Data Augmentation for Conversational AI

The Web Conference 2024

Tutorial website
Presenters

Heydar Soudani
PhD Candidate
Radboud University
heydar.soudani@ru.nl

Evangelos Kanoulas
Full Professor
University of Amsterdam
e.kanoulas@uva.nl

Roxana Petcu
PhD Candidate
University of Amsterdam
r.m.petcu@uva.nl

Faegheh Hasibi
Assistant Professor
Radboud University
f.hasibi@cs.ru.nl
A Survey on Recent Advances in Conversational Data Generation

HEYDAR SOUDANI, Radboud University, The Netherlands
ROXANA PETCU, University of Amsterdam, The Netherlands
EVANGELOS KANOULAS, University of Amsterdam, The Netherlands
FAEGHEH HASIBI, Radboud University, The Netherlands

Recent advancements in conversational systems have significantly enhanced human-machine interactions across various domains. However, training these systems is challenging due to the scarcity of specialized dialogue data. Traditionally, conversational datasets were created through crowdsourcing, but this method has proven costly, limited in scale, and labor-intensive. As a solution, the development of synthetic dialogue data has emerged, utilizing techniques to augment existing datasets or convert textual resources into conversational formats, providing a more efficient and scalable approach to dataset creation. In this survey, we offer a systematic and comprehensive review of multi-turn conversational data generation, focusing on three types of dialogue systems: open domain,
The process of artificially expanding the size and/or the diversity of training data for conversational AI models.
Why “Data Creation” for Conversational AI?

Because of the Data Scarcity issue
Data Scarcity in Conversational AI

- **Large neural models** are heavily used for dialogue systems
- Access to **large amount of training data** is key to the success of these models
- **Crowdsourcing** is a common approach to create large scale datasets
Crowdsourcing Limitations

- Expensive
 - CoQA spent 3.6 USD per passage on crowdsourcing
 - Total cost: ~30K for ~8400 passage and 127K QA pairs
- Time consuming, hard to scale up (Wu et. al. 2022)
- Generating data for conversational tasks is often complex (Gu et al., 2021)
 - High cognitive load for workers, low quality data
 - E.g., Preference Elicitation dialogues (Radlinski et al. 2019)

Data Augmentation is an effective approach to address the data scarcity issue
With LLMs (as few-shot learners), why do we still need data augmentation?
• Generic LLMs are not aware of sensitive/domain specific data \cite{Deng2023}; e.g.,
 ○ Product information in a retail domain
 ○ Sensitive data specific to health/bank/security domain

• Utilizing LLMs for developing a product is not always possible
 ○ Time and compute budget constraints by small/medium scale enterprises
 ○ Although GPT* models are successful products, they remain proprietary and non-replicable

• LLMs themselves are used for data augmentation
Input prompt

The chatbot is … Initiate the conversation and react friendly to the user’s utterances. Talk about everyday topics for 10-15 turns and end the call.

###
Al: Hello. Did you sleep well last night?
User: Yes, I slept well. Thank you.
Al: That's good. I'm glad you slept well. Make sure not to skip any meal.
User: Okay. you eat well, too.
Al: Alright. I'll call you again later.
User: Bye.
###

Generated example

AI: Hi, how’s your health these days?
User: It's very good.
AI: That’s good to hear. Do you work out often?
User: No, I don't have time to.
AI: I see. It would be nice if you could work out at least once a week.
User: That's true. But why do you ask?
AI: It's just that this product has been newly released. I thought it would be helpful to you.
Introduction to Conversational AI
Conversational AI

Systems that are designed to simulate human-like conversations and are used for various purposes. (Zamani et al., 2023)

Rule-based Era → Machine Learning Era → Deep Learning Era

1966-1994
MIT Eliza
Pattern+Transform

2011-2014
Rule+ML
Mixed Systems

2016-2018
Rule+ML
Smart Assistant

2020
Transformer
Big model + Big data

2021
Switch Transformer

2022-today
LaMDA
(Deng et al., 2023)
Types of Conversational Systems

<table>
<thead>
<tr>
<th>Task Oriented</th>
<th>Open Domain</th>
<th>Conv. Information Seeking</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Focuses on task completion</td>
<td>- Aims to chat with users without the task and domain restrictions</td>
<td>- Designed to assist users in seeking and retrieving information through natural language dialogue interactions.</td>
</tr>
<tr>
<td>- Solves specific problems in a certain domain; e.g., restaurant reservation, movie ticket booking, etc.</td>
<td>- Engage in conversations with users across a wide range of topics and domains</td>
<td>- Three main areas: conversational search, conversational (QA), and conversational recommendation</td>
</tr>
<tr>
<td>- Developed using pipeline or end-2-end approaches</td>
<td>- Usually fully data-driven</td>
<td>(Zamani et al., 2023), (Ni et al., 2023)</td>
</tr>
</tbody>
</table>
Task-oriented Dialogue Systems

Example: Recommend a restaurant in New York today

Natural Language Understanding

Dialogue State Tracking

Dialogue Policy Learning

Natural Language Generation

Example:
- dial_act: inform
- domain: restaurant
- name: Kochi
- date: today
- price range: $$

Example:
- Inform(name=Kochi, cuisine=korean, price range=$$)

Example:
- There is a mid-range Korean restaurant called Kochi.

<table>
<thead>
<tr>
<th>Example</th>
<th>Recommend</th>
<th>a</th>
<th>restaurant</th>
<th>at</th>
<th>New</th>
<th>York</th>
<th>today</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slots</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>B-desti</td>
<td>I-desti</td>
</tr>
<tr>
<td>Dialogue Act</td>
<td>inform</td>
<td>Domain</td>
<td>restaurant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Challenges of Task Oriented Dialogue Systems

- **Cross domain transfer** (Lee et al., 2018)
 - Task-specific structural constraints make it difficult to expand to new domains

- **Diversity and coverage** (Budzianowski et al., 2018)
 - Users interact in a multitude of ways towards the same goal

- **Accuracy** (Wan et al., 2022, Yoo et al., 2020, Terragni et al., 2023)
 - Systems need to correctly understand the state of the dialogue
Example of TOD

User: Book a restaurant in Orlando for 4 people.

System: What type of food and price range should I look for?

User: I’d like a moderately priced Taiwanese restaurant.
Open Domain Dialogue Systems

Generative Systems
Use sequence-to-sequence models to generate responses that may not be in the training corpus

Retrieval Systems
Retrieval natural and relevant pre-existing responses from a corpus

Ensemble Systems
Combine generative and retrieval methods to:
- Refine retrieved responses using generative methods or
- Compare retrieved and generated responses and select the best ones
Challenges of Open Domain Dialogue Systems

- **Coherence**
 - Responses are context-aware (e.g., based on conversation history)

- **Engagement**
 - Avoid making dull responses

- **Informativeness**
 - Responses are based on documents, pre-defined FAQs, and/or knowledge graphs

- **Proactivity**
 - Drive the discussion topic forward (*target-guided and policy planning*)

(Chen et al., 2023, Deng et al., 2023)
Example ODD

Crowdsourcing sample for Persona-chat dataset (Zhang et al., 2018)

<table>
<thead>
<tr>
<th>Persona 1</th>
<th>Persona 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>I like to ski</td>
<td>I am an artist</td>
</tr>
<tr>
<td>My wife does not like me anymore</td>
<td>I have four children</td>
</tr>
<tr>
<td>I have went to Mexico 4 times this year</td>
<td>I recently got a cat</td>
</tr>
<tr>
<td>I hate Mexican food</td>
<td>I enjoy walking for exercise</td>
</tr>
<tr>
<td>I like to eat cheetos</td>
<td>I love watching Game of Thrones</td>
</tr>
</tbody>
</table>

[PERSON 1:] Hi
[PERSON 2:] Hello! How are you today?
[PERSON 1:] I am good thank you, how are you.
[PERSON 2:] Great, thanks! My children and I were just about to watch Game of Thrones.
[PERSON 1:] Nice! How old are your children?
[PERSON 2:] I have four that range in age from 10 to 21. You?
[PERSON 1:] I do not have children at the moment.
[PERSON 2:] That just means you get to keep all the popcorn for yourself.
[PERSON 1:] And Cheetos at the moment!
[PERSON 2:] Good choice. Do you watch Game of Thrones?
[PERSON 1:] No, I do not have much time for TV.
[PERSON 2:] I usually spend my time painting: but, I love the show.

Generated dialogue form PersonaChatGen (Lee et al., 2022)

<table>
<thead>
<tr>
<th>P1’s Persona</th>
<th>P2’s Persona</th>
</tr>
</thead>
<tbody>
<tr>
<td>I have three brothers and sisters.</td>
<td>I love food and I love to eat.</td>
</tr>
<tr>
<td>I am the middle child.</td>
<td>I am a woman who loves fashion.</td>
</tr>
<tr>
<td>I’m a big fan of Beyoncé.</td>
<td>I love reality TV.</td>
</tr>
<tr>
<td>I like reading books about romance.</td>
<td>I prefer to watch comedies.</td>
</tr>
<tr>
<td>I have been diagnosed with post-traumatic stress disorder.</td>
<td>I have hay fever.</td>
</tr>
</tbody>
</table>

Generated Dialogue

P1: Hi, how are you?
P2: I’m good! I love food and I love to eat.
P1: Oh, what’s your favorite food?
P2: I love all kinds of food, but my favorite food is probably sushi.
P1: Sushi is really good! I love it too.
P2: Yeah, it’s one of my favorite things to eat. I also love fashion.
P1: Beyoncé is a really good fashion icon.
P2: Yeah, she is! I love her style. I also love reality TV.
P1: Oh, what’s your favorite reality TV show?
P2: I love a lot of reality TV shows, but my favorite is probably The Bachelor.
P1: The Bachelor is a really good show! I love it too.
P2: Yeah, it’s one of my favorite shows. I also love comedies.
P1: What’s your favorite comedy?
P2: I love all kinds of comedies, but my favorite is probably The Office.
P1: The Office is a really good comedy! I love it too.
P2: Yeah, it’s one of my favorite shows. I also have hay fever.
The primary objective of a CIS system is to satisfy the information needs of users.

Main areas:

Conversational search & Conversational Question Answering (QA)
find specific information, allowing users to pose multiple questions

Conversational Recommendation Systems
suggest items to users based on their previous interactions, serving as personalized information-seeking tools

(Zamani et al., 2023), (Wang et al., 2023)
Challenges of Conversational Information Seeking Systems

- Control the generation process
 - Topic shifting
- Multi-evidence answer generation
- Proactivity
 - Mixed-initiative: Asking clarification questions

(Wu et al., 2022), (Deng et al., 2023)
Example CIS

(Feng, et al., 2020)

<table>
<thead>
<tr>
<th>Dialogue turn</th>
<th>Dialogue act</th>
<th>Grounded Passage</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1: Hello, I forgot to update my address, can you help me with that?</td>
<td>Query</td>
<td>s_id: 1, text: 1. Forgetting to Update Address (A title of section)</td>
</tr>
<tr>
<td>A2: hi, you have to report any change of address to DMV within 10 days after moving. You should …</td>
<td>Response</td>
<td>s_id: 4, text: By statute, you must report a change of address to DMV within ten days of moving. That is the case for the address associated with your license …</td>
</tr>
<tr>
<td>U3: Can I do my DMV transactions online?</td>
<td>Query</td>
<td>s_id: 56, text: 5. Not Bringing Proper Documentation to DMV Office (A title of section)</td>
</tr>
<tr>
<td>A4: Yes, you can sign up for MyDMV for all the online transactions needed.</td>
<td>Response</td>
<td>s_id: 56, text: Sign up or log into MyDMV</td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U9: Can you tell me more about Traffic points and their cost?</td>
<td>Query</td>
<td>s_id: 40, text: 4. Understanding how Much Traffic Points Cost (A title of section)</td>
</tr>
<tr>
<td>A10: Traffic points is the system used by DMV to track dangerous drivers. The cost …</td>
<td>Response</td>
<td>s_id: 41, text: DMV maintains a point system to track dangerous drivers. Often, motorists convicted …</td>
</tr>
</tbody>
</table>
Tutorial Agenda

Conversational Data Creation

- Evaluation (20 min)
- Task-oriented (45 min)
- Open Domain (30 min)
- Conversational Information Seeking (45 min)
Part 1: Evaluation

Duration: 20 min
Presenter: Faegheh Hasibi
Synthetic Conversation Evaluation

Extrinsic Evaluation
Train the dialogue model with synthetically generated data and evaluate the performance on downstream tasks

Intrinsic Evaluation
Evaluate directly the quality of generated dialogue
- Human evaluation
- Automatic evaluation
The list is non-exhaustive and each paper uses some of these metrics.
Conversation Evaluation

- **Automatic**
 - Reference-based
 - Dist-n, Ent-n, Sent-BERT, USR, Self-BLEU, GEval, UniEval, Simulation
 - Reference-free
 - Word overlap, BERTScore, BARTScore, Coverage, Coreference alignment, Exact match
- **Human**
 - Single-model per-turn, Single-model per-dialogue, Pairwise per-turn, Pairwise per-dialogue
Automatic Reference-based Evaluation

- **Word overlap metrics:**
 - E.g., BLEU (1-3), ROUGE-L (R-L), METEOR, etc.

- **Embedding-based metrics:**
 - E.g., BERTScore and BARTScore (Zhang et al., 2020, (Yuan, et al., 2021)
 - Similarity between the generated and reference text using contextual embeddings

- **Subtask evaluation metrics:**
 - E.g., Coverage, Coreference alignment, Exact match
 (Wu et al., 2022, Kim et al., 2021, Gao et al., 2019)
BERTScore

Reference x
the weather is cold today

Candidate \hat{x}
it is freezing today

Contextual Embedding

Pairwise Cosine Similarity

Maximum Similarity

Image: (Zhang et al., 2020)
BERTScore

Pre-normalized vectors to reduce the calculation to the inner product

Reference \(x \)
the weather is cold today

Candidate \(\hat{x} \)
it is freezing today

\[
R_{\text{BERT}} = \frac{1}{|x|} \sum_{x_i \in x} \max_{\hat{x}_j \in \hat{x}} x_i^\top \hat{x}_j
\]

\[
P_{\text{BERT}} = \frac{1}{|\hat{x}|} \sum_{\hat{x}_j \in \hat{x}} \max_{x_i \in x} x_i^\top \hat{x}_j
\]

\[
F_{\text{BERT}} = 2 \frac{P_{\text{BERT}} \cdot R_{\text{BERT}}}{P_{\text{BERT}} + R_{\text{BERT}}}
\]
BERTScore - Optional IDF Weighting

The effect is marginal and dependent on the domain and test data.
BERTScore

- Strong segment-level correlation with human
- Ineffective at dealing with conversations
Subtask Evaluation Metrics

Span Coverage
- How much the extracted spans cover the original documents
- Dialogue generation models trained on spans with higher span coverage perform better

\[
\text{Coverage} = \frac{\sum_{S} |\bigcup_{d \in \text{doc}_i} \bigcup_{s \in d} S|}{|\text{document}_i|}
\]

S: span within document

(Wu et al., 2022)

Span Match
- Exact Match: the predicted span exactly matches the reference span
- F1 of span n-grams

(Kim et al., 2022)

Correference alignment
- Precision, Recall, and F1 of pronouns

(Gao et al., 2019)
Subtask Evaluation Metrics - TOD

Turn-based evaluation:

- On intent-level: Active Intent Accuracy
- On slot-level: Requested slot F1
- Zero-shot Coverage: Measures the accuracy ratio between zero-shot learning outcomes and a fully trained model (Kim et al., 2021)

Conversation evaluation:

- On goal-level: Success Rate, Completion Rate, Book Rate, Inform Prec/Rec/F1
Conversation Evaluation

Automatic
- Reference-based: Word overlap, BERTScore, BARTScore, Coverage, Coreference alignment, Exact match

Reference-free: Dist-n, Ent-n, Sent-BERT, USR, Self-BLEU, GEval, UniEval, Simulation

Human
- Single-model per-turn, Single-model per-dialogue, Pairwise per-turn, Pairwise per-dialogue
Automatic Reference-free Evaluation

Diversity Metrics:

- **Dist-n** *(Li et al., 2016)*
 - Number of distinct unigrams and bigrams / total number of generated words.

- **Ent-n** *(Zhang et al., 2018)*
 - How evenly the n-gram distribution is over all generated questions.

- **Sent-BERT** *(Reimers et al., 2019)*
 - The average negative cosine similarity between SentenceBERT embedding for each pair of responses.

- **Self-BLEU** *(Zhu et al., 2018)*
 - Uses one sentence from a set as a hypothesis and the rest as references, calculating a BLEU score for each sentence. The average of these scores is termed Self-BLEU.

Mind length normalization in Diversity metrics!
USR: UnSupervised and Reference-free metric for dialog

Consists of five sub-metrics, combined to measure the *Overall Quality* metric.

<table>
<thead>
<tr>
<th>Sub-metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understandable</td>
<td>Response being understandable given the previous context</td>
</tr>
<tr>
<td>Natural</td>
<td>Response being similar to what a person would naturally say</td>
</tr>
<tr>
<td>Maintains Context</td>
<td>Response being a valid continuation of the conversation</td>
</tr>
<tr>
<td>Interesting</td>
<td>Dull or interesting response</td>
</tr>
<tr>
<td>Uses Knowledge</td>
<td>Response using a given fact</td>
</tr>
</tbody>
</table>

(Mehri et al., 2020)
USR: UnSupervised and Reference-free metric for dialog

Uses RoBERTa, fine tuned on dialogue corpus used for evaluation.

<table>
<thead>
<tr>
<th>Understandable</th>
<th>r: response</th>
<th>$\sum_{i} l_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural</td>
<td>i: i-th word of response</td>
<td>l_i: mask log likelihood of word i</td>
</tr>
<tr>
<td>Maintains Context</td>
<td></td>
<td>RoBERTa further fine tuned to predict $P(y=1</td>
</tr>
<tr>
<td>Interesting</td>
<td></td>
<td>y: whether r is true response or randomly sampled</td>
</tr>
<tr>
<td>Uses Knowledge</td>
<td></td>
<td>x: dialogue history and/or the fact</td>
</tr>
<tr>
<td>Overall Quality</td>
<td></td>
<td>Combines sub-metrics using a regression model trained on human annotation</td>
</tr>
</tbody>
</table>

(Mehri et al., 2020)
UniEval

- An aspect-based reference-free evaluator for NLG tasks
- Casts each evaluation aspect to a Boolean QA problem:
 - Coherence: "Is this a coherent summary of the document?"
- Intermediate training of T5 for each task (similar to USR aspects for conversations)
Automatic Simulation-based Evaluation

- Used for evaluating (target-guided) open domain dialogue systems
- Two dialogue agents converse with each other
- Automatically measures the **success rate** of achieving the target
- Often a max. allowed number of turn is set

Agent role:
Randomly picks a target and starting point

Human role:
converse with agent without knowing the target

(Tang et al., 2019)
Conversation Evaluation

Automatic

Reference-based
- Word overlap, BERTScore, BARTScore, Coverage, Coreference alignment, Exact match

Reference-free
- Dist-n, Ent-n, Sent-BERT, USR, Self-BLEU, GEval, UniEval, Simulation

Human

Single-model per-turn, Single-model per-dialogue, Pairwise per-turn, Pairwise per-dialogue
Human Evaluation

- **Evaluation criteria**
 - Naturalness, Informativeness, context relevance, answer accuracy, etc.
 - Overall quality

- **Method of evaluation**
 - **Single-model**: Assigning integer scores (e.g., 1-3) for a question/dialogue
 - **Pair-wise**: Comparing two responses/dialogues and select the best one
 - **Turn-level**: Human rating after every system response
 - **Dialogue-level**: Human rating at the end of conversation

Human evaluations are not comparable across different experiments and papers.
Human Evaluation Methods - Comparison

- Comparison on three aspects: Preference, Humanness, Interestingness
- Three model comparison types: Length, parameter size, Fine-tuning

Image: (Michael Smith et al., 2022)
Human Evaluation Methods - Comparison

- **Per-turn evaluation**: More fine-grained, can capture small differences

- **Pairwise per-turn evaluation**: Performs best on fine tuning comparison
 - Differences in models’ replies are easily detectable

- **Pairwise per-dialogue evaluation**: Performs best on length comparison
 - Differences appear after several conversation turns

- **Single model evaluation**: Performs best on model size comparison (#params)
 - Slight differences in quality

(Michael Smith et al., 2022)
Part 2: Conversation Generation - Task Oriented

Duration: 45 min
Presenter: Roxana Petcu
Task-Oriented Dialogue (TOD) System

Definition

- **Structured interactions** focused on **completing a specific task** and **reaching the user goal**.

Examples of tasks

- Booking a flight, reserving a restaurant table, asking a chatbot about available non-dairy products at an online supermarket

Challenges

- **Constraints on the task and domain**
 - Example: making a restaurant reservation requires adhering to constraints: location availability, matching user’s cuisine, table must fit party size
- **Diverse user goals**
- **Lack of specialized datasets**
User: Book a restaurant in Orlando for 4 people.

System: What type of food and price range should I look for?

User: I'd like a moderately priced taiwanese restaurant.

System: How about the Formosan Garden restaurant? And at what time do you want the reservation?

User: Formodan Garden is perfect! Make the reservation at 8PM.

System: I just made a reservation for Formodan Garden in the Centre of Orlando at 8PM. The reservation is made for 4 people.
TOD Data Generation

Essential components

- Roughly 4 modules; they can be (1) in an end-to-end fashion, or (2) modular approach (see Figure)
TOD Data Generation

Essential components

- Roughly 4 modules; they can be (1) in an end-to-end fashion, or (2) modular approach (see Figure)

Natural Language Understanding (NLU): this module receives as input a conversational turn in natural language form. The goal is to process the input and extract intents, slots and values for the identified slots.
TOD Data Generation

Essential components

- Roughly 4 modules; they can be (1) in an end-to-end fashion, or (2) modular approach (see Figure)

Dialogue State Tracking (DST):
this module receives as input the conversation history and output of the NLU module (which corresponds to the current turn of the dialog) and produces the necessary slots that should be filled to approach the user goal.
TOD Data Generation

Essential components

- Roughly 4 modules; they can be (1) in an end-to-end fashion, or (2) modular approach (see Figure)

Dialogue Policy Learning (DPL): receives as input the slots that must be filled in, and outputs values that would be satisfactory next actions based on the current dialogue state.
TOD Data Generation

Essential components

- Roughly 4 modules; they can be (1) in an end-to-end fashion, or (2) modular approach (see Figure)

Natural Language Generation: receives as input the DPL output, and converts it into natural language representation.
TOD Data Generation - Training

Rule-based systems

Training approaches

- Supervised training
 - Offline training
 - Needs a lot of annotated data (data scarcity problems)
- Reinforcement learning
 - Enables real-time dialogue generation
 - Requires less data
 - **Simulates** real-world interactions
A conversation inherently involves 2 participants (at least)

Concept of simulation: have something akin a user to produce part of the dialogue and interact with the dialog system

A Simulator can be:
- Pre-trained (One-sided simulation)
- Co-trained alongside the dialog system (Two-sided simulation)
TOD Data Generation - Simulation

Simulation

- Two-sided simulators are usually referred to as:
 - *User Bot* and *Agent Bot* (see Simulated-Chat example)
 - *User Bot* and *System Agent*
 - *User Bot* and *Dialogue System*
 - *User Simulator* and *Dialogue System*
 -

(Mohapatra et al., 2021)
How to split TOD Generation systems?

Where to get the input?

slots and values

<table>
<thead>
<tr>
<th>Slot Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train destination</td>
<td>Cambridge</td>
</tr>
<tr>
<td>Train departure</td>
<td>London King’s Cross</td>
</tr>
<tr>
<td>Time the train should arrive by</td>
<td>3pm</td>
</tr>
<tr>
<td>Time the train should leave by</td>
<td>(unspecified)</td>
</tr>
<tr>
<td>Day the train should run</td>
<td>Wednesday</td>
</tr>
</tbody>
</table>

What to generate?

- Could you help me find a train to Cambridge on Wednesday?
- Sure! What station would you like to leave from? And when would you like to depart?
- London King’s Cross. I was wondering if there are any trains that arrive by 3pm.

How to verify?

With Input?

- Post processing
 - Pre-processing
 - Modify data before training
 - In-processing
 - Modify algorithm that is trained
 - Post-processing
 - Modify predictions of model

None?
Task-Oriented Conversation Generation

Step 1) Input
- Provided (KB, DB, Schema, Ontology)
- No Input (from training data)

Step 2) Generation Method
- Predefined Language Templates
- Natural Language Around Input
- Natural Language Conditioned on Input
- Variational Inference
- Few-shot Learning
- In-Context Learning

Step 3) Quality Filtering / Factuality
- Ensured with Provided Input
- Factuality Check during Post-Processing
- None

Methods:
- ABUS, M2M, SGD, NUS, NeuralWOZ, HUS, VHUS, TUS, Joust, Unified-US, IND
- VHDA, Simulated-Chat, ICL-US, Dialogic, INA
Task-Oriented Conversation Generation

Step 1) Input
- Provided (KB, DB, Schema, Ontology)
- No Input (from training data)

Step 2) Generation Method
- Predefined Language Templates
- Natural Language Around Input
- Natural Language Conditioned on Input
- Variational Inference
- Few-shot Learning
- In-Context Learning

Step 3) Quality Filtering / Factuality
- Ensured with Provided Input
- Factuality Check during Post-Processing
- None

Models:
- ABUS, M2M, SGD, NUS, NeuralWOZ, HUS, VHUS, TUS, Joust, Unified-US, IND
- VHDA, Simulated-Chat, ICL-US, Dialogic, INA
Component 1: Input

TOD systems are constructed around:

- **Entities** like Restaurant, Customer, or Movie
- Based on the entity, there are:
 - **Slots** like Cuisine, Party Size, Date, Time
 - **Slot Values** like French, 2 people, January 25th, 19:00
- **Entities, Slots, and Slot Values** are usually extracted from some predefined knowledge that contains information that Cuisine can be French but cannot be Metallic; or that Time can be 19:00 but cannot be 25:00
- **Predefined knowledge** is usually represented in graphical structures such as:
 - Schema / Ontology
 - Knowledge Graph / Database
Fig. 4. Example of a schema for the restaurant reservation task; each table represents a class (entity) with its attributes (slots); * indicates the primary key (mandatory for each class), and **boldface** indicates the foreigner key used to connect two classes.
Component 1: Input

Schema / Ontology:

- Contains entities, slots, and the relationship between entities (ex: Reservation "is made by" Customer)

Fig. 5. Example of an ontology for the restaurant reservation task.
Component 1: Input

Schema / Ontology:

- Goal: The dialog system can use these general structures to ask relevant questions. They contain information about the **semantics** of the dialogue and **not** about **instantiations** of entities.
- Limitation: General structures do not contain real-world data or restrictions on the possible slot values. For data generation, this means that a dialogue may evolve around combinations of slot values that do not exist, e.g. a restaurant called *Moeders* that specializes in *japanese cuisine*.
Component 1: Input

Database / Knowledge Graph:
- Contains entities, slots, and values

Fig. 4. Example of a schema for the restaurant reservation task; each table represents a class (entity) with its attributes (slots); * indicates the primary key (mandatory for each class), and boldface indicates the foreigner key used to connect two classes.
Component 1: Input

Database / Knowledge Graph:
- Contains entities, slots, the relationship between entities, and values.

Diagram:
- Restaurant (Gourmet Bistro)
 - Location: NY
 - Cuisine: French
 - Price: $$$
 - Rating: 5 stars
 - Opening: 6PM-11PM
- Reservation
 - Date: 12 Feb
 - Time: 8PM
 - Party Size: 4
 - Request: Vegan
- Made by
- Customer (Francine Smith)
 - Contact: Francine's Street, 1245
 - Preferences: Window Table
Component 1: Input

Database / Knowledge Graph:
- Goal: Links to real entities and is updated in real-time.
- Limitation: Difficult to build for every problem.

NOTE:
- DB is an instantiation of a Schema
- KG is an instantiation of an Ontology
Component 1: Input

TOD key terms:

- **Intent**
- **Dialogue Act**
- **(User) Goal**
- **Dialogue Frame**

Inform<date="tomorrow", time="8PM", restaurant="LaCongerie", cuisine="french">

- **Belief State / Dialogue State**

Inform<date="tomorrow", time="8PM", restaurant="LaCongerie", cuisine="french">,
Request<party_size>

User: Book a restaurant in Orlando for 4 people.

System: What type of food and price range should I look for?

User: I’d like a moderately priced Taiwanese restaurant.
Input Provided vs No Input

Provided:
- If provided, slots and slot values are plugged into the dialogue system and natural language are generated around/conditioned on them
- Guarantees factuality

ABUS, M2M, SGD, NUS, NeuralWOZ, HUS, VHUS, TUS, Joust, Unified-US, IND

Not Provided:
- It not provided, the dialogue system must learn them through training
- Does NOT guarantee factuality

VHDA, Simulated-Chat, ICL-US, Dialogic, INA
Component 2: Generation Method

Step 2) Generation Method

- Predefined Language Templates: ABUS, M2M, SGD
- Natural Language Around Input: NUS, NeuralWOZ
- Natural Language Conditioned on Input: HUS, VHUS, TUS, Joust, Unified-US, IND
- Variational Inference: VHDA
- Few-shot Learning: Simulated-Chat
- In-Context Learning: ICL-US, Dialogic, INA

Provided Input (intent, slots, slot values)
No Input (training data in the form of dialogues)
Generation Method - Predefined Language Templates

- Access to intents, slots and slot values that are plugged-in predefined templates
- Referred to as agenda-based approaches
- Task-dependent!
- Follow a predetermined set of templates (outlines) for generating dialog turns
- Example:
 - the **intent** `<book_movie>` can be associated with template "Book movie with [name="value"] and [date="value"]"
 - for **Inform**<intent=book_movie, name=Inside Out, date=tomorrow>
 - The template is filled and generates the turn "Book movie with name Inside Out and date is tomorrow."
- Paraphrasing can be added to generate more diverse human-like turns:
 - “I want to buy tickets for Inside Out for tomorrow”
Generation Method - Predefined Language Templates

ABUS (Li et al., 2017)

- Input: agenda and example dialogues
 - agenda is used as a stack-like representation for user states
 - example dialogues are used for training a simulator

- Simulator: using RL policy

- Challenge addressed: training dialogue systems to respond accurately and in-real time
Generation Method - Predefined Language Templates

M2M (Shah et al., 2018)

- Input: multiple agendas and task specification (it has access to multiple APIs, each API has a task-dependent agenda)
- Simulator: using RL policy
- Challenge addressed: enhances generalizability by allowing to scale to new tasks and domains if provided a new API
Generation Method - Predefined Language Templates

SGD (Rastogi et al., 2020)

- Input: multiple agendas and task specification (it has access to multiple APIs, each API has a task-dependent agenda)
- Simulator: using RL policy
- Challenge addressed: in the real world, multiple services have overlapping functionality. The authors build a single unified model for all services by having dynamic APIs that allow for sharing knowledge between services.
- Spans over 26 services, 16 domains, resulting in a 16k dialogue dataset
- They use crowdsourcing for paraphrasing

![Figure 2: The overall architecture of the dialogue simulation framework for generating dialogue outlines.](image-url)
Generation Method - Natural Language Around Input

- Access to intents, slots and slot values that are plugged-in **generated** natural language utterances
- No language templates
- Natural Language Generation -> generations are more versatile
- Requires less human-involvement

NUS / NeuralWOZ (Kreyssig et al., 2018, Kim et al., 2021)

- Eliminates **hand-crafted templates**, but still uses API calls
- Corpus-driven
- (NUS) Dynamic goal generation: the system can dynamically change the goal, assuming the user would want to shift their goal mid-conversation
Generation Method - Natural Language Conditioned on Input

- Access to intents, slots and slot values that are used as input to generate natural language utterances

HUS (Gür et al., 2021)
- Same family as ABUS and NUS
- Employs a multifaceted encoding scheme: it encodes different features in different vector representations (the user goal, the current dialogue turn, the dialogue history)

VHUS (Gür et al., 2021)
- HUS but created more human-like generations
- How? HUS is deterministic, while VHUS introduces variability through variational inference
- VHUS models the dialog latent space without affecting the slots and values extracted from a KB
Generation Method - Natural Language Conditioned on Input

TUS (Lin et al., 2021)
- Similarly to VHUS, TUS maps different inputs to different representations in the feature space.
- BUT it is domain-agnostic.
- By adding a domain and slot index feature representation that can be changed.

JOUST (Tseng et al., 2021)
- Simulator: two pre-trained agents, fine-tuned using RL.
- Novelty is added by fine-tuning on multi-domain dialogues.
Generation Method - Natural Language Conditioned on Input

JOUST (Tseng et al., 2021)

Figure 1: Overall architecture of the proposed framework, where the dialogue system (DS) and user simulator (US) discourse with each other. t denotes dialogue turn index. The context encoder is shared between the two agents.
Generation Method - Natural Language Conditioned on Input

INA (Ahmad et al., 2023)

- Simulator: two pre-trained agents, fine-tuned using RL
- Negotiation in a win-win manner, meaning each party must understand the other’s needs and goal is mutual satisfaction
- Generates a Negotiation Dialogue dataset using negotiation-specific intents
- Novelty: adds negotiation-intents such as Negotiate-Price-Decrease, Add-X, ..
- Data correction with human-in-the-loop for quality check
- Uses GPT-J for generation
- Challenge: negotiation strategies are highly context-dependent, so it adds a layer of complexity compared to the previous approaches
Generation Method - Variational Inference

VHDA (Yoo et al., 2020)

- **NO predefined knowledge**
- Input: human-generated dialogues
- Models latent variables over all dialogue aspects similar to VHUS, and TUS, but this time also for learning **intents**, **slots** and **slot values**
- Allows for the model to generate attributes beyond the training data
- However, there is no guarantee these generations are valid (we will discuss this more in part 3 of this section)

![Graphical representation of VHDA](image)

Figure 1: Graphical representation of VHDA. Solid and dashed arrows represent generation and recognition respectively.
Generation Method - Few-shot learning

Simulated-Chat (Mohapatra et al., 2021)

- **NO predefined knowledge**
- Few-shot learning: the ability of a model to generalize when provided a very small dataset for training or fine-tuning
- Input: set of instruction based on which an LLM can generate dialogues
- Uses GPT-2 and Longformer
- First receives human-generated dialogues, then self-generated simulated dialogues
Generation Method - In-context learning

ICL-US (Terragni et al., 2023)

- **NO predefined knowledge**
- In-context learning: the ability of a model to generalize when provided a very few examples in the input prompt without explicitly training or fine-tuning
- Input: set of instruction based on which an LLM can generate dialogues and example dialogues

Figure 1: System and user simulator architecture sketch.
Generation Method - In-context learning

Dialogic *(Li et al., 2023)*

- **NO predefined knowledge**
- Input: set of instruction based on which an LLM can generate dialogues and example dialogues
- In-context learning: the ability of a model to generalize when provided a very few examples in the input prompt without explicitly **training** or **fine-tuning**

Figure 2: Overview of the proposed method.
Component 3: Quality Filtering

Ensured with Provided Input
- When extracting slots and slot values from Ontology, Schema, KG and DB, factuality is granted
- ABUS, M2M, SGD, NUS, NeuralWOZ, HUS, VHUS, Joust, Unified-US

None
- Although uncommon, approaches such as VHDA ensure semantic logic of dialogue turn but does not constrict, or edit generations given lack of factuality or lack of plausible interactions.
Component 3: Quality Filtering

Factuality Check during post-processing

- Methods that discover slots and slot values in the latent space
- Dialogic has a step called automatic revision, where it corrects for potential errors by comparing GPT-3 generated belief states with the current utterance; The errors can be either due to de-generation or over-generation
- ICL-US adds an evaluation step by comparing all dialogue act extracted from the generated system and User NLU competent at each turn

Figure 5: Illustration of the controllable generation process of a dialogue turn. An example of the generation process of a complete dialogue is shown in Appendix C.1 as Table 9.
Part 3: Conversation Generation - Open Domain

Duration: 30 mins
Presenter: Heydar Soudani
Open Domain Dialogue (ODD) System

Definition

- Engage users in conversations across a wide variety of topics
 - without being confined to specific tasks or domains

Key Features of ODD

- **Coherence**: Conversation’s turns meaningfully connect to each other
- **Diversity**: Avoid bland and repetitive responses & encourage engaging interactions
- **Generality**: Encompass a broad spectrum of topics
- **Informativeness**: Elicit informative responses, knowledgeable and relevant conversations

(Ni et al., 2023) (Mehri et al., 2020) (Hwang et al., 2022) (Hwang and Lee, 2022)
ODD Data Generation

Unstructured data → Input Generation → Utterance Generation → Quality Filtering → Filtered Conversation Dataset

Example

Conversation Seed

Participants:
Madeleine, Coach

Description:
Madeleine took the first step towards her goal, and with her coach’s encouraging words, she moves one step closer.

(Kim et al., 2023)
ODD Data Generation

Unstructured data → Input Generation → Conversation Seed → Utterance Generation → Conversation Dataset → Quality Filtering → Filtered Conversation Dataset

Example (Kim et al., 2023)

Conversaion Seed

Participants:
Madeleine, Coach

Description:
Madeleine took the first step towards her goal, and with her coach’s encouraging words, she moves one step closer.

Prompt GPT-3.5 to generate a full, multi-turn conversation

Conversation Sample

Madeleine: Hey coach, I wanted to talk to you about my performance today. I was really pushing …
Coach: Well Madeleine, you’re progressing nicely. You’ve come a long way since we first started working together. But if you want to reach your full potential, …
Madeleine: I know that. And I’m willing to put in the work. It’s just that …
Coach: It could be a number of things, Madeleine. But don’t worry, we’ll figure it …
Madeleine: Alright, coach. Thanks for the talk.
Coach: No problem. See you at practice tomorrow
ODD Data Generation

Unstructured data → Input Generation → Conversation Seed → Utterance Generation → Quality Filtering → Filtered Conversation Dataset

Example

(Kim et al., 2023)

Conversation Seed

Participants:
Madeleine, Coach

Description:
Madeleine took the first step towards her goal, and with her coach’s encouraging words, she moves one step closer.

Prompt GPT-3.5 to generate a full, multi-turn conversation

Conversation Sample

Madeleine: Hey coach, I wanted to talk to you about my performance today. I was really pushing myself and I think I did pretty well. But I’m still not quite where I want to be.

Coach: Well Madeleine, you’re progressing nicely. You’ve come a long way since we first started working together. But if you want to reach your full potential, there’s still some work to be done.

Madeleine: I know that. And I’m willing to put in the work. It’s just that sometimes I feel like I’m not making as much progress as I should be. Maybe I’m not training hard enough? Or maybe my technique is off?

Coach: It could be a number of things, Madeleine. But let’s just keep working hard and see how things go.

Madeleine: Alright, coach. Thanks for the talk.

Coach: No problem. See you at practice tomorrow.
Open Domain Conversation Generation

(1) Input Generation
- Existing Dialogues: WEAKDAP, AUGESC, GCN / BOTSTALK / PLACES
- Triplet from KG: SODA
- Personalized Profile: PERSONACHATGEN, SPC

(2) Utterance Generation
- One Go: PLACES, SODA / AUGESC, GCN / SPC
- Turn By Turn: PERSONACHATGEN, BOTSTALK, WEAKDAP

(3) Quality Filtering
- Noise & Lexical Filtering: SODA, AUGESC, PERSONACHATGEN, SPC
- Consistency Filtering: SPC, BOTSTALK, PERSONACHATGEN
Open Domain Conversation Generation

(1) Input Generation
- Existing Dialogues: WEAKDAP, AUGESC, GCN / BOTSTALK / PLACES
- Triplet from KG: SODA
- Personalized Profile: PERSONACHATGEN, SPC

(2) Utterance Generation
- One Go: PLACES, SODA / AUGESC, GCN / SPC
- Turn By Turn: PERSONACHATGEN, BOTSTALK, WEAKDAP

(3) Quality Filtering
- Noise & Lexical Filtering: SODA, AUGESC, PERSONACHATGEN, SPC
- Consistency Filtering: SPC, BOTSTALK, PERSONACHATGEN
Input Generation

- What is the conversation seed and why has it been defined for the generation process
- **Conversation Seed**: An information card containing a main topic, subtopics, and key details about the topic
- The conversation about this topic is going to take place

Example from ESConv dataset

(Liu et al., 2021)

Conversation Seed

- **Experience type**: Previous experience
- **Emotion type**: Anxiety
- **Problem type**: job crisis
- **Situation**: I hate my job but I am scared to quit and seek a new career

Conversation Sample

- **Supporter**: Hello, what would you like to talk about?
- **Seeker**: I am having a lot of anxiety about quitting my current job. It is too stressful but pays well.
- **Supporter**: What makes your job stressful for you?
- **Seeker**: I have to deal with many people in hard financial situations and it is upsetting.
- **Supporter**: Do you help your clients to make it to a better financial situation?
 ...

(Kim et al., 2023), (Zheng et al., 2023)
Using background information directly
The task description and starting utterance are selected from existing dataset

AugESC (Zheng et al., 2023)

The following is a conversation with an AI assistant. The assistant is helpful, empathetic, clever, and very friendly. It can use various support skills to provide emotional support to human.

Human: I moved into a new state recently, and there’s a lot to do, but I don’t have any friends in the new place I stay at.
AI: What’s it like being away from family?
Human: Family is all I have here. They aren’t exactly close, so I haven’t gotten to see them in a while.
AI: That must be difficult. How do you feel about where you live?
Human: It’s OK. I’m learning to like it a little bit. At least now I have someone who is usually around when I wake up.
AI: If only you were that lucky with people in general. People move for so many different reasons. I’ve found that often when I move, I just need to adjust my social circle a little, and I find that I then end up liking where I am.
Human: That’s true. Maybe I should just find some people to hang out with.

Human generates background information
Given a list of topics and tasks, humans are asked to generate background info and some dialogue samples

PLACES (Chen et al., 2022)

Topic: Relationships
Background info: Bob got engaged

<Conversation 0>
The following is a conversation between Alice and Bob about relationships. Bob recently got engaged.
Alice: Congrats on your engagement! When do you think you will have your wedding?
Bob: Thank you!! We’re thinking of having it in November.
Alice: That’s amazing! Will you pick a fancy destination?
...
Input Generation - Triplet from KG

- Input: A Knowledge Graph
- **SODA**: social dialogue
- Generation Technique:
 - Sample a socially relevant triplet
 - Define the conversation participants

Example

Triplet from Atomic 10x:
- **Head**: PersonX moves a step closer to the goal
- **Relation**: xNeed
- **Tail**: to take the first step

Name participants:
Speakers: Madeleine, Coach

(Kim et al., 2023)
Input Generation - Triplet from KG

- Input: A Knowledge Graph
- Generation Technique:
 - Sample a triplet
 - Define the conversation participants
 - Convert the triplet to a sentence
 - Expand the sentence

Example

Triplet to Sentence:
Madeleine took the first step. Madeleine moves a step closer to the goal

Sentence to Description:
Madeleine took the first step towards her goal, and with her coach’s encouraging words, she moves one step closer.

(Kim et al., 2023)
Input Generation - Personalized Profile

Personalized Dialogue Systems

- User Profile (UP)
- Profile Sentences (PS)
 - Contain personalized information about the user

Fig. from PersonaChat dataset (Zhang et al., 2018)

<table>
<thead>
<tr>
<th>Persona 1</th>
<th>Personas 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>I like to ski</td>
<td>I am an artist</td>
</tr>
<tr>
<td>My wife does not like me anymore</td>
<td>I have four children</td>
</tr>
<tr>
<td>I have went to Mexico 4 times this year</td>
<td>I recently got a cat</td>
</tr>
<tr>
<td>I hate Mexican food</td>
<td>I enjoy walking for exercise</td>
</tr>
<tr>
<td>I like to eat cheetos</td>
<td>I love watching Game of Thrones</td>
</tr>
</tbody>
</table>

[PERSON 1:] Hi
[PERSON 2:] Hello! How are you today?
[PERSON 1:] I am good thank you, how are you.
[PERSON 2:] Great, thanks! My children and I were just about to watch Game of Thrones.
[PERSON 1:] Nice! How old are your children?
[PERSON 2:] I have four that range in age from 10 to 21. You?
[PERSON 1:] I do not have children at the moment.
[PERSON 2:] That just means you get to keep all the popcorn for yourself.
[PERSON 1:] And Cheetos at the moment!
[PERSON 2:] Good choice. Do you watch Game of Thrones?
[PERSON 1:] No, I do not have much time for TV.
[PERSON 2:] I usually spend my time painting: but, I love the show.
Input Generation - Personalized Profile

Generation steps

1) Collect/Generate a pool of PS
 - Given a list of topics, a LLM generates
 - Using PSs from PersonaChat dataset
 ○ Prompt a LLM to generate more PS

2) Group number of PS to create a UP
 - Contradiction score using NLI classifier

3) Filtering
 - Heuristic: Do not follow the template

Example

User’s persona: Want | Activity
Generate five profile sentences related to the given user’s persona and the "activity" in each sentence:
1. I have always wanted to travel to Ireland or Puerto Rico. (activity: travel)
2. I hope to visit Quebec, Canada someday. (activity: travel)
3. One day I would really like to skydive. (activity: skydiving)
4. Before I die, I want to skydive. (activity: skydiving)
5. I hope to see the world with my husband. (activity: travel)

User’s persona: Preference | Movie | Title
Generate five profile sentences related to the given user’s persona and the "movie title" in each sentence:
1. I am a big fan of the Lord of the Rings movies. (movie title: Lord of the Rings)
2. I love all of the Harry Potter movies. (movie title: Harry Potter)
3. The Hobbit is one of my favorite movies. (movie title: The Hobbit)
4. I have seen all of the Star Wars movies. (movie title: Star Wars)
5. I enjoy watching Marvel movies. (movie title: Marvel)

(Lee et al., 2022), (Jandaghi et al., 2023)
Input Generation - Personalized Profile

Generation steps

1) Collect/Generate a pool of PS
 - Given a list of topics, a LLM generates
 - Using PSs from PersonaChat dataset
 o Prompt a LLM to generate more PS

2) Group number of PS to create a UP
 - Contradiction score using NLI classifier

3) Filtering
 - Heuristic: Do not follow the template

Example

I am studying at a community college.
I am a teacher at the high school.
"The Great Gatsby" is another book I enjoy.
I’m a big fan of the violin.
I love reading books that are full of adventure.

(a) An example of persona set containing contradiction between profile sentences

I am a very creative and imaginative person.
My older sister is a doctor.
I love to read books that are science fiction.
I enjoy watching suspenseful movies.
I have to be very careful in the springtime because of my allergies.

(b) An example of persona set containing no contradiction between profile sentences

(Lee et al., 2022), (Jandaghi et al., 2023)
Input Generation - Personalized Profile

Generation steps

1) Collect/Generate a pool of PS
 - Given a list of topics, a LLM generates
 - Using PSs from PersonaChat dataset
 - Prompt a LLM to generate more PS

2) Group number of PS to create a UP
 - Contradiction score using NLI classifier

3) Filtering
 - Heuristic: Do not follow the template

(Lee et al., 2022), (Jandaghi et al., 2023)
Component 2: Utterance Generation

Objective: Convert “Conversation Seed” to “Conversation Sample”

Example from PERSONACHATGEN
(Lee et al., 2022)

Conversation Seed

P1’s Persona:
I love food and I love to eat.
I am a woman who loves fashion.
I love reality TV.
I prefer to watchcomedies.
I have hay fever.

P2’s Persona:
I’ve been to Italy three times.
I graduated from Yale.
I’ve read all of the books by Jodi Picoult.
I’m a big fan of books, and my favorite genre is fantasy.
I have asthma and it makes it hard to breathe sometimes.

Conversation Sample

P1: Hey, how are you?
P2: I’m good, *just got back from Italy.*
P1: Oh, how was it?
P2: It was great, I love it there.
P1: What did you eat?
P2: Everything, I love Italian food.
P1: That sounds amazing, I need to go there sometime.
P2: Yeah, you should definitely go. It’s a great place.
P1: I also love fashion, do you follow any trend?
P2: No, not really. I prefer classic styles.
P1: That’s cool, I like to watch reality TV.
P2: Yeah, I don’t really watch much TV. I prefer to read.
P1: That’s great, what do you like to read?
P2: I like to read books, my favorite genre is fantasy.
P1: That’s great, I have hay fever so I can’t really read outside.
P2: Yeah, I have asthma so it’s hard for me to breathe sometimes.
Open Domain Conversation Generation

(1) Input Generation
- Existing Dialogues: WEAKDAP, AUGESC, GCN / BOTSTALK / PLACES
- Triplet from KG: SODA
- Personalized Profile: PERSONACHATGEN, SPC

(2) Utterance Generation
- One Go: PLACES, SODA / AUGESC, GCN / SPC
- Turn By Turn: PERSONACHATGEN, BOTSTALK, WEAKDAP

(3) Quality Filtering
- Noise & Lexical Filtering: SODA, AUGESC, PERSONACHATGEN, SPC
- Consistency Filtering: SPC, BOTSTALK, PERSONACHATGEN
Utterance Generation - One Go

1) ICL: Only prompting, wo. Fine tuning

(Chen et al., 2022)
2) First Fine-tune on Dialogue Completion task, then prompt

(1) Fine-tuning LM

Dialogue Samples → Autoregressive LM

(2) Dialogue Completion

Human: → Starting Utterance

AI:

Human: → Completed by LM

AI:

The following is a conversation with an AI assistant.
The assistant is helpful, empathetic, clever, and very friendly. It can use various support skills to provide emotional support to human.

Human: I moved into a new state recently, and there’s a lot to do, but I don’t have any friends in the new place I stay at.

AI: What’s it like being away from family?

Human: Family is all I have here. They aren’t exactly close, so I haven’t gotten to see them in a while.

AI: That must be difficult. How do you feel about where you live?

Human: It’s OK. I’m learning to like it a little bit. At least now I have someone who is usually around when I wake up.

AI: If only you were that lucky with people in general. People move for so many different reasons. I’ve found that often when I move, I just need to adjust my social circle a little, and I find that I then end up liking where I am.

Human: That’s true. Maybe I should just find some people to hang out with.
3) Prompting with Generator-Critic Architecture

(Jandaghi et al., 2023)
3) Prompting with Generator-Critic Architecture

(Jandaghi et al., 2023)
3) Prompting with Generator-Critic Architecture

(Jandaghi et al., 2023)
Utterance Generation - Turn-by-Turn

Reason 2: Merging multiple conversation datasets

- **Two persona Profiles**
 - two LLMs, User simulation

<table>
<thead>
<tr>
<th>Person A</th>
<th>Person B</th>
</tr>
</thead>
</table>
| Skill context from ConvAI2
 I like to play soccer; I like to read; ... |
| Skill context from WoW
 Nike Inc. |
| Skill context from ED
 I really like this girl at my job, but I am ... ; Apprehensive |

| Skill context from ConvAI2
 I have 3 children; I am a karate black belt; ... |
| Skill context from WoW
 Nike Inc.; ... multinational corporation ... Air Jordan ... |
| Skill context from ED
 None |

Dialogue

A: Do you have much experience using the different types of cleats? Which do you like best? [P]
B: I have a little. I also know about Air Jordans, a brand of footwear also popular with athletes. [K]
A: I enjoy Air Jordans as well. I like to play soccer, and it’s extremely hard to get good footwear. [P]
B: I agree. Air Jordans are good for calves, and it’s really easy to pull off. [K]
A: Air Jordans are generally made with the most material so it makes sense they’d be easy to use. [K]
B: And now shoes can go together with clothes as well, like any other type of material. [K]
A: Do you know much about aeros then? They have excellent fit and beauty. [K]
B: I have a hard time finding it but they are great shoes. [P]
A: I hope you can find ones that are comfortable to you. [E]
B: Yes. I hope you can get those shoes too. [E]
Original Conversation

Turn 1: Alice in a happy mood: Oh, man. I had the best supper last night. My wife made a stir-fry and it was amazing!

Turn 2: Bob in a happy mood: I love stir fry crispy bite size vegetables covered in a mixture of soy sauce and oyster sauce. Wilted greens and fresh bean sprouts. Throw in some onion and garlic and ginger! Mmm! Mmm! It's almost lunchtime. I would die for a plate of stir fry right now!

Turn 3: Alice in a neutral mood: Well, you can keep the vegetables, I'll take the meat. The stir fry my wife made was really hearty, with chunks of beef and slivers of bell peppers and onion...

Turn 4: Bob in a surprised mood: What? You call that a stir fry? More meat than vegetables? That's the worst insult you could throw at a Chinese stir fry. What disgrace to the wok she fried it in! What you had is equivalent to a fajita without the wrap!

Augmented Conversation

GT Turn 1: Alice in a happy mood: Oh, man. I had the best supper last night. My wife made a stir-fry and it was amazing!

GT Turn 2: Bob in a happy mood: I love stir fry crispy bitesize vegetables covered in a mixture of soy sauce and oyster sauce. Wilted greens and fresh bean sprouts. Throw in some onion and garlic and ginger! Mmm! Mmm! It's almost lunchtime. I would die for a plate of stir fry right now!

Generated Turn 3: Alice in a neutral mood: Stir fry is good. When my dad cooks, he makes stir fry for us.

Generated Turn 4: Bob in a surprised mood: Stir fry was was the only Asian food I had until I was ten. I've never known what it was called!
Original Conversation

Turn 1: Alice in a surprised mood: My goodness! She is thirty seconds faster than the world record in 5000 metres race.

Turn 2: Bob in a surprised mood: Excuse me, what did you say?

Turn 3: Alice in a happy mood: A Chinese girl has broken the world record in the Olympic Games.

Turn 4: Bob in a surprised mood: That's incredible. I can't believe it.

Turn 5: Alice in a happy mood: You have to. It is sure.

Turn 6: Bob in a surprised mood: So, what's her name?

Augmented Conversation 1

GT Turn 1: Alice in a surprised mood: My goodness! She is thirty seconds faster than the world record in 5000 metres race.

GT Turn 2: Bob in a surprised mood: Excuse me, what did you say?

Generated Turn 3: Alice in a happy mood: I said my goodness, that girl is fast.

Augmented Conversation 2

GT Turn 1: Alice in a surprised mood: …

GT Turn 2: Bob in a surprised mood: …

GT Turn 3: Alice in a happy mood: A Chinese girl has broken the world record in the Olympic Games.

Generated Turn 4: Bob in a surprised mood: I am dying to know who is the girl?

Augmented Conversation 3

GT Turn 1: Alice in a surprised mood: …

GT Turn 2: Bob in a surprised mood: …

GT Turn 3: Alice in a happy mood: A Chinese girl has broken the world record in the Olympic Games.

GT Turn 4: Bob in a surprised mood: That's incredible. I can't believe it.

Generated Turn 5: Alice in a happy mood: This is the first time in the history of the world

Augmented Conversation 4

…

Reason 3: More diversity and quantity

Trajectory Augmentation

All-turn Augmentation

Last-turn Augmentation

(Chen et al., 2022)
Augmented Conversation

GT Turn 1: Alice informs Bob: Good morning.
GT Turn 2: Bob informs Alice: Er, good morning, yes, er...
GT Turn 3: Alice directs Bob: I'm phoning about the job that was in the paper last night.
GT Turn 4: Bob directs Alice: Oh, yes. Erm, well, could you tell me your name, please?
GT Turn 5: Alice informs Bob: Oh, Candida Fawcett.
GT Turn 6: Bob questions Alice: Oh, yes. Erm, well, what exactly is it that interests you about the job?
GT Turn 7: Alice informs Bob: Well, I just thought that it was right up my street you know.
GT Turn 8: Bob directs Alice: Really, hmmm. Erm, well, could you perhaps tell me a little about yourself?
GT Turn 9: Alice informs Bob: Yes, arm, I'm 23. I've been working abroad, I'm um...

Generated Turn 10: Bob informs Alice: Well, perhaps you would like to think it over. Erm, and er...

Reason 3: More diversity and quantity

Trajectory Augmentation

All-turn Augmentation

Last-turn Augmentation

(Chen et al., 2022)
Open Domain Conversation Generation

(1) Input Generation
- Existing Dialogues
 - WEAKDAP, AUGESC, GCN / BOTSTALK / PLACES
- Triplet from KG
 - SODA
- Personalized Profile
 - PERSONACHATGEN, SPC

(2) Utterance Generation
- One Go
 - PLACES, SODA / AUGESC, GCN / SPC
- Turn By Turn
 - PERSONACHATGEN, BOTSTALK, WEAKDAP

(3) Quality Filtering
- Noise & Lexical Filtering
 - SODA, AUGESC, PERSONACHATGEN, SPC
- Consistency Filtering
 - SPC, BOTSTALK, PERSONACHATGEN
Component 3: Quality Filtering

Objective
- Remove conversions do not contain ODD features
 - (e.i. Correctness, Diversity, Consistency, Informativeness)

Noise & Lexical Filtering:
Checking the Correctness, Diversity

Approach: Heuristic rules
- Unfinished conversations
- Do not follow the wanted patterns
- Contain repetitive pattern
- Dangerous or Toxic context with social bias

(1) Kim et al., (2023), (Zheng et al., 2023), (Lee et al., 2022)

Consistency Filtering:
Checking the consistency

- Between the turns
- Between persona sentences in one user profile

Approach: NLI Classifier

(1) Kim et al., (2022), (Lee et al., 2022), (Jandaghi et al., 2023)
Part 4: Conversation Generation - Information Seeking

Duration: 45 min
Presenter: Heydar Soudani
Conversational Information Seeking (CIS)

- The main goal of CIS is fulfill users’ information needs
- Allow users to search information using natural language dialogue, instead of traditional search queries

Key Features of CIS

- Generation control, Topic shifting
- Multi-evidence answer generation
- Query ambiguity, asking clarification questions

(Zamani et al., 2023)
(Wu et al., 2022), (Deng et al., 2023)
CIS Data Generation

Example
(Askari et al., 2024)

Conversation Seed

Entity type: Person
Entity type attribute: Occupation
Entity name: Albert Einstein
Entity background document: Albert Einstein was a German-born theoretical physicist who is ...
Conversation starter: Can you delve into the efforts and contributions of Albert Einstein in the field of physics?
Dialogue flow: [original question, clarifying question and information request, further details]
CIS Data Generation

Unstructured data → Input Generation → Conversation Seed → Utterance Generation → Conversation Dataset → Quality Filtering → Filtered Conversation Dataset

Example
(Askari et al., 2024)

Conversation Seed

Entity type:
Entity type attribute:
Entity name:
Entity background document: ...
Conversation starter: ...

Dialogue Flow: [original question, clarifying question and information request, further details]

Conversation Sample

User: Can you delve into the specific efforts and contributions made by Albert Einstein in the field of physics? (intent: original question)
Agent: Sure! Albert Einstein made groundbreaking contributions to physics, especially with his theory of relativity. What aspect would you like me to focus on or any specific topic you're interested in? (intent: clarifying question)
User: Could you provide more details about his theory of relativity and how it revolutionized our understanding of space and time? (intent: further details)
...

(Qu et al., 2018)
Conversational Info. Seeking Generation

(1) Input Generation
- Document-Driven: DG2, SynDG / Inpainting / MultiCQAG, CQAG-AR, SimSeek, simQuAC
- Sequence-Grounded: SOLID, TopDial / MusicSyn, TtWMusic / MATHDIAL, LAPS

(2) Utterance Generation
- Answer Extraction & Question Generation: DG2, SimSeek, MultiCQAG, CQAG-AR
- Inpainting / Dialogue Reconstruction: Inpainting, MusicSyn, TtWMusic, SynDG
- LLM guided/simulated: LAPS, MATHDIAL, TopDial, SimQuAC, SOLID

(3) Quality Filtering
- Noise & Lexical Filtering: TopDial, MATHDIAL, SOLID
- Factuality Check: DG2, SimSeek / MultiCQAG, CQAG-AR / SimQuAC / SynDG
Input Generation

What does “Conversation Seed” contain?

- Information containing a main topic, subtopics, and key details about the topic
- **Dialogue Flow**: a comprehensive perspective of the conversation

Example from Doc2Dial dataset (Feng, et al., 2020)

Conversation Seed

Title: Top 5 DMV Mistakes and How to Avoid Them

Document: Many DMV customers make easily avoidable mistakes that cause them significant problems, including …

Dialogue flow: [Query_condition, Respond_solution, Query_condition, Response_negative, query_condition, …]

Conversation Sample

<table>
<thead>
<tr>
<th>Dialogue turns</th>
<th>Dialogue flow</th>
<th>Grounded Passage</th>
</tr>
</thead>
<tbody>
<tr>
<td>I need to change my address?</td>
<td>Query Condition</td>
<td>Forgetting to Update Address (A title of section) …</td>
</tr>
<tr>
<td>You need to report it to the DMV.</td>
<td>Response Solution</td>
<td>By statute, you must report a change of address to DMV within ten days of moving. That is the case …</td>
</tr>
<tr>
<td>Is your license current?</td>
<td>Query Condition</td>
<td>Not Bringing Proper Documentation to DMV Office (A title of section) …</td>
</tr>
<tr>
<td>Yes, I just have to change the address.</td>
<td>Response Negative</td>
<td>Sign up or log into MyDMV …</td>
</tr>
<tr>
<td>What if my insurance had lapsed?</td>
<td>Query Condition</td>
<td>Understanding how Much Traffic Points Cost (A title of section) …</td>
</tr>
<tr>
<td>Your license and registration could be suspended.</td>
<td>Response Solution</td>
<td>DMV maintains a point system to track dangerous drivers. Often, motorists convicted …</td>
</tr>
</tbody>
</table>

Grounded Passage

- By statute, you must report a change of address to DMV within ten days of moving. That is the case …
- Sign up or log into MyDMV …
- Understanding how Much Traffic Points Cost (A title of section) …
- DMV maintains a point system to track dangerous drivers. Often, motorists convicted …
Input Generation - Document-Driven

- Why are documents used for CIS data generation?

Inpainting

- **Idea:** Documents are conceptualized as dialogues between the writer and an imaginary reader
- The dialogue flow consists directly of the document's sentences

(Dai et al., 2022)
Input Generation - Document-Driven

Document Segmentation

- A document is segmented into multiple passages
- Passage Ranker

\[
p(c_t | \{ u_i, a_i \}_{i \leq t}, C)\]

- Not fixed and pre-defined
- Dialogue flow: a sequence of passages
- May not consist of sequential passages from a document

(Wu et al., 2022)

Top 5 DMV Mistakes and How to Avoid Them

- <Passage 1> Many DMV customers make easily avoidable mistakes that cause them significant problems, …

- <Passage 2>

- <Passage 3> Not Bringing Proper Documentation to DMV Office. About ten percent of customers visiting a DMV office do not bring what they need to complete their transaction and see if your transaction can be …

- <Passage 4>

- <Passage 5> We send 500,000 inquiry letters a year. If the inquiry letter does not resolve the problem, we must suspend the vehicle registration and, if it persists, your driver license! We suspend 300,000 registrations a year for failure to maintain insurance. …
Input Generation - Document-Driven

Whole Document

- Input a document or provide background information, and leave it to the "utterance generation" component to decide which part of the document to use.

(Kim et al., 2022)
Input Generation - Sequence-Grounded

Fixed Sequence

1) Topics with their Background knowledges
 - Select / Generate a topic

2) A sequence of dialogue acts
 - Sampling a valid sequence

(Leszczynski et al., 2023)
Generate the background information

- Why Generation instead of Selection? Quality / Diversity
- Self-seeding approach, Prompt LLM to generate everything

(Askari et al., 2024)
Input Generation - Sequence-Grounded

Dialogue Acts - Fixed

- Main feature: validity
- Make conversation real, maintain the consistency
- How to ensure the validity? Using existing crowdsourcing dialogue datasets

Table 7: Intent taxonomy and distribution in MSDialog

<table>
<thead>
<tr>
<th>Code/Label</th>
<th>Description</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>OQ</td>
<td>The first question from the user to initiate the dialog.</td>
<td>13</td>
</tr>
<tr>
<td>RQ</td>
<td>Other users repeat a previous question.</td>
<td>3</td>
</tr>
<tr>
<td>CQ</td>
<td>User or agent asks for clarifications.</td>
<td>4</td>
</tr>
<tr>
<td>FD</td>
<td>User or agent provides more details.</td>
<td>14</td>
</tr>
<tr>
<td>FQ</td>
<td>User asks for follow up questions about relevant issues.</td>
<td>5</td>
</tr>
<tr>
<td>IR</td>
<td>Information RequestAgent asks for information from users.</td>
<td>6</td>
</tr>
<tr>
<td>PA</td>
<td>A potential answer or solution provided by agents.</td>
<td>22</td>
</tr>
<tr>
<td>PF</td>
<td>User provides positive feedback for working solutions.</td>
<td>6</td>
</tr>
<tr>
<td>NF</td>
<td>User provides negative feedback for useless solutions.</td>
<td>4</td>
</tr>
<tr>
<td>GG</td>
<td>Greetings/Gratitude Greetings or expressing gratitude.</td>
<td>22</td>
</tr>
<tr>
<td>JK</td>
<td>No useful information in the utterance.</td>
<td>1</td>
</tr>
<tr>
<td>O Others</td>
<td>Utterances cannot be categorized using other classes.</td>
<td>1</td>
</tr>
</tbody>
</table>

SOLID: Full path
Used MSDialog-intent

(Askari et al., 2024)

TopDial: partial path
starting point and the target (act-topic)
Used DuRecDial 2.0

(Wang et al., 2023)
Input Generation - Sequence-Grounded

Dialogue Acts - Fixed

- How to ensure the validity? Closeness in embedding space
- Example: Walk the Talk

(Leśczynski et al., 2022)
(Leśczynski et al., 2023)
Input Generation - Sequence-Grounded

Dialogue Acts - Open

- Used in Human-AI collaboration based methods
- Dialogue act is predicted
 - Based on Dialogue history
 - Before the current turn is generated

LAPS: LLM classifier

MathDial: Human selects

(Joko et al., 2024)

(Macina et al., 2023)
Utterance Generation - Inpainting

- **Reminder:** Dialogue Flow -> Directly the document's sentences
- **Idea:** Fine-tuning a model to reconstruct a dialogue
- **Real world Motivation:**
 - Overhearing someone else's phone call
 - Hear on side, try to guess another side
- **Task:** Take a partial dialog \rightarrow Generate a complete dialog

\[
(u_1, u_2, \diamondsuit, u_4, \diamondsuit) \rightarrow \hat{d} = (u_1, u_2, \ldots, u_t, \ldots, u_T)
\]

(Dai et al., 2022)
Utterance Generation - Inpainting

Training: Dialog reconstruction

- Randomly mask one utterance (u_t)
- Train a generative model to predict the masked utterance
- Similar to the masked language modeling task used by BERT

\[d_{m(t)} = (u_1, \ldots, u_{t-1}, \diamond, u_{t+1}, \ldots, u_T) \]
\[p_\theta(u_t \mid d_{m(t)}) \]

Inference: Transforming documents into dialogues

- Convert document into spans (e.g., sentences)
- Autoregressively generate utterances

\[(s_{\text{prompt}}, \diamond, s_1) \quad \Rightarrow \quad \hat{u}_1 \]
\[(s_{\text{prompt}}, \hat{u}_1, s_1, \diamond, s_2) \quad \Rightarrow \quad \hat{u}_2 \]

(Dai et al., 2022)
Another example of Inpainting

- **Reminder:** Dialogue Flow -> Slate (playlist) sequences

(Consicbianski et al., 2022)
(Consicbianski et al., 2023)
Utterance Generation - Answer Extraction & Question Generation

Reminder: Dialogue Flow -> not fixed, passages Passage Ranker
- The extended version of pipeline approach for “single-turn QA pair generation” (Alberti et al., 2019)

(Wu et al., 2022)
Not Bringing Proper Documentation to DMV Office. About ten percent of customers visiting a DMV office do not bring what they need to complete their transaction and see if your transaction can be...
Utterance Generation - Answer Extraction & Question Generation

User & Agent Utterance Generation

User utterance generator
- Generates a question with the answer span
- Highlight the rationale span by wrapping its text

Agent utterance generator
- Generates the response with the answer span
- The dialogue history now includes the previous generated user utterance

About ten percent of customers visiting a DMV office do not bring what they need to complete their transaction ...

U1: Hello, I forgot to update my address, can you help me with that?
U3: Is it common to delay a transaction due to forgetting any prerequisite when going to the DMV office? What could be the alternative?
U5: What if the inquiry letter you send to me doesn’t resolve the problem with my insurance?

A2: Yes, by statute, you have to report a change of address to DMV before ten days after moving.
A4: Yes Around 10% of our customers forget some of the pre-requisites when going to a DMV office ...
A6: In that case, we must suspend the vehicle registration and if the problem persists …
Title: Lionel Messi
Abstract: Lionel Messi was born on 24 June 1987 in Rosario, the third of four children of Jorge Messi, …
Section Title: 2012, FC Barcelona

As Messi maintained his goalscoring form into the second half of the season, the year 2012 saw him break several longstanding records. On 7 March, two weeks after scoring four goals in a league fixture against Valencia, he scored five times in a Champions League last 16-round match, …
Symmetric
- First extracts an answer candidate from the passage
- Questioner can access all answer-relevant information
 - **Pro:** Coherency with answer
 - **Con:** Constraint to the predetermined answer

Asymmetric
- First asks a question without accessing an answer or passage
- Questioner asks any questions relevant to the topic, guessing inaccessible passage
 - **Pro:** encouraging information-seeking behaviour

(Kim et al., 2022)
Utterance Generation - LLM guided/simulated
Utterance Generation - LLM guided/simulated

LLM-Guided Human Generation (LAPS) (Joko et al., 2024)

- Task: personalized multi-session dialogue

First dialogue session

User
Hi, I am looking to make dinner.

Assistant
What sort of dishes do you normally like to eat?
I am a vegetarian and [...]

Great! Based on your preferences, I would recommend [...]

Subsequent dialogue session

Hi, please can you help me with some lunch recipes?

How about this chickpea curry? [link]

I love spicy food and I was happy you remembered I am a vegetarian.
Utterance Generation - LLM guided/simulated

LLM-Guided Human Generation (LAPS) (Joko et al., 2024)

Main components:
1) Dialogue act classification
 (1) Greeting
 (2) Preference elicitation
 (3) Recommendation
 (4) Follow-up questions
 (5) Goodbye
Utterance Generation - LLM guided/simulated

LLM-Guided Human Generation (LAPS) (Joko et al., 2024)

Main components:
1) Dialogue act classification
2) Guidance generation
3) Utterance composition
4) Preference extraction
Utterance Generation - LLM guided/simulated

LLM-Guided Human Generation (LAPS) (Joko et al., 2024)

Main components:
1) Dialogue act classification
2) Guidance generation
3) Utterance composition
4) Preference extraction
Utterance Generation - LLM guided/simulated

LLM-Human Collaboration (MathDial) (Macina et al., 2023)

- Task: Dialogue tutors
- Main components:
 - LLM as a student
 - Human as a teacher

<table>
<thead>
<tr>
<th>Category</th>
<th>Intent</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focus</td>
<td>Seek Strategy</td>
<td>So what should you do next?</td>
</tr>
<tr>
<td></td>
<td>Guiding Student Focus</td>
<td>Can you calculate …?</td>
</tr>
<tr>
<td>Recall</td>
<td>Relevant Information</td>
<td>Can you reread the question and tell me what is …?</td>
</tr>
<tr>
<td>Probing</td>
<td>Asking for Explanation</td>
<td>Why do you think you need to add these numbers?</td>
</tr>
<tr>
<td></td>
<td>Seeking Self Correction</td>
<td>Are you sure you need to add here?</td>
</tr>
<tr>
<td></td>
<td>Perturbing the Question</td>
<td>How would things change if they had … items instead?</td>
</tr>
<tr>
<td></td>
<td>Seeking World Knowledge</td>
<td>How do you calculate the perimeter of a square?</td>
</tr>
<tr>
<td>Telling</td>
<td>Revealing Strategy</td>
<td>You need to add … to … to get your answer.</td>
</tr>
<tr>
<td></td>
<td>Revealing Answer</td>
<td>No, he had … items.</td>
</tr>
<tr>
<td>Generic</td>
<td>Greeting/Fairwell</td>
<td>Hi …, how are you doing with the word problem?</td>
</tr>
<tr>
<td></td>
<td>General inquiry</td>
<td>Can you go walk me through your solution?</td>
</tr>
</tbody>
</table>

Solve step-by-step:
James writes a 3-page letter to 2 different friends twice a week. How many pages does he write a year?
Utterance Generation - LLM guided/simulated

Fully LLM Generation & Supervision (TopDial) (Wang et al., 2023)

- **Task:** Target-oriented Recommendation System
- 3 LLMs collaboration
 - LLM as a User
 - LLM as a System
 - LLM as a Moderator
Fully LLM Generation & Supervision (SimQuAC) (Abbasiantaeb et al., 2024)

- QuAC: information-seeking QA dialogs dataset (Choi et al., 2018)
 - Continuation dialogue act:
 - it allows teachers to guide the student’s questioning towards aspects of the article that are especially important or interesting

- replacing both human parties with LLMs
- Implement both the student and teacher by zero-shot prompting GPT-4
Utterance Generation - LLM guided/simulated

Fully LLM Generation & Supervision (SimQuAC) (Abbasiantaeb et al., 2024)

Student: Given information (h and b), pose questions

Diagram with boxes labeled as:
- Instruction$_T$
- Instruction$_S$
- Wikipedia Page
- Answer Generation (ϕ_T)
- Answer Validation (σ_T)
- Prompt Selection Teacher (ω_T)
- Question Generation (ϕ_S)
- Question Validation (σ_S)
- Prompt Selection Student (ω_S)

Teacher$_{Sim}$ and Student$_{Sim}$
Utterance Generation - LLM guided/simulated

Fully LLM Generation & Supervision (SimQuAC) (Abbasiantaeb et al., 2024)

Problem: the LLM tends to generate multiple questions in one go
Solution: filter lengthy questions
Utterance Generation - LLM guided/simulated

Fully LLM Generation & Supervision (SimQuAC) (Abbasiantaeb et al., 2024)

Problem: unanswered from the given text, higher chance that the subsequent question might be overly specific and cannot be answered

Solution: Randomly selects one of the following guiding prompts

(i) Ask a general question
(ii) Ask a question starting with where, when, or who
(iii) Ask a question about what is interesting in this article
(iv) Ask a question about another aspect of the topic
Utterance Generation - LLM guided/simulated

Fully LLM Generation & Supervision (SimQuAC) (Abbasiantaeb et al., 2024)

Copy the exact spans from the passage to answer the given question.

Diagram:
- Conversation Seed
- Instruction_T
- Instruction_S
- Wikipedia Page
- Answer Generation (φ_T)
- Answer Validation (σ_T)
- Prompt Selection Teacher (ω_T)
- Question Generation (φ_S)
- Question Validation (σ_S)
- Prompt Selection Student (ω_S)

Teacher_{Sim} → q_i → Student_{Sim}
Utterance Generation - LLM guided/simulated

Fully LLM Generation & Supervision (*SimQuAC*) (Abbasiantaeb et al., 2024)

An iterative model to validate and refine the generated answers
- It checks whether the answer is copied from the text section or being “I cannot find the answer”
Solution: text search and multiple sequential prompts to generate other answers
Utterance Generation - LLM guided/simulated

One LLM plays all roles (SOLID) (Askari et al., 2024)

- **Reminder**: conversation seed: Generated background info + Sequence of intents
- How to apply intent in prompting?
 - Define Instruction

<table>
<thead>
<tr>
<th>Intent</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>CQ</td>
<td>Reply with one follow-up response in conversation style.</td>
</tr>
<tr>
<td>FD</td>
<td>Reply with further details in conversation style.</td>
</tr>
<tr>
<td>GG</td>
<td>Continue the conversation by expressing gratitude for the user's questions.</td>
</tr>
<tr>
<td>PA</td>
<td>Provide a potential solution or answer in conversation style.</td>
</tr>
<tr>
<td>IR</td>
<td>Ask the user to provide relevant information needed for their previous question.</td>
</tr>
<tr>
<td>OQ</td>
<td>Formulate an original question posed by an agent.</td>
</tr>
<tr>
<td>FQ</td>
<td>Formulate a follow-up question from an agent, seeking further clarification or information.</td>
</tr>
<tr>
<td>RQ</td>
<td>Now you are talking from the point of view of a third participant in the conversation. Repeat Question:</td>
</tr>
<tr>
<td>PF</td>
<td>Express satisfaction and appreciation for the conversation.</td>
</tr>
<tr>
<td>NF</td>
<td>Convey dissatisfaction for the previous response.</td>
</tr>
<tr>
<td>JK</td>
<td>Reply with gibberish information. It can contain emojis.</td>
</tr>
<tr>
<td>O</td>
<td>Reply with a system error. Return N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intent</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>CQ</td>
<td>Reply with one question asking for clarification in conversation style.</td>
</tr>
<tr>
<td>FD</td>
<td>Reply with more details in conversation style.</td>
</tr>
<tr>
<td>GG</td>
<td>Continue the conversation by expressing gratitude for the agent's help.</td>
</tr>
<tr>
<td>PA</td>
<td>Provide a potential solution or answer in conversation style.</td>
</tr>
<tr>
<td>IR</td>
<td>Reply with relevant information.</td>
</tr>
<tr>
<td>OQ</td>
<td>Formulate the first question posed by a user that initiates a Q&A dialog.</td>
</tr>
<tr>
<td>FQ</td>
<td>Formulate a follow-up question from a user, seeking further clarification or information.</td>
</tr>
<tr>
<td>RQ</td>
<td>Now you are talking from the point of view of a third participant in the conversation. Repeat Question:</td>
</tr>
<tr>
<td>PF</td>
<td>Express satisfaction and appreciation for a working solution.</td>
</tr>
<tr>
<td>NF</td>
<td>Convey dissatisfaction for the previous response.</td>
</tr>
<tr>
<td>JK</td>
<td>Reply with gibberish information. It can contain emojis.</td>
</tr>
<tr>
<td>O</td>
<td>Reply with a system error. Return N/A</td>
</tr>
</tbody>
</table>
Utterance Generation - LLM guided/simulated

One LLM plays all roles (SOLID) (Askari et al., 2024)

- Generates utterances guided by a specific intent or intents
- Each utterance generation fits under one of two cases
 - Single intent
 - Multiple intent
 - Prompt LLM to generate one merged instruction
Utterance Generation - LLM guided/simulated

One LLM plays all roles - One Go Generation (SOLID-RL) (Askari et al., 2024)

- One Go generation advantages
 - Enhancing the naturalness
 - consistency of the conversation,
 - Increasing generation speed
- Approach
 - Fine-tuned on synthetic data

Fine-tuning for One-Go Generation

Fine-tuning for One-Go Generation
Conversational Info. Seeking Generation

(1) Input Generation
- Document-Driven
 - DG2, SynDG / Inpainting / MultiCQAG, CQAG-AR, SimSeek, simQuAC
- Sequence-Grounded
 - SOLID, TopDial / MusicSyn, TiWMusic / MATHDIAL, LAPS

(2) Utterance Generation
- Inpainting / Dialogue Reconstruction
 - Inpainting, MusicSyn, TiWMusic, SynDG
- Answer Extraction & Question Generation
 - DG2, SimSeek, MultiCQAG, CQAG-AR
- User/Agent Simulation
 - LAPS, MATHDIAL, TopDial, SimQuAC, SOLID

(3) Quality Filtering
- Noise & Lexical Filtering
 - TopDial, MATHDIAL, SOLID
- Factuality Check
 - DG2, SimSeek / MultiCQAG, CQAG-AR / SimQuAC / SynDG
Quality Filtering - Factuality Check

Roundtrip Consistency

- For QA pair Generation

Data Store

<table>
<thead>
<tr>
<th>Step</th>
<th>Type</th>
<th>Command</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Passage Selection</td>
<td>C</td>
<td>... in 1903, boston participated in the first modern world series, going up against the pittsburgh pirates …</td>
</tr>
<tr>
<td>2</td>
<td>Answer Extraction</td>
<td>C→A</td>
<td>1903</td>
</tr>
<tr>
<td>3</td>
<td>Question Generation</td>
<td>C, A→Q</td>
<td>when did the red sox first go to the world series</td>
</tr>
<tr>
<td>4</td>
<td>Filtering</td>
<td>C, Q→A' A'→A'</td>
<td>1903 Yes</td>
</tr>
</tbody>
</table>

(Alberti et al., 2019)
Quality Filtering - Factuality Check

Roundtrip Consistency

- For Conversational Turn Generation

(Wu et al., 2022)
Conclusion and Future Directions

Duration: 10 min
Presenter: Evangelos Kanoulas
Your Conclusions

- Are zero-shot LLMs + prompting the ultimate dialogue system?
- Is there need for data generation?
- What is left to be done?
What we have so far - Task-oriented Dialogue

- Task-oriented dialogue systems require task-/domain-specific data
 - Strong dependence on individual task characteristics, constraints, etc.
- Task-specific data require modeling the task/domain through schemas, ontologies, etc.
 - In data augmentation there is a chance to make this data driven, but not in zero-shot
- LLMs are proven good UX towards consuming and producing text
 - Including generating dialogue goals
- … but passing task/domain constraints remains a challenge; even when leveraging LLMs, we need access to constraints such as schemas, or ontologies. They are mostly human-generated and not easily integrated in an e2e process
Data augmentation is proven effective for various types of open domain dialogue systems.
Methods have moved from Generative to Prompting based:
- Minimizes the need for human involvement
- It is faster and more accessible

General trend in LLM-based data augmentation:
- Create Large-scale LLM-generated datasets; e.g., using GPT* models
- (Parameter-efficient) Finetune another LLM (e.g., LLaMA) to generate a dialogue agent
- E.g., for role-specified open domain dialogue systems, information seeking systems

It still requires domain-specific knowledge (i.e., seed data, structural constraints)
What we have so far - Conversational information Seeking

- Single document grounding w/ simple flow management and answer extraction
- LLMs attempt to go beyond a single source of info and simulate/guide users behaviour
- Remaining challenges
 - Multi-source grounding
 - Conversation flow guidance
 - Mixed-initiative
 - Modeling of the CIS dialogues
Open Challenges

- There is less control over the generated data
 - Limited guards against unsafe and toxic content
 - Large-scale automatic evaluation and human evaluation is still an open problem

- LLM-generated dialogues lead to self-reinforcement of LLM-based dialogue systems
 - We already know LLM-based evaluation models prefer LLM-generated text

- Large scale data generation for complex and personalized tasks remains a challenge
 - E.g., tutoring tasks, modeling personas and preferences,
References: Introduction

- (Zamani et al., 2023) Conversational information seeking. Foundations and Trends® in Information Retrieval, 244-456.
- (Ni et al. 2023) Recent advances in deep learning based dialogue systems: A systematic survey. Artificial intelligence review, 3055-3155.
- (Chen et al., 2023) An empirical survey of data augmentation for limited data learning in nlp. Transactions of the Association for Computational Linguistics, 191-211.
References: Evaluation

- (Zhang et al., 2020) BERTScore: Evaluating Text Generation with BERT. ICLR
- (Yuan et al., 2021) BARTScore: Evaluating Generated Text as Text Generation, NeurIPS, 27263-27277.
- (Gao et al., 2019) Interconnected Question Generation with Coreference Alignment and Conversation Flow Modeling, ACL, 4853–4862.
- (Li et al., 2016) A Diversity-Promoting Objective Function for Neural Conversation Models, NAACL HLT, 110–119.
- (Zhang et al., 2018) Generating Informative and Diverse Conversational Responses via Adversarial Information Maximization, NeurIPS, 1815–1825.
- (Michael Smith et al., 2022) Human Evaluation of Conversations is an Open Problem: comparing the sensitivity of various methods for evaluating dialogue agents, the 4th Workshop on NLP for Conversational AI, ConvAI@ACL 2022, 77–97.
References: Task-oriented

- (Li et al., 2016) A User Simulator for Task-Completion Dialogues, CoRR, volume 1612.05688, arXiv:1612.05688
- (Wan et al., 2022) A Unified Dialogue User Simulator for Few-shot Data Augmentation, EMNLP pages 3788-3799
- (Mohapatra et al., 2021) Simulated Chats for Building Dialog Systems: Learning to Generate Conversations from Instructions, ACL 2021, pages 1190-1203
References: Task-oriented

- (Li et al., 2023) Controllable Dialogue Simulation with In-Context Learning, ACL 2022, pages 4330-4347, arXiv:2210.04185
- (Lee et al., 2018) Zero-Shot Adaptive Transfer for Conversational Language Understanding, arXiv:1808.10059
References: Open Domain

- (Lee et al., 2022) PERSONACHATGEN: Generating Personalized Dialogues using GPT-3, the 1st Workshop on Customized Chat Grounding Persona and Knowledge, ACL, 29–48.
References: Conversational Information Seeking

- (Bao et al., 2023) A Synthetic Data Generation Framework for Grounded Dialogues, ACL, 10866–10882.
- (Dai et al., 2022) Dialog Inpainting: Turning Documents into Dialogs, ICML, 4558–4586.
- (Hwang et al., 2022) Multi-Type Conversational Question-Answer Generation with Closed-ended and Unanswerable Questions, ACL, 169–177.
References: Conversational Information Seeking

- (Leszczynski et al., 2022) Conversational Music Retrieval with Synthetic Data. In Second Workshop on Interactive Learning for Natural Language Processing at NeurIPS.
- (Joko et al., 2024) Doing Personal LAPS: LLM-Augmented Dialogue Construction for Personalized Multi-Session Conversational Search, SIGIR.
- (Qu et al., 2018) Analyzing and Characterizing User Intent in Information-seeking Conversations, SIGIR.