 

○ max-dist(S): returns DS(i), for all i ∈ S, ie, the probability 
that i wins in S given a random permutation
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● max-sample(S):  ⟨ 🚇 > 🚖 > 🚍 ⟩; return 🚇
● max-dist(S): return DS = ⟨ 0.2, 0.05, 0.75 ⟩ 

Oracles for RUMs (Eg)

S = { 🚇, 🚖, 🚍 
}
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Multinomial logit (MNL) 
[Bradley & Terry 1952; Luce 1959]

Classical special case of RUMs

Model. Given a universe [n] of items and a positive weight aj 
for each item j ∈ [n]

For a subset (slate) S of [n], the probability of choosing j in 
slate S is proportional to wj 

Pr[choosing j from S] = wj / ∑k∈S  wk
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Permutations from an MNL (Eg)

2 3

4 1

2 5

2

3

4
1

2

5

Random
permutation

Pick the next item in the permutation at random between 
the remaining ones, with probability proportional to its 
weight

3/17
5/14
2/9
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MNLs = RUMs + specific noise

Assume each item j has an absolute “true quality” Vj

Model. Each user deviates from this by random noise εj and so 
the actual utility of user for item j is uj = Vj + εj

Pr[user chooses j] = Pr[∀k ≠  j,  Vj + εj > Vk + εk]

Suppose εj’s are iid
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A convenient choice of noise

Suppose Pr[ε] = exp(-(ε + exp(-ε))
● Gumbel distribution 
● Models the distribution of the maximum of samples 

(from various distributions)

Pr[user chooses j], by simple integration,   

= Pr[j = argmax {Vk + εk}] ∝ exp(Vj)

⇒ Pr[user chooses j from S] = exp(Vj) / ∑k∈S exp(Vk) 

Multinomial regression gives identical choice probabilities to 
RUM with Gumbel-distributed noise!
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Including features in MNL

We can make Vj to depend on item features or user features or 
both

Suppose Vj = ⟨yj, x⟩, where yj 
is item feature for item j and 
x is the user feature

Multinomial logit
Pr[user chooses j from S] = 
exp(⟨yj, x⟩) / ∑k∈S exp(⟨yk, x⟩) 

Suppose Vj = ⟨y, xj ⟩, where y 
is feature of an item and xj  
is user feature for item j

Choice MNL
Pr[user chooses j from S] = 
exp(⟨y, xj⟩) / ∑k∈S exp(⟨y, xk⟩) 
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MNLs in machine learning

MNLs, or softmax layers, are common in ML

● Multi-class problems
● Dual encoders
● Mixture of MNLs are sometimes used

Pr[output class j] = exp(⟨βj,input⟩) / ∑k exp(⟨βk,input⟩) 
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Limitations of MNL
Assume positive weight wa for each item a ∈ 
[n]

Options: {a, b}: Pr[a | a or b] = wa /(wa + wb )

Options: {a, b, c}: Pr[a | a or b] = wa /(wa + wb )
Relative likelihood of a versus b does not depend on 
other alternatives: Choices are Independent of Irrelevant 
Alternatives (IIA), aka Luce’s Axiom of Choice

MNL ≣ choice with IIA

MNLs are insufficient to capture common settings
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Luce’s axiom of choice

Pr[a | a or b] does not change when c is added to slate

�� 🚲 ��
“Menu effect” or “decoy effect” in practice

���� ������
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Stationary rational choice might not 
follow IIA

🚍 🚲
User Type 1: 50% 5 100
User Type 2: 25% 100 1
User Type 3: 25% 75 1

50/50 split🚍🚲
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Stationary rational choice might not 
follow IIA

🚍 🚲 🚎
User Type 1: 50% 5 100 15
User Type 2: 25% 100 1 75
User Type 3: 25% 75 1 100

25/50/25 split

50/50 split🚍🚲
🚍🚲 
🚎
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Mixture of MNLs
Modeling distinct populations with simple MNL is the 
problem

Allowing a mixture of population, with a population-specific 
MNL, can solve the problem

● New items need not cannibalize equally from all other 
items

● Eg, a new bus route affects only bus riders
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2-MNL mixture
Given a universe [n] of items and positive weights uj and vj 
for each item j ∈ [n]

For a slate S, the probability of choosing j ∈ S equals

 γ ∙ uj  / ∑k∈S  uk  + (1 – γ) ∙ vj  / ∑k∈S  vk 

Uniform mixture when γ = 1/2

MNL mixtures can approximate arbitrarily well any 
RUM [McFadden & Train 2000]
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The story so far

RUM
● General approach to 

characterize choice
● Harder to interpret (and learn)
MNL
● Captures only RUMs with IIA
● Easy and fast to optimize
● Easy to interpret

Choice
models

RUMs

1-MNLs

k-MNLs
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A brief history of IIA
R Duncan Luce formulated “Axiom of Choice” (1959)

● Arrow (1951) proved the Impossibility Theorem showing 
that IIA was one of several mutually incompatible 
properties of a social choice function

● Bradley and Terry (1952) introduced a pairwise 
comparison choice model 
○ Studied by Zermelo (1920s)
○ Often called the BTL model

Later, many authors, notably McFadden, completed the story 
extending BTL to MNL
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What if IIA is violated?
Situation is much more complex….

Most powerful models are:
● Mathematically complex
● Computationally intractable
● Sophisticated external representations of dependence
Practitioners with non-IIA data typically use “Nested Logit”
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Problems with IIA revisited

0.1 0.9
Likelihood(Bus) / Likelihood(Bike) = 0.9 / 0.1

0.450.45

                                                                          0.45 / 0.1

���� ��

0.50.5

0.1 0.9

�� ��
��
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Nested logit

Modeling the decision as a 
tree is a nested, sequential, or 
hierarchical logit model. It 
looks like a sequence of 
multinomial logits. [McFadden 
78]

0.50.5

0.1 0.9

�� ��
��
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Nested logit: Connections to RUM & MNL
Model. Nested Logit (NL) selects an item by traversing tree 
from root, applying MNL at each level
Casting NL as RUM:

• Utility of each item is a priori fixed  
• Each user’s utilities are perturbed 
• Perturbation is drawn from specific joint distribution

Power of NL: 
• Pros: Captures hierarchical cannibalization cleanly; 

generalizes MNL
• Cons: Choices must separate cleanly into nests
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MNL in graphs

Model.  Define a Markov chain given a graph where each 
node u has score su > 0

● Transition according to MNL choice

 Muv = sv / ∑w∈neighbors(u) sw
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MNL in graphs (Eg)
Transition probability proportional 
to the score of the node

○ Eg, Mac = sc / (sb + sc + sd) a

b

ca

b

d

c

a

b

d

c

a’

sb =100

sc =10

sd =1

Transition probabilities are 
context dependent 

○ Eg, Mac = 0.01, Ma’c = 0.91
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Pairwise choice Markov chain 
[Ragain & Ugander 2016]

Given pairwise winning matrix M and slate S

● Construct MS by restricting M to rows and columns of S
● Make MS stochastic
● Compute stationary πS of MS to yield choice probability 

πS(i) for item i

● Can represent BTL
● Not a RUM in general

○ Can violate regularity
● Has other nice properties

S

M
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k-RUMS

30%

10%

A > B > C > D

B > C > A > D

There are only a few types of users
● Support of the permutation 

distribution is small
● Pragmatic  
● Computationally helpful
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Computational problems in RUMs (Eg)

Goal.  Learn DS, for all S ⊆ 
[n]

How to learn the probability 
distributions governing the 
choice in a generic slate?

Assume oracle access to 
RUMs

Assuming large slates is less 
realistic

Quickly learning the 
winning distributions of the 
slates is important for 
applications

… but there are 
exponentially many slates!



Discrete Choice                                                                                                                                            Chierichetti, Kumar, Tomkins

Computational problems in RUMs (Eg)

Goal.  Given pairwise 
winning matrix, find the 
closest RUM

Head-to-head contests, 
online experiences 
comparing one item and an 
alternative
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Algorithms

● Representations
● Compression and coresets
● Fitting
● Learning
● Special cases of RUMs
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RUM Representations

● How to represent RUMs?

● How do different representations change the computational 
costs of various RUM tasks (e.g., fitting, learning)?
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Utility Vectors
● Given the full set of n items, the user samples a utility 

vector (u1 , u2 , ..., un ) from a joint continuous distribution U
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Utility Vectors

1.3    2.4    0.2    1.0     3.0      4.3

● Given the full set of n items, the user samples a utility 
vector (u1 , u2 , ..., un ) from a joint continuous distribution U
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Utility Vectors

1.3    2.4    0.2    1.0     3.0      4.3

● Given the full set of n items, the user samples a utility 
vector (u1 , u2 , ..., un ) from a joint continuous distribution U

● Given a slate S, the user will select the slate item with 
largest perceived utility
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Utility Vectors

1.3    2.4    0.2    1.0     3.0      4.3

S = {    ,    ,    }
1.3    2.4    0.2

● Given the full set of n items, the user samples a utility 
vector (u1 , u2 , ..., un ) from a joint continuous distribution U

● Given a slate S, the user will select the slate item with 
largest perceived utility
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● Given the full set of n items, the user samples a utility 
vector (u1 , u2 , ..., un ) from a joint continuous distribution U

● Given a slate S, the user will select the slate item with 
largest perceived utility

Utility Vectors

1.3    2.4    0.2    1.0     3.0      4.3

S = {    ,    ,    }
1.3    2.4    0.2
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Permutations

>      >      >        >       >     

● Given the full set of n items, the user samples a 
permutation π = (ui1 > ui2 > … > uin ) from a distribution P

● Given a slate S, the user will select the item with largest 
rank in π
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Permutations

>      >      >        >       >     S = {        ,                ,       }>                        >             

● Given the full set of n items, the user samples a 
permutation π = (ui1 > ui2 > … > uin ) from a distribution P

● Given a slate S, the user will select the item with largest 
rank in π
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Permutations

>      >      >        >       >     S = {        ,                ,       }>                        >             

● Given the full set of n items, the user samples a 
permutation π = (ui1 > ui2 > … > uin ) from a distribution P

● Given a slate S, the user will select the item with largest 
rank in π
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Equivalence

6.3    5.1   3.2    0.5    0.2      0.1

● As we mentioned, the two models are equivalent:

○ given a utility vector U, we can sort the items by utility, to 
obtain an equivalent permutation π

○ given a permutation π, we can assign utility n - i to the item 
having rank i in π

● This way, we can transform a RUM defined by a distribution U 
over utility vector into an equivalent RUM defined by a 
distribution over permutations P, and viceversa.
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Equivalence
● As we mentioned, the two models are equivalent:

○ given a utility vector U, we can sort the items by utility, to 
obtain an equivalent permutation π

○ given a permutation π, we can assign utility n - i to the item 
having rank i in π

● This way, we can transform a RUM defined by a distribution U 
over utility vector into an equivalent RUM defined by a 
distribution over permutations P, and viceversa.>      >      >        >       >     

6.3    5.1   3.2    0.5    0.2      0.1
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Equivalence
● As we mentioned, the two models are equivalent:

○ given a utility vector U, we can sort the items by utility, to 
obtain an equivalent permutation π

○ given a permutation π, we can assign utility n - i to the item 
having rank i in π

● This way, we can transform a RUM defined by a distribution U 
over utility vector into an equivalent RUM defined by a 
distribution over permutations P, and viceversa.
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● As we mentioned, the two models are equivalent:

○ given a utility vector U, we can sort the items by utility, to 
obtain an equivalent permutation π

○ given a permutation π, we can assign utility n - i to the item 
having rank i in π

● This way, we can transform a RUM defined by a distribution U 
over utility vector into an equivalent RUM defined by a 
distribution over permutations P, and viceversa.

Equivalence

>      >      >        >       >     
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● As we mentioned, the two models are equivalent:

○ given a utility vector U, we can sort the items by utility, to 
obtain an equivalent permutation π

○ given a permutation π, we can assign utility n - i to the item 
having rank i in π

● This way, we can transform a RUM defined by a distribution U 
over utility vector into an equivalent RUM defined by a 
distribution over permutations P, and viceversa.

Equivalence

>      >      >        >       >     

5       4       3       2       1         0
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Equivalence
● As we mentioned, the two models are equivalent:

○ given a utility vector U, we can sort the items by utility, to 
obtain an equivalent permutation π

○ given a permutation π, we can assign utility n - i to the item 
having rank i in π

● This way, we can transform a RUM defined by a distribution U 
over utility vectors into an equivalent RUM defined by a 
distribution over permutations P, and vice versa.
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Representations
● Is any of these two representations preferable for the tasks 

we are interested in, e.g.,

1. storing/sketching a RUM,

2. fitting a RUM, or

3. learning a RUM?
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● There are infinitely many utility vectors - a distribution over 
utility vectors can be impossible to store.

Storing a RUM
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Storing a RUM
● There are infinitely many utility vectors - a distribution over 

utility vectors can be impossible to store.

● But there are only finitely many permutations… thus, we can 
perfectly represent a RUM with n! many scalars

π1 = n > n - 1 > ... > 2 > 1
π2 = n > n - 1 > ... > 1 > 2

πn! = 1 > 2 > ... > n - 1 > n
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● There are infinitely many utility vectors - a distribution over 
utility vectors can be impossible to store.

● But there are only finitely many permutations… thus, we can 
perfectly represent a RUM with n! many scalars

Storing a RUM

π1 = n > n - 1 > ... > 2 > 1
π2 = n > n - 1 > ... > 1 > 2

πn! = 1 > 2 > ... > n - 1 > n

p(π1)
p(π2)

p(πn!)
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Storing a RUM
● There are infinitely many utility vectors - a distribution over 

utility vectors can be impossible to store.

● But there are only finitely many permutations… thus, we can 
perfectly represent a RUM with n! many scalars
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Storing a RUM
● There are infinitely many utility vectors - a distribution over 

utility vectors can be impossible to store.

● But there are only finitely many permutations… thus, we can 
perfectly represent a RUM with n! many scalars

● Can this representation be shrunk?
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Dimensionality
● Since RUMs can be represented as distributions over 

permutations, they are part of a n!-dimensional affine space.

● On the other hand, there are 2n-1 winner distributions, each of which is 
part of an affine space with no more than n dimensions — that is, the size of 
the input (the max-dist class                           ) is bounded by O(n 2n)

● Can a RUM be stored more efficiently?
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● Since RUMs can be represented as distributions over 
permutations, they are part of a n!-dimensional affine space.

● On the other hand, there are 2n-1 winner distributions, each of 
which is part of an affine space with no more than n 
dimensions — that is, the size of the input (the max-dist class
                               ) is bounded by O(n 2n)

● Can a RUM be stored more efficiently?{     ,      }, {      ,      }, …, {      ,       ,      },...

Dimensionality
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Dimensionality
● Since RUMs can be represented as distributions over 
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which is part of an affine space with no more than n 
dimensions — that is, the size of the input (the max-dist class
                               ) is bounded by O(n 2n)

● Can a RUM be stored more efficiently?{     ,      }, {      ,      }, …, {      ,       ,      },...
p1       p2 



Discrete Choice                                                                                                                                            Chierichetti, Kumar, Tomkins

Dimensionality
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permutations, they are part of a n!-dimensional affine space.
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                               ) is bounded by O(n 2n)

● Can a RUM be stored more efficiently?{     ,      }, {      ,      }, …, {      ,       ,      },...
q1       q2 



Discrete Choice                                                                                                                                            Chierichetti, Kumar, Tomkins

Dimensionality
● Since RUMs can be represented as distributions over 

permutations, they are part of a n!-dimensional affine space.

● On the other hand, there are 2n-1 winner distributions, each of 
which is part of an affine space with no more than n 
dimensions — that is, the size of the input (the max-dist class
                               ) is bounded by O(n 2n)

● Can a RUM be stored more efficiently?{     ,      }, {      ,      }, …, {      ,       ,      },...
r1         r2             r3     
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● Since RUMs can be represented as distributions over 
permutations, they are part of a n!-dimensional affine space.

● On the other hand, there are 2n-1 winner distributions, each of 
which is part of an affine space with no more than n 
dimensions — that is, the number of dimensions of the input 
affine space (the max-dist class                                ) is bounded 
by O(n 2n)

● Can RUMs be store more efficiently?

● Can a RUM be stored more efficiently?

Dimensionality
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permutations, they are part of a n!-dimensional affine space.

● On the other hand, there are 2n-1 winner distributions, each of 
which is part of an affine space with no more than n 
dimensions — that is, the number of dimensions of the input 
affine space (the max-dist class                                ) is bounded 
by O(n 2n)

● Can RUMs be store more efficiently?

● Can a RUM be stored more efficiently?

Dimensionality
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● Let H be a set of RUM items, and s an item not in H,

● let           be the probability that a random RUM permutation 
has the items of H, in any order, as its |H| top-most items, and 
it has s in position |H|+1.

Head Distributions
H s
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● Let H be a set of RUM items, and s an item not in H,

● let           be the probability that a random RUM permutation 
has the items of H, in any order, as its |H| top-most items, and 
it has s in position |H|+1.

H s

Head Distributions

The Head Distribution of item s is, then,           , that is, 
the probability distribution over the subset of items 
that beat s in a random permutation (the head of s)
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● The Head Distributions can answer max-dist queries:
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Head Distributions

● The Head Distributions can be learned using the max-dist 
oracle.

● Querying          gives us  

● Moreover, by induction on |H|,
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oracle.
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● As we said,
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● The Head Distributions can be learned using the max-dist 
oracle.

● Querying          gives us  

● As we said,                                         . Thus,

Head Distributions
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Dimensionality
● Head Distributions can then represent any RUM exactly, and 

form an affine space of O(n 2n) dimensions, that is, a space
○ much smaller than that of permutations (which had n! 

dimensions), and
○ having the same dimensionality of the input (the max-dist 

class                           ).

● While this is still very large, it cannot be improved if we want 
to exactly represent a RUM.
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Dimensionality
● Head Distributions can then represent any RUM exactly, and 

form an affine space of O(n 2n) dimensions, that is, a space
○ much smaller than that of permutations (which had n! 

dimensions), and
○ having the same dimensionality of the input (the max-dist 

class                                ).

● While this is still very large, it cannot be improved if we want 
to exactly represent a RUM.
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What is the Smallest Model for 
approximately representing a RUM?

Can we do lossy compression?
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Approximate Representation
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Approximate Representation
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Let D be a RUM model on [n]
Let DS be the winner distribution of D on S

Model A ε-approximates D if, for each S ⊆ [n], |DS - AS|TV ≤ ε

Sketching a RUM
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Let DS be the winner distribution of D on S

Model A ε-approximates D if, for each S ⊆ [n], |DS - AS|TV ≤ ε

|DS - AS |TV  is the maximum gap between event probabilities in DS and AS

Total Variation Distance

Sketching a RUM

|(0.45, 0.25, 0.30) - (0.46, 0.23, 0.31)|TV = (0.01 + 0.02 + 0.01) / 2 = 0.02
1      2       3           1       2       3
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Consider the event: “The winner in {1,2,3} is 1 or 3”
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Let D be a RUM model on [n]
Let DS be the winner distribution of D on S

Model A ε-approximates D if, for each S ⊆ [n], |DS - AS|TV ≤ ε

|DS - AS |TV  is the maximum gap between event probabilities in DS and AS

Total Variation Distance

Sketching a RUM

|(0.45, 0.25, 0.30) - (0.46, 0.23, 0.31)|TV = (0.01 + 0.02 + 0.01) / 2 = 0.02
1      2       3           1       2       3

Consider the event: “The winner in {1,2,3} is 1 or 3”
This event has probability 0.75 in D, and 0.77 in A
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Let D be a RUM model on [n]
Let DS be the winner distribution of D on S

Model A ε-approximates D if, for each S ⊆ [n], |DS - AS|TV ≤ ε

|DS - AS |TV  is the maximum gap between event probabilities in DS and AS

Total Variation Distance

Sketching a RUM

|(0.45, 0.25, 0.30) - (0.46, 0.23, 0.31)|TV = (0.01 + 0.02 + 0.01) / 2 = 0.02
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Let D be a RUM model on [n]
Let DS be the winner distribution of D on S

Model A ε-approximates D if, for each S ⊆ [n], |DS - AS|TV ≤ ε

If we can find a model A,

○ representable with few bits, and

○ such that A ε-approximates D, 

then we can efficiently sketch the RUM D to within Total Variation 
error ε

Sketching a RUM
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● [CKT21] proves that each RUM D on [n] can be sketched to 

within TV error ε, using O(ε-2 n2 log n) bits.
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Repeatedly sample permutations from D
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● [CKT21] proves that each RUM D on [n] can be sketched to 
within TV error ε, using O(ε-2 n2 log n) bits.

Sketching a RUM

Repeatedly sample permutations from D
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● [CKT21] proves that each RUM D on [n] can be sketched to 
within TV error ε, using O(ε-2 n2 log n) bits.

Sketching a RUM

Repeatedly sample permutations from D

1

2

3

ε-2 n
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● [CKT21] proves that each RUM D on [n] can be sketched to 
within TV error ε, using O(ε-2 n2 log n) bits.

Sketching a RUM

Repeatedly sample permutations from D

1

2

3

ε-2 n

D'

Let D' be the RUM 
obtained by imposing the 
uniform distribution on the 

sampled permutations
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● [CKT21] proves that each RUM D on [n] can be sketched to 
within TV error ε, using O(ε-2 n2 log n) bits.

Sketching a RUM

Repeatedly sample permutations from D

1

2

3

ε-2 n

D'

Let D' be the RUM 
obtained by imposing the 
uniform distribution on the 

sampled permutations

THM: D' sketches D to
an ε-TV error, w.p. 1-o(1) 
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● [CKT21] proves that each RUM D on [n] can be sketched to 
within TV error ε, using O(ε-2 n2 log n) bits.

Sketching a RUM

Repeatedly sample permutations from D

1

2

3

ε-2 n

D'

Let D' be the RUM 
obtained by imposing the 
uniform distribution on the 

sampled permutations
THM: D' can be 

represented with
O(ε-2 n2 log n) bits

THM: D' sketches D to
an ε-TV error, w.p. 1-o(1) 
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Sketching a RUM
● [CKT21] proves that each RUM D on [n] can be sketched to 

within TV error ε, using O(ε-2 n2 log n) bits.

● [CKT21] also proves that one cannot sketch the generic RUM 
D on [n] to within TV error 0.01, using o(n2) bits.
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ε

Number of Permutations in the Approximating Model

Size of Model vs Approximation Error

Sushi 3A Dataset Approximation

Maximum TV error over Slates
Average TV error over Slates
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● RUMs are powerful choice models, whose perfect 
representations require an exponential number of bits,

● but if one allows a tiny error, one can represent them 
efficiently with a number of bits bounded between
Ω(n2) and O(n2 log n)

Head
Distributions

Storing a RUM

Distribution
over Utility Vectors

Distribution
over Permutations

Unbounded size n! - 1 scalars Θ(n 2n) scalars

Exact Representations
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● RUMs are powerful choice models, whose perfect 
representations require an exponential number of bits,

● but if one allows a tiny error, one can represent them 
efficiently with a number of bits bounded between
Ω(n2) and O(n2 log n)

Head
Distributions

Storing a RUM

Distribution
over Utility Vectors

Distribution
over Permutations

Light Distribution
over Permutations

Unbounded size n! - 1 scalars O(n2 log n) bitsΘ(n 2n) scalars

Exact Representations ϵ-Error
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Fitting a RUM
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● In most practical applications, we do not observe the 
permutations, nor the utilities, of a RUM. We only observe  the 
probability distributions over the winners of the slates.
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● In most practical applications, we do not observe the 
permutations, nor the utilities, of a RUM. We only observe the 
probability distributions over the winners of the slates.
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Fitting a RUM
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Fitting a RUM
● In most practical applications, we do not observe the 

permutations, nor the utilities, of a RUM. We only observe the 
probability distributions over the winners of the slates.

● Recall that              is the probability that item
i gets selected as the winner of slate S, for 

● How to fit a RUM to these observed
"winner distributions"?

      {    ,    ,    }

      {    ,    ,    }

{    ,    }

{    ,    }
0.05 0.95

0.6 0.4

0.03 0.92 0.05

0.05 0.9 0.05

...
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● Let       be the set of permutations over [n] = {1, 2, ..., n}.

● Given a permutation               , and a slate                , let  
           be the topmost item of S in π.

Fitting a RUM
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Fitting a RUM

If π = 3 > 1 > 2 and S = {1, 2}, then π(S) = 1

● Let       be the set of permutations over [n] = {1, 2, ..., n}.

● Given a permutation               , and a slate                , let  
           be the topmost item of S in π.
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● Let       be the set of permutations over [n] = {1, 2, ..., n}.

● Given a permutation               , and a slate                , let  
           be the topmost item of S in π.

● If there exists a RUM representing the winner distributions                           
such a RUM can be directly obtained by solving the following 
LP:

Fitting a RUM
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Fitting a RUM
● This LP has n! many variables but it allows us to obtain a RUM 

compatible with the observed winner distributions in           
time.

● The existence of this LP (and of this finite fitting procedure) is 
another advantage of the combinatorial-based view of RUMs.
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Efficiency of Fitting
● The "input" contains Ω(n 2n) bits, thus a nO(n) algorithm (based 

on the permutation representation) is not too bad
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In fact, by using a similar LP based on the Head distributions, one 
can obtain a “polytime” (2O(n)) algorithm

● The "input" contains Ω(n 2n) bits, thus a nO(n) algorithm (based 
on the permutation representation) is not too bad
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Efficiency of Fitting
● The "input" contains Ω(n 2n) bits, thus a nO(n) algorithm (based 

on the permutation representation) is not too bad

One can also obtain the RUM "closest" to the input data, 
if no perfect RUM exists

In fact, by using a similar LP based on the Head distributions, one 
can obtain a “polytime” (2O(n)) algorithm
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Efficiency of Fitting
● The "input" contains Ω(n 2n) bits, thus a nO(n) algorithm (based 

on the permutation representation) is not too bad

● But, in many real-world situations, one does not have access 
to the winner distributions of all the slates but only to the 
winner distributions of slates of small size

● Can one obtain a polynomial-time fitting algorithm in that 
case?
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Pairwise Choices
● For simplicity, let us consider the case of slates of size 2.

{     ,      }D           (     ) = 0.1 
D           (     ) = 0.6
…

{     ,      }
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Pairwise Choices
● For simplicity, let us consider the case of slates of size 2.

● The input to the fitting problem is then a matrix

0.1 0.6

0.9 0.3

0.4 0.7

{     ,      }D           (     ) = 0.1 
D           (     ) = 0.6
…

{     ,      }
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Pairwise Choices

0.1 0.6

0.9 0.3

0.4 0.7

● Many choice models have been proposed for 
representing tournament matrices:
○ Blade-Chest — Chen & Joachims, WSDM '16
○ Majority Vote — Makhijani & Ugander, WWW '19
○ Two-level model — Veerathu & Rajkumar, NeurIPS '21
○ …

● For simplicity, let us consider the case of slates of size 2.

● The input to the fitting problem is then a matrix
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>      >

Pairwise Choices

0.1 0.6

0.9 0.3

0.4 0.7

>      >

>      >

...

p1

p2

pk

Fitting

● For simplicity, let us consider the case of slates of size 2.

● The input to the fitting problem is then a matrix, and its output 
is a RUM
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>      >

Pairwise Choices

0.1 0.6

0.9 0.3

0.4 0.7

>      >

>      >

...

p1

p2

pk

0.1 0.6

0.9 0.3

0.4 0.7

Perfect FitFitting

● For simplicity, let us consider the case of slates of size 2.

● The input to the fitting problem is then a matrix, and its output 
is a RUM
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Pairwise Choices
● For simplicity, let us consider the case of slates of size 2.

● The input to the fitting problem is then a matrix, and its output 
is a RUM

>      >0.12 0.6

0.9 0.29

0.4 0.7

>      >

>      >

...

p1

p2

pk

0.11 0.59

0.89 0.28

0.41 0.72

Smallest "Error" FitFitting
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The LP has exponentially many variables!

● A Linear Program for minimizing the average TV-error:

Pairwise Choices
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Pairwise Choices
● The Linear Program for minimizing the average TV-error has 

exponentially many variables, but only polynomially many 
constraints.

● Its dual then contains polynomially many variables.
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Pairwise Choices
● The Linear Program for minimizing the average TV-error has 

exponentially many variables, but only polynomially many 
constraints.

● Its dual then contains polynomially many variables.

Primal LP     min c x   under A x ≥ b
Dual    LP      max b y  under y A ≤ c

Strong Duality Theorem: c x* = b y*
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Pairwise Choices
● The Linear Program for minimizing the average TV-error has 

exponentially many variables, but only polynomially many 
constraints.

● Its dual then contains polynomially many variables.

Primal LP     min c x   under A x ≥ b
Dual    LP      max b y  under y A ≤ c

Strong Duality Theorem: c x* = b y*
Primal:

- 2 variables per pair of items
- 1 variable per permutation
- 3 constraints per pair of items
- 1 extra constraint

Dual:
- 2 constraints per pair of items
- 1 constraint per permutation
- 3 variables per pair of items
- 1 extra variable
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Pairwise Choices
● The Linear Program for minimizing the average TV-error has 

exponentially many variables, but only polynomially many 
constraints.

● Its dual then contains polynomially many variables.

Primal LP     min c x   under A x ≥ b
Dual    LP      max b y  under y A ≤ c

Strong Duality Theorem: c x* = b y*
Primal:

- 2 variables per pair of items
- 1 variable per permutation
- 3 constraints per pair of items
- 1 extra constraint

Dual:
- 2 constraints per pair of items
- 1 constraint per permutation
- 3 variables per pair of items
- 1 extra variable

O(n!) vars
O(n2) constrs

O(n!) constrs
O(n2) vars
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Pairwise Choices
● The Linear Program for minimizing the average TV-error has 

exponentially many variables, but only polynomially many 
constraints.

● Its dual then contains polynomially many variables.

Primal LP     min c x   under A x ≥ b
Dual    LP      max b y  under y A ≤ c

Strong Duality Theorem: c x* = b y*
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Pairwise Choices
● The Linear Program for minimizing the average TV-error has 

exponentially many variables, but only polynomially many 
constraints.

● Its dual then contains polynomially many variables.

● By means of the Ellipsoid method, if one could
determine an unsatisfied dual constraint with a given solution, 
one would be able to optimize the primal and the dual - and, 
thus, find an optimal RUM.
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Pairwise Choices
● The Linear Program for minimizing the average TV-error has 

exponentially many variables, but only polynomially many 
constraints.

● Its dual then contains polynomially many variables.

● By means of the Ellipsoid method, if one could
solve the dual Separation Oracle Problem,
one would be able to optimize the primal and the dual - and, 
thus, find an optimal RUM.
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Separation Oracle
● [ACKPT] observe that the separation oracle problem for the 

dual of the Pairwise RUM LP is equivalent to the Weighted 
Minimum Feedback Arc Set (WMinFAS) problem:

○ sort the vertices of a weighted directed graph, with 
weights bounded in [0,1], so that the total weight of the 
arcs directed left-to-right is minimized.
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Separation Oracle
● [ACKPT] observe that the separation oracle problem for the 

dual of the Pairwise RUM LP is equivalent to the Weighted 
Minimum Feedback Arc Set (WMinFAS) problem:

○ sort the vertices of a weighted directed graph, with 
weights bounded in [0,1], so that the total weight of the 
arcs directed left-to-right is minimized.
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Separation Oracle
● [ACKPT] observe that the separation oracle problem for the 

dual of the Pairwise RUM LP is equivalent to the Weighted 
Minimum Feedback Arc Set (WMinFAS) problem:

○ sort the vertices of a weighted directed graph, with 
weights bounded in [0,1], so that the total weight of the 
arcs directed left-to-right is minimized.

D, C, A, B 
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● [ACKPT] observe that the separation oracle problem for the 

dual of the Pairwise RUM LP is equivalent to the Weighted 
Minimum Feedback Arc Set (WMinFAS) problem:

○ sort the vertices of a weighted directed graph, with 
weights bounded in [0,1], so that the total weight of the 
arcs directed left-to-right is minimized.
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Separation Oracle
● [ACKPT] observe that the separation oracle problem for the 

dual of the Pairwise RUM LP is equivalent to the Weighted 
Minimum Feedback Arc Set (WMinFAS) problem:

○ sort the vertices of a weighted directed graph, with 
weights bounded in [0,1], so that the total weight of the 
arcs directed left-to-right is minimized.

D

A

CB B, D, A, C → 1

D, C, A, B → 31 1

11
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Separation Oracle
● [ACKPT] observe that the separation oracle problem for the 

dual of the Pairwise RUM LP is equivalent to the Weighted 
Minimum Feedback Arc Set (WMinFAS) problem:

○ sort the vertices of a weighted directed graph, with 
weights bounded in [0,1], so that the total weight of the 
arcs directed left-to-right is minimized.

● MinFAS can be additively approximated to O(ε n2) in 
polynomial time for any constant ε > 0 [Frieze,Kannan,'99]
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● [ACKPT] use this approximation algorithm for MinFAS to 
provide an Approximate Separation Oracle for the dual of the 
Pairwise LP.

● [ACKPT] show that the Ellipsoid method, with this ASO, 
returns a RUM whose average TV-error is smaller than the min 
possible average TV-error plus ε, for any constant ε > 0. 

Approximate Separation Oracle

Primal
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Approximate Separation Oracle
● [ACKPT] use this approximation algorithm for MinFAS to 

provide an Approximate Separation Oracle for the dual of the 
Pairwise LP.

● [ACKPT] show that the Ellipsoid method, with this ASO, 
returns a RUM whose average TV-error is smaller than the min 
possible average TV-error plus ε, for any constant ε > 0. 

Primal
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Ellipsoid Method
● The Ellipsoid method, while being a polynomial time 

algorithm, is inefficient in practice.

● [ACKPT] also show experimentally that the Approximate 
Separation can be used in practice, via a cutting-plane 
framework for solving pairwise-RUM fitting considered in 
previous work.
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Ellipsoid Method
● The Ellipsoid method, while being a polynomial time 

algorithm, is inefficient in practice.

● [ACKPT] also show experimentally that the Approximate 
Separation Oracle can be used in practice, via a cutting-plane 
framework, for solving pairwise-RUM fitting on many 
instances.
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Fitting RUMs on Small Slates
● [CGKPT] show that the "pairwise" approach of [ACKPT] can 

be made to work on slates of size at most k = O(1):

○ to obtain this result, they study a more general LP, and give 
an algorithm for a generalized version of MinFAS

● They show that one can find, in polynomial time, a RUM whose 
average TV-error is not larger than the minimum possible 
average TV-error plus ε, for any constant ε > 0. 
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● [CGKPT] show that the "pairwise" approach of [ACKPT] can 

be made to work on slates of size at most k = O(1):

○ to obtain this result, they study a more general LP, and give 
an algorithm for a generalized version of MinFAS

● They show that one can find, in polynomial time, a RUM whose 
average TV-error is not larger than the minimum possible 
average TV-error plus ε, for any constant ε > 0. 
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Fitting RUMs on Small Slates
● [CGKPT] show that the "pairwise" approach of [ACKPT] can 

be made to work on slates of size at most k = O(1):

○ to obtain this result, they study a more general LP, and give 
an algorithm for a generalized version of MinFAS

● They show that one can find, in polynomial time, a RUM whose 
average TV-error is not larger than the minimum possible 
average TV-error plus ε, for any constant ε > 0. 

Fitting so to minimize the Average Error over the
O(1)-slates, can be ε-approximated in polynomial time
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[ACKPT] show that the Approximate Separation Oracle for the Maximum Error 
over the 2-slates is NP-hard to approximate to within some additive constant

Fitting RUMs on Small Slates
● [CGKPT] show that the "pairwise" approach of [ACKPT] can 

be made to work on slates of size at most k = O(1):

○ to obtain this result, they study a more general LP, and give 
an algorithm for a generalized version of MinFAS

● They show that one can find, in polynomial time, a RUM whose 
average TV-error is not larger than the minimum possible 
average TV-error plus ε, for any constant ε > 0. 

Fitting so to minimize the Average Error over the
O(1)-slates, can be ε-approximated in polynomial time
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Learning a RUM
How well does a RUM fitted on slates of size at most k

generalize to larger slates?
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● Streaming Services can test their users on small slates

● It is impossible, though, to test the users on very large slates - 
very few users would parse through a list of, say, 1000 movies 
to find their preferred one

● Streaming Services would love to pinpoint "gems" in their 
catalogues - items that, say, a significant fraction of the users 
love more than any other item

● Can they fit a RUM to what they observe the users do on small slates, and then 
use the RUM to guess the gems?

Streaming Services

S = {    ,    ,    }

?
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● Streaming Services can test their users on small slates

● It is impossible, though, to test the users on very large slates - 
very few users would parse through a list of, say, 1000 movies 
to find their preferred one

● Streaming Services would love to pinpoint "gems" in their 
catalogues - items that, say, a significant fraction of the users 
love more than any other item

● Can they fit a RUM to what they observe the users do on small slates, and then 
use the RUM to guess the gems?
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catalogues - items that, say, a significant fraction of the users 
love more than any other item
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use the RUM to guess the gems?
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● Streaming Services can test their users on small slates

● It is impossible, though, to test the users on very large slates - 
very few users would parse through a list of, say, 1000 movies 
to find their preferred one

● Streaming Services would love to pinpoint "gems" in their 
catalogues - items that, say, a significant fraction of the users 
love more than any other item

● Can they fit a RUM to what they observe the users do on small slates, and then 
use the RUM to guess the gems?

Streaming Services

S = {    ,    ,    }
0.2      0.1     0.7
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● Streaming Services can test their users on small slates

● It is impossible, though, to test the users on very large slates - 
very few users would parse through a list of, say, 1000 movies 
to find their preferred one

● Streaming Services would love to pinpoint "gems" in their 
catalogues - items that, say, a significant fraction of the users 
love more than any other item

● Can they fit a RUM to what they observe the users do on small slates, and then 
use the RUM to guess the gems?

Streaming Services

S' = {    ,    }

? ? ...
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● Streaming Services can test their users on small slates

● It is impossible, though, to test the users on very large slates - 
very few users would parse through a list of, say, 1000 movies 
to find their preferred one

● Streaming Services would love to pinpoint "gems" in their 
catalogues - items that, say, a significant fraction of the users 
love more than any other item

● Can they fit a RUM to what they observe the users do on small slates, and then 
use the RUM to guess the gems?

Streaming Services

S' = {    ,    }
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● Streaming Services can test their users on small slates

● It is impossible, though, to test the users on very large slates - 
very few users would parse through a list of, say, 1000 movies 
to find their preferred one

● Streaming Services would love to pinpoint "gems" in their 
catalogues - items that, say, a significant fraction of the users 
love more than any other item

● Can they fit a RUM to what they observe the users do on small slates, and then 
use the RUM to guess the gems?

Streaming Services

S' = {    ,    }
0.4      0.6
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● Streaming Services can test their users on small slates

● It is impossible, though, to test the users on very large slates - 
very few users would parse through a list of, say, 1000 movies 
to find their preferred one

● Streaming Services would love to pinpoint "gems" in their 
catalogues - items that, say, a significant fraction of the users 
love more than any other item

● Can they fit a RUM to what they observe the users do on small slates, and then 
use the RUM to guess the gems?

Streaming Services

S'' = {    ,    }
0.8      0.2
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● Streaming Services can test their users on small slates

● It is impossible, though, to test the users on very large slates - 
very few users would parse through a list of, say, 1000 movies 
to find their preferred one

● Streaming Services would love to pinpoint "gems" in their 
catalogues - items that, say, a significant fraction of the users 
love more than any other item

● Can they fit a RUM to what they observe the users do on small slates, and then 
use the RUM to guess the gems?

Streaming Services

{    ,    ,    , ...,    }
:-(
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● Streaming Services would love to pinpoint “gems” in their 
catalogues — items that are “most preferred” by a significant 
fraction of the user base

● Streaming Services would love to pinpoint "gems" in their 
catalogues - items that, say, a significant fraction of the 
users love more than any other item

Streaming Services

{    ,    ,    , ...,    }
0.003 0.25 0.002 0.001
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● Streaming Services would love to pinpoint “gems” in their 
catalogues — items that are “most preferred” by a significant 
fraction of the user base

● Can they fit a RUM to what they observe on the small slates, 
and then use the RUM to guess the gems?

Streaming Services

{    ,    ,    , ...,    }
0.003 0.25 0.002 0.001
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● In recent work, [CKGPT] show that — by accessing slates 

of size at most                           — one can approximate, to 

within an ε TV-error, the winner distribution of all slates of 

size at most n

● And, if one can only access slates of size              , then 

one cannot generally guess if an item has probability at 

most ε, or at least 1-ε, in a slate of size n

Generalization
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● In recent work, [CKGPT] show that — by accessing slates 

of size at most                           — one can approximate, to 

within an ε TV-error, the winner distribution of all slates of 

size at most n

● And, if one can only access slates of size              , then 

one cannot generally guess if an item has probability at 

most ε, or at least 1-ε, in a slate of size n

Accessing slates of size                exposes
the structure of a RUM of n items to within a small error

Generalization
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● In recent work, [CKGPT] show that — by accessing slates 

of size at most                           — one can approximate, to 

within an ε TV-error, the winner distribution of all slates of 

size at most n

● And, if one can only access slates of size              , then 

one cannot generally guess if an item has probability at 

most ε, or at least 1-ε, in a slate of size n
In particular, accessing slates of size                allows one

to discover gems

Generalization

Accessing slates of size                exposes
the structure of a RUM of n items to within a small error
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● [CKGPT] also show that — if one can only access slates 
of size               — then one cannot guess if an item has 
probability at most ε, or at least 1-ε, in the slate {1,2, ..., n}.

Generalization
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Generalization

      {    ,    ,    }

      {    ,    ,    }

{    ,    }

{    ,    }
0.05 0.95

0.6 0.4

0.03 0.92 0.05

0.05 0.9 0.05

...

● [CKGPT] also show that — if one can only access slates 
of size               — then one cannot guess if an item has 
probability at most ε, or at least 1-ε, in the slate {1,2, ..., n}.
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Generalization

      {    ,    ,    }

      {    ,    ,    }

{    ,    }

{    ,    }
0.05 0.95

0.6 0.4

0.03 0.92 0.05

0.05 0.9 0.05

...

● [CKGPT] also show that — if one can only access slates 
of size               — then one cannot guess if an item has 
probability at most ε, or at least 1-ε, in the slate {1,2, ..., n}.

RUM A

Perfect Fit
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Generalization

      {    ,    ,    }

      {    ,    ,    }

{    ,    }

{    ,    }
0.05 0.95

0.6 0.4

0.03 0.92 0.05

0.05 0.9 0.05

...

● [CKGPT] also show that — if one can only access slates 
of size               — then one cannot guess if an item has 
probability at most ε, or at least 1-ε, in the slate {1,2, ..., n}.

RUM B
...

RUM A

Perfect Fit
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Generalization

      {    ,    ,    }

      {    ,    ,    }

{    ,    }

{    ,    }
0.05 0.95

0.6 0.4

0.03 0.92 0.05

0.05 0.9 0.05

...

● [CKGPT] also show that — if one can only access slates 
of size               — then one cannot guess if an item has 
probability at most ε, or at least 1-ε, in the slate {1,2, ..., n}.

      {    ,    ,    , ...,    }
0.90

RUM B
...

RUM A

Perfect Fit
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Generalization

      {    ,    ,    }

      {    ,    ,    }

{    ,    }

{    ,    }
0.05 0.95

0.6 0.4

0.03 0.92 0.05

0.05 0.9 0.05

...

● [CKGPT] also show that — if one can only access slates 
of size               — then one cannot guess if an item has 
probability at most ε, or at least 1-ε, in the slate {1,2, ..., n}.

      {    ,    ,    , ...,    }
0.90

      {    ,    ,    , ...,    }
0.10

RUM B
...

RUM A

Perfect Fit
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Generalization

      {    ,    ,    }

      {    ,    ,    }

{    ,    }

{    ,    }
0.05 0.95

0.6 0.4

0.03 0.92 0.05

0.05 0.9 0.05

...

● [CKGPT] also show that — if one can only access slates 
of size               — then one cannot guess if an item has 
probability at most ε, or at least 1-ε, in the slate {1,2, ..., n}.

This data is insufficient to
guess whether there exists a

gem in the catalogue
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Generalization
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{    ,    }

{    ,    }
0.05 0.95

0.6 0.4

0.03 0.92 0.05

0.05 0.9 0.05

...

● [CKGPT] also show that — if one can only access slates 
of size               — then one cannot guess if an item has 
probability at most ε, or at least 1-ε, in the slate {1,2, ..., n}.

This data is insufficient to
guess whether there exists a

gem in the catalogue

But, as we said, increasing the bound on the
slate size to just above       makes it possible

to approximate all the winner distributions
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Generalization

      {    ,    ,    }

      {    ,    ,    }

{    ,    }

{    ,    }
0.05 0.95

0.6 0.4

0.03 0.92 0.05

0.05 0.9 0.05

...

● [CKGPT] also show that — if one can only access slates 
of size               — then one cannot guess if an item has 
probability at most ε, or at least 1-ε, in the slate {1,2, ..., n}.

This data is insufficient to
guess whether there exists a

gem in the catalogue

But, as we said, increasing the bound on the
slate size to just above       makes it possible

to approximate all the winner distributions
and, thus, to find gems
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A fourth representation!
● This result shows that one can approximately represent a 

RUM with its winner distributions of slates of size
at most 

● While the size of this representation is very large (            ), 
constructing the RUM this way gets us quite an 
improvement in the runtime (                      vs            ) of RUM 
learning
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RUM Representations
● RUM Representations

○  Joint Utility Distribution

○ (Light) Distribution over Permutations

○ Head Distributions

○ Winner Distributions over slates of size at most 

● They vary in their bit costs, and in the computational costs of various 
algorithmic tasks.

● Choose your representation wisely! :-)
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Special Classes of RUMs
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● Suppose that a RUM contains only k permutations in its 
support.

● Then, for each cardinality c, there can be at most k pairs (H,s), 
with |H| = c, such that            is non-zero. 

● Thus, all the head distributions 
can be learned with             max-dist queries.

RUMs with Small Support
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● Suppose that a RUM contains only k permutations in its 
support.

● Then, for each cardinality c, there can be at most k pairs (H,s), 
with |H| = c, such that            is non-zero. 

● Thus, all the head distributions 
can be learned with             max-dist queries.

RUMs with Small Support
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● Suppose that a RUM contains only k permutations in its 
support.

● Then, for each cardinality c, there can be at most k pairs (H,s), 
with |H| = c, such that            is non-zero. 

● Thus, all the head distributions 
can be learned with             max-dist queries.

RUMs with Small Support

         is the probability that a random 
permutation has the elements of H, in 
any order, as its |H| top-most elements, 
and that it has s in position |H|+1
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● Suppose that a RUM contains only k permutations in its 
support.

● Then, for each cardinality c, there can be at most k pairs (H,s), 
with |H| = c, such that            is non-zero. 

● Thus, all the head distributions 
can be learned with             max-dist queries.

RUMs with Small Support

P∅,      > 0, P∅,    > 0

c = 0
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● Suppose that a RUM contains only k permutations in its 
support.

● Then, for each cardinality c, there can be at most k pairs (H,s), 
with |H| = c, such that            is non-zero. 

● Thus, all the head distributions 
can be learned with             max-dist queries.

RUMs with Small Support

P∅,      > 0, P∅,    > 0, P∅,    = 0

c = 0
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● Suppose that a RUM contains only k permutations in its 
support.

● Then, for each cardinality c, there can be at most k pairs (H,s), 
with |H| = c, such that            is non-zero. 

● Thus, all the head distributions 
can be learned with             max-dist queries.

RUMs with Small Support

P{     },      > 0, P{    },    > 0

c = 1
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● Suppose that a RUM contains only k permutations in its 
support.

● Then, for each cardinality c, there can be at most k pairs (H,s), 
with |H| = c, such that            is non-zero. 

● Thus, all the head distributions 
can be learned with             max-dist queries.

RUMs with Small Support

P{     },      > 0, P{    },    > 0, P{    },    = … = P{    },      = 0

c = 1
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● Suppose that a RUM contains only k permutations in its 
support.

● Then, for each cardinality c, there can be at most k pairs (H,s), 
with |H| = c, such that            is non-zero. 

● Thus, the formula

lets us learn the RUM with O(n k) max-dist queries.

RUMs with Small Support
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Multinomial Logit MNL

● Classical special case of Random Utility Model

● Given a universe U of items and a positive weight ai  for each 
item i in U, the probability that i wins in the slate S is equal to
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Learning a MNL

For i = 1, …, n-1, query the MNL using the slate {i, n} 

obtaining the choice distribution 

Solve the resulting system of linear equations to obtain the 
weights, and thus all the       ’s. 
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For i = 1, …, n-1, query the MNL using the slate {i, n} 

obtaining the choice distribution 

Solve the resulting system of linear equations to obtain the 
weights, and thus all the       ’s. 

Learning a MNL

System of 
equations
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For i = 1, …, n-1, query the MNL using the slate {i, n} 

obtaining the choice distribution 

Solve the resulting system of linear equations to obtain the 
weights, and thus all the       ’s. 

Learning a MNL

System of 
equations

Full Rank
LP
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For i = 1, …, n-1, query the MNL using the slate {i, n} 

obtaining the choice distribution 

Solve the resulting system of linear equations to obtain the 
weights, and thus all the       ’s. 

Learning a MNL

Full Rank
LP

Querying O(n) 
slates of size 2, 
and solving 
this LP, gets us 
a valid set of 
weights
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Mixture of MNLs
● MNL is insufficient to capture many practical settings

● 2-MNL mixture: Given a universe U of items and positive weights ai 
and bi for each item i in U

For a slate S, the probability of choosing i in S equals

 𝛾 ∙ a(u) / 𝚺

(Uniform mixture when 𝛾 = 1/2)

● General MNL mixtures can approximate arbitrarily well any RUM
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2-MNL Learning

● [CKT18] show that
○ Uniform 2-MNLs can be uniquely identified by the choice 

distributions of slates of sizes 2 and 3
○ There is a linear-time adaptive algorithm to learn the 

weights of uniform 2-MNLs using the choice distributions 
of slates of sizes 2 and 3
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2-MNL Learning

Compare with general RUMs where, as 
we showed, one needs slates of size 

● [CKT18] show that
○ Uniform 2-MNLs can be uniquely identified by the choice 

distributions of slates of sizes 2 and 3
○ There is a linear-time adaptive algorithm to learn the 

weights of uniform 2-MNLs using the choice distributions 
of slates of sizes 2 and 3
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2- and 3-Slates are sufficient

● Theorem
For any uniform 2-MNL system, and for any set of 3 items S = 
{i, j, k}, the choice distributions of all the subsets of S 
determine uniquely the weights (up to rescaling) of i, j, k in 
each of the two MNLs.



Discrete Choice                                                                                                                                            Chierichetti, Kumar, Tomkins

Uniqueness
● This polynomial system induced by the choice distributions of 

the subsets of a generic set {i,j,k} has a unique solution

● To do so,

○ we partition the solution space in a discrete number of regions,

○ we show that at most one region can contain feasible solutions, and 
we give combinatorial algorithm to determine it,

○ we use the structure of the generic region to prove uniqueness.
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Algorithmic Implications

● Theorem
There exists an adaptive algorithm performing max-dist 
queries on O(n) slates of sizes 2 and 3, that reconstructs the 
weights of any uniform 2-MNL system on n elements.

● Theorem
There exists a non-adaptive algorithm performing max-dist 
queries on O(n2) slates of sizes 2 and 3, that reconstructs the weights of any 
uniform 2-MNL system on n elements.



Discrete Choice                                                                                                                                            Chierichetti, Kumar, Tomkins

● RUMs supported on k permutations can be learned very 
efficiently

● Winner Distributions over slates of size at most               let you 
approximately represent any RUM
○ Winner Distributions over slates of size at most 2 let you 

represent any MNL
○ Winner Distributions over slates of size at most 3 let you 

represent any uniform 2-MNL
● What about k-MNLs? Are slates of size O(k) sufficient for 

representation?

Special Classes of RUMs
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Applications
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Applications
● ML Applications
● Geographic Choice
● Choice on Graphs
● Reconsumption
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Conjoint Analysis
Initially developed by [Luce and Tukey 1964] – axiomatic formulation

Picked up soon by marketers in late 60’s, eg [Green and Rao 1971]

B-T model:

Flavor Mango Chocolate

Price 2.95 3.95

Size 120g 200g
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Conjoint Analysis
Initially developed by [Luce and Tukey 1964] – axiomatic formulation

Picked up soon by marketers in late 60’s, eg [Green and Rao 1971]

B-T model:

Flavor Mango Chocolate

Price 2.95 3.95

Size 120g 200g
>
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Conjoint Analysis Outcomes

Widely used in marketing

“Like giving dynamite to 
babies”

Influential case study on 
Marriott Courtyard hotels
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Courtyard by Marriott
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Courtyard by Marriott
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A generic transformer (from [Vaswani et al 2017])

Softmax and discrete choice



Discrete Choice                                                                                                                                            Chierichetti, Kumar, Tomkins

Softmax bottleneck
[Yang et al, 2018]

Goal of Languge Modeling:

Softmax bottleneck: rank of A’ is at most the embedding dimension d



Discrete Choice                                                                                                                                            Chierichetti, Kumar, Tomkins

Softmax bottleneck – another view
Consider two nearby word representations – very difficult to separate

All “usage patterns” must be embedded into Rd
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Mixture of softmax

MoS shows empirical wins over Softmax

The authors argue this is because it addresses the rank deficiency of the 
“softmax bottleneck”

Note that MoS is exactly mixed logit, and is there’s equivalent to the full RUM 
family, where a user type is an assignment of “utilities” for each token

Utilities are a non-linear function of the context so far

Another take on the power of MNLs versus RUMs
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Application: Geographic Choice
(or: where should we have dinner tonight?)
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Where shall we eat tonight, revisited….
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Some Factors in Restaurant Choice

Deciding where to go for dinner:
○ Quality of the restaurant
○ Distance from Hotel Michael
○ Price 
○ Cuisine type 
○ Ambience
○ Time since last visit
○ Opinions of dining companion(s) 
○ ...
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Some data for this problem

Directions queries: 
○ Number of directions queries to US/Canadian restaurants in Google Maps 
○ Random sample of 15.5M queries to ~400K restaurants 
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Dataset

Directions queries: 
○ Number of directions queries to a US/Canadian restaurants in Google Maps 
○ Random sample of 15.5M queries to ~400K restaurants 

Caveats:
○ Not all visits have an associated directions search 

■ Familiar locations 
■ Spontaneous decisions

○ Not all searches result in visits
■ Aspirational searches
■ Traffic & time estimates 
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Classical Discrete Choice Models

Recall our basic discrete choice model:
○ Assign a score to each alternative
○ Select with probability proportional to score

Goal: 
○ Better understand the score
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Score function

Today:
○ Distance to the restaurant d
○ Number of closer restaurants, rank: r

■ Captures density of restaurants
■ Acts as a proxy for the amount of competition 

○ Quality of particular restaurant: q
○ Assume utility is linear in these features Vx = dx + rx + qx

Not Today:
– Personal (user specific) preference

– Time since last visit 

– Companions’ desires
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Imputed Rank Function 
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Imputed Distance Function
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Results

Predict Likelihood on a held out test set:

Method Likelihood

Uniform choice 1.1

Distance only model 3.9

Rank only model 4.6
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Model

Fit both rank and distance functions by log-normals

○ Four parameter model: 
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Results

Predict Likelihood on a held out test set:

Method Likelihood

Uniform choice 1.1

Distance only model 3.9

Rank only model 4.6

Lognormal coefficient fit (4 parameters) 5.1
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Results

Predict Likelihood on a held out test set:

Method Likelihood

Uniform choice 1.1

Distance only model 3.9

Rank only model 4.6

Lognormal coefficient fit (4 parameters) 5.1

Non-parametric factored model 5.3
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Quality Factor

○ Quality is restaurant specific, makes the model much richer
○ Learn it as the residual on ranks, distances
○ Evaluation: correlation with critics’ scores
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Geographic Choice: what have we seen?

Multinomial Logistic Regression with buckets is a powerful technique to 
assess influence of features based on intensity

Captured interactions may give significantly different influence weights than 
feature correlations

Given the output of such models, it is possible to observe deeper structure

From this structure, we may find models that are far more parsimonious (why 
lognormal?)

These new models are much easier to fit when data is sparse
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Application: Graphs
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Reverse Engineering 
a Markov Chain

Ravi Kumar, Andrew Tomkins, Sergei Vassilvitskii and Erik Vee

[Ref: WSDM 2015]

http://tomkins.family/static/papers/src/KTV+15.pdf
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Random Walks & Markov Chains

Markov Chains in Data Analysis:
○ Simple, yet capture a lot of interactions
○ Typically: compute & use the stationary distribution
○ Beautiful theory with great applications

Examples:
○ PageRank: Random surfer stationary distribution
○ Translation: Use language models to build phrases 
○ ...
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A Recommendation Chain
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A Recommendation Chain
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A Recommendation Chain
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A Recommendation Chain

stationary distribution
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A Recommendation Chain

Example:
○ Items: videos
○ Stationary Distribution: view counts

Why are some videos more popular:
○ Better (higher quality) videos
○ More frequently recommended 

Today:
○ Disentangle these two reasons 
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Inverting a Markov Chain

Problem: 
○ Given a stationary distribution, find the Markov Chain that generated it.

Given:
○ Graph 
○ Distribution  

Output:
○ Transition Matrix        that generated it
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Feasibility

Feasibility:
○ Not always feasible

A B
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Feasibility

Feasibility:
○ Not always feasible

Definition:
○ A directed graph is consistent if there is a flow that preserves the steady state. 
○ Any strongly connected graph with self loops is consistent

Theorem:
○ For any consistent graph, there exists a Markov chain with     as its stationary 

distribution. 

A B
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Constraints

The problem is under-constrained:
○      constraints
○                              variables
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Constraints

The problem is under-constrained:
○      constraints
○                              Variables

Approaches

○ [Tomlin `03]: MaxEnt objective on variables (regularization) 
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Constraints

The problem is under-constrained:
○      constraints
○                              Variables

Approaches

○ [Tomlin `03]: MaxEnt objective on variables (regularization) 
○ [Today] Limit the degrees of freedom 

○ For each vertex      let      be its score.  The Markov Chain is the function of the scores
○ Scores express “quality” or “attractiveness”
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From Scores to Transitions

Transition probability               depends on:
○ Score of the destination
○ Parameter of the edge

C

B

A

D
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Simplest Example

Weighted Random Walk:
○ All of the edge weights are set to 1
○ Transition probability proportional to the score

C

B

A

D
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Simplest Example

Weighted Random Walk:
○ All of the edge weights are set to 1
○ Transition probability proportional to the score

○ Transition probabilities are context dependent:

C

B

A

D

C
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Simplest Example

Weighted Random Walk:
○ All of the edge weights are set to 1
○ Transition probability proportional to the score

○ Transition probabilities are context dependent:

C

B

A

D

C

B

A

DF
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From Scores to Transitions

Transition probability               depends on:
○ Score of the destination
○ Parameter of the edge
○ Call this function

Formally:

C

B

A

D
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From Scores to Transitions

Transition probability               depends on:
○ Score of the destination
○ Parameter of the edge
○ Call this function

Formally:

Sanity Check on   :
○ Continuous in 
○ Monotone in 

C

B

A

D
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From Scores to Transitions

Transition probability               depends on:
○ Score of the destination
○ Parameter of the edge
○ Call this function

Formally:

Sanity Check on   :
○ Continuous in 
○ Monotone in 
○ Unbounded in 

C

B

A

D
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Simplest Example

Weighted Random Walk:
○ All of the edge weights are set to 1
○ Transition probability proportional to the score

C

B

A

D
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More Examples

Weighted Random Walk:
○ All of the edge weights are set to 1
○ Transition probability proportional to the score

Seeking Similar Content:
○ Edge weight: similarity between two nodes

C

B

A

D
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More Examples

Weighted Random Walk:
○ All of the edge weights are set to 1
○ Transition probability proportional to the score

Seeking Similar Content:
○ Edge weight: similarity between two nodes

Overall:
○ Decide whether items are popular due to high scores (attract all of the incoming traffic) 

or due to location (attract a little bit from many locations)

C

B

A

D
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Main Theorem

Given:
○ A consistent input
○ Monotone, continuous and unbounded function 

There exists:
○ A unique set of scores
○ So that     is the stationary distribution induced by 
○ Moreover, the scores can be found in polynomial time
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Main Theorem

Given:
○ A consistent input
○ Monotone, continuous and unbounded function 

There exists:
○ A unique set of scores
○ So that     is the stationary distribution induced by 
○ Moreover, the scores can be found in polynomial time

up to scaling
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Main Theorem

Given:
○ A consistent input
○ Monotone, continuous and unbounded function 

There exists:
○ A unique set of scores
○ So that     is the stationary distribution induced by 
○ Moreover, the scores can be found in polynomial time

up to scaling
up to 
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Definitions 

○ Fix a set of scores     and distribution 
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Definitions 

○ Fix a set of scores     and distribution 
○ Let            be the expected mass at      starting with     using 
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Definitions 

○ Fix a set of scores     and distribution 
○ Let            be the expected mass at      starting with     using 
○ Call a node underweight if
○ Algorithm:

■ Repeatedly increase scores of underweight nodes

C
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A

D

E
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Definitions 

○ Fix a set of scores     and distribution 
○ Let            be the expected mass at      starting with     using 
○ Call a node underweight if
○ Algorithm:

■ Repeatedly increase scores of underweight nodes

C

B

A

D

E

1

1 1.6 1

1
D
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Definitions 

○ Fix a set of scores     and steady state 
○ Let            be the expected mass at      starting with      using 
○ Call a node underweight if

Algorithm:
○ Start with 
○ For 

■ For each                 :
■ If        underweight:

Set
■ else:

         Set
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Definitions 

○ Fix a set of scores     and steady state 
○ Let            be the expected mass at      starting with      using 
○ Call a node underweight if

Algorithm:
○ Start with 
○ For 

■ For each                 :
■ If        underweight:

Set
■ else:

         Set Guaranteed to exist because f is 
monotone, continuous, unbounded 
& G is consistent
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Definitions 

○ Fix a set of scores     and steady state 
○ Let            be the expected mass at      starting with      using 
○ Call a node underweight if

Algorithm:
○ Start with 
○ For 

■ For each                 :
■ If        underweight:

Set
■ else:

         Set Guaranteed to exist because f is 
monotone, continuous, unbounded 
& G is consistent

Note: scores never decrease
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Definitions 

○ Fix a set of scores     and steady state 
○ Let            be the expected mass at      starting with      using 
○ Call a node underweight if

Algorithm:
○ Start with 
○ For 

■ For each                 :
■ If        underweight:

Set
■ else:

         Set Guaranteed to exist because f is 
monotone, continuous, unbounded 
& G is consistent

Note: scores never decrease

If q is ever below    , it will always 
stay below
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Proof of Convergence

Key Lemma: 
○ There is an explicit bound        such that                    for all        .
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Proof of Convergence

Key Lemma: 
○ There is an explicit bound        such that                    for all        .

Proof Sketch:

○ Consider a set of scores that grows without bound
○ These scores all must be underweight (these are the only scores that increase) 
○ Not all scores can be underweight (sum of underweight scores below 1) 
○ The scores growing without bound are taking all of the probability mass from those bounded 
○ By consistency, this demand must be met, a contradiction.
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Proof of Convergence

Key Lemma: 
○ There is an explicit bound        such that                    for all        .

Finishing the Proof:

○ Scores increase multiplicatively by factor of  

○       is bounded by 

○ Overall:                                               iterations suffice. 
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But Does it Work...

Experimental Evaluation:
○ Dataset: empirical transitions 
○ Input: Transition graph and the steady state distribution
○ Output: Transition probabilities
○ Metrics: LogLikelihood or RMSE 
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Datasets

Wiki:
○ Navigation paths through wikipedia. 
○ About 200k transition pairs, 51k user traces over 4.6k nodes 

Rest:
○ Results of broad restaurant queries to Google. 
○ 100k transitions, 65k nodes 

Entree:
○ Chicago restaurant recommendation system from 90s
○ 50k transitions, 27k nodes

Comedy:
○ Given a pair of videos, predict which one is judged funnier
○ 225k transitions, 75k nodes
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Baselines

Popularity:
○ Transition proportionally to the steady state distribution (score = pi) 

Uniform:
○ Uniform over out-edges

Pagerank:
○ Transition proportionally to the node pagerank

Temperature:
○ MaxEnt regularization approach

Inversion:
○ Our algorithm
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Results

RMSE Prediction:

Popularity Uniform PageRank Temp Inversion

Wiki 1 0.65 0.83 0.65 0.57

Rest 1 1.17 1.39 1.21 0.59

Entree 1 0.69 1.01 0.56 0.42

Comedy 1 0.65 0.9 0.78 0.36
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Application: Sequential Choice
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Repeat consumption

Most of the items we consume are not 
for the first time

Sometimes go for reliability
Sometimes go for novelty

○ Boredom
○ New options

We focus on the repeated 
consumption, not the novel choice.
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Repeat consumer choice

Marketing studies

Consumer behavior

Music listening experiment [Kahnx et al 97]
○ Melioration/overconsumption: listen to favorite on each trial
○ Maximization: preserve the high level of enjoyment

Possible explanations
○ Difficulties in prediction of taste
○ Users try to create the best memory (five flavors vs one 

flavor LifeSavers)
○ Zen principles (pain vs pleasure)
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Re-searching

Repeat queries in search logs [Teevan et al]

40% of queries are re-finding queries

Navigational queries are more likely to be repeated
○ Information re-finding

Repeat behavior leads to easier prediction of which results will be clicked
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Re-visiting web pages

Web page revisitation using browser logs [Adar et al]

50-80% of the web pages are revisited

Revisitation reasons
○ Bookmarks/use as hub
○ Track content change
○ Backbutton

Types of revisitation
○ Fast: shopping pages, references, traffic
○ Medium: mail, forums, news, ...
○ Slow: weekend activity, software updates, ...
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Domains of reconsumption

Location checkins
○ BrightKite
○ Google+

Clicks
○ Businesses on maps
○ Restaurants on maps
○ Wikipedia

Media
○ Youtube
○ Music videos
○ Playlists from a radio station

Shakespeare!
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Characterizing Reconsumption
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Does it exist?

Distribution of the fraction of repeat consumption
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Lifetime distributions

Do items have finite lifetimes?
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Boredom

Do users get bored with repeat consumption?
○ Marketers, advertisers care about this
○ Churn/variety-seeking behavior
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Semi-Markov model 
of session behavior

t1, t2, …, tn

Logistic model for 
novelty of items N1, N2, …, Nn

Choice model

novel

repeat

Baseline model: 
popularity

Copying model
wi-j * szj * T(ti– tj)

zi

zi

Summary of model

Fully generative model.
Also matches macroscopic properties (up next!)
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Three key factors

• How popular is the item?
• Time gap since it was last consumed
• How recently was it consumed?

• Can we develop a holistic mathematical framework 
powerful yet simple enough to explain patterns of 
reconsumption we observe in real data?
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Recency model

Empirically, recency seems to play a strong role in reconsumption

Technical approach: Combine discrete choice model with “copying model” 
[Simon, 55] based on recency
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Example

a b b c d e b a c d cd ?

consumption history

weights w

w(1) w(2) w(3) w(4) w(5) w(6) w(7) w(8) w(9) w(10) w(11) w(12) 

w(2) w(5) w(8) 

Pr[d is consumed next] ~ + +
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Score-based model

Each item x has a score sx

The score reflects the quality of the item

The score dictates the reconsumption pattern

Pick next item x using discrete choice, with probability:
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Combining Recency and Quality

At position i, pick item x with probability: 

Stochastic gradient ascent

Alternating updates to scores and weights

w(2) w(5) w(8) 

Pr[d consumed next] ~ + + )( x

s(d)
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Likelihoods (wrt hybrid model)

• Recency comes close to hybrid model

• Recency much better than quality

• Popularity seems to bring the models down even with 
recency
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Combining Recency, Quality, and Time

At position i, pick item x with probability:

w(8)*t(8) 

Pr[d consumed next] ~
+ + )( x

s(d)

Stochastic gradient ascent

Alternating updates to scores and weights

w(5)*t(5) w(2)*t(2) 
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Learned time scores T(ti – tj)

• Learned time 
scores are 
complex

• Capture, e.g.,  
cyclic behavior in 
check-in data.



Discrete Choice                                                                                                                                            Chierichetti, Kumar, Tomkins

Model Quality

• Score-only and Popularity-only not competitive
• Recency is most important feature
• Time is more important than item quality
• All model components bring some gain
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Macroscopic observations

1. Eventual abandonment: item lifetime distributions are 
heavy-tailed and often finite.

2. Boredom: at the end of an item’s life, gaps between 
consumptions increase monotonically.
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Item lifetimes

Count lifetime:
number of times an item is consumed.
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Item lifetimes

Index lifetime:
total number of items consumed between first and last 
consumption of a given item.
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Item lifetimes

Temporal lifetime:
total elapsed time between first and last consumption of an 
item.
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Item Lifetimes Theoretical Analysis

For simple “copying” model with recency only, we can analyze conditions 
in which an item lives forever:

Theorem:
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Boredom 

Before items are abandoned, the gap between consumptions of that 
item grows in both “index” and “real” time. 

first gap last gap
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Boredom 

first gap last gap

Consider a simplified choice model with uniform time 
and item quality scores.

Theorem: Suppose that the weights w are monotonically 
decreasing.  Then:
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Parsimonious model

• Recency weights can 
be compressed

• Good fit: power law 
with exponential 
cutoff:
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Parsimonious model

Recency model can be expressed using just three 
parameters!
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Satiation

No evidence of satiation in online user behavior
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Additivity assumption
Very small deviations from additive behavior

Mildly superadditive as popular items chosen

Getting addicted: 
superadditive?

Getting bored: 
subadditive?
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Tipping behavior

In the recency model, tipping occurs if after a certain time, only one item is 
repeatedly consumed

Assume weights are decreasing: w(p) ≧ w(p+1)

Claim. If sum of weights is finite, then tipping occurs with constant probability

Claim. If the sum of weights is infinite, then tipping does not occur
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Conclusions

We studied a number of algorithmic problems related to discrete choice

We believe this class of problems is theoretically important and relevant in 
practice
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Some open questions

Can one reconstruct, with poly(n) max-sample queries, the winning 
probabilities of all slates with o(1) 𝓁1-error?

What is the relative power of the max-sample / max-dist oracles?

How well can one approximate general mixtures of MNLs with the two 
oracles?

Identifiability of non-uniform 2-MNLs, k-MNLs


